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Abstract

Let A be a noetherian ring whose maximal spectrum has dimension at most 1.
For instance, A can be a noetherian local ring or an order in a number
field. Let B be a finite projective A-algebra that becomes étale over the
total ring of quotients of A. In this note it is shown that B is of the form
A[X1, . . . , Xn]/(f1, . . . , fn) if and only if the Fitting ideal FitB(ΩB/A)
of the module of differentials of B over A is free of rank 1 as a B-module.
In particular, the ring of integers in a number field K is of the form
Z[X1, . . . , Xn]/(f1, . . . , fn) if and only if the different of K over Q is a
principal ideal.

1. Introduction

In this note we explain a criterion to decide whether certain finite projective algebras
are complete intersections. The criterion is formulated over an arbitrary noetherian
base ring. Applied with base ring Z it tells us which orders in number fields are of
the form Z[X1, . . . , Xn]/(f1, . . . , fn). Such orders are called complete intersection
orders, and they share several ring-theoretic properties with the well-studied subclass
of equation orders, i.e., orders of the form Z[α]. Applied with a complete discrete
valuation ring as a base ring, the criterion gives results that have recently gotten
attention due to Wiles’s proof of Fermat’s Last Theorem. We first state the theorem
and then return to these two number-theoretic applications.
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Rings and algebras in this note are supposed to be commutative with identity
element. By a complete intersection over a ring A we mean an A-algebra of the
form A[X1, . . . , Xn]/(f1, . . . fn) that is finitely generated as an A-module. Such an
algebra is always projective as an A-module [3].

If A is a ring and B = A[X1, . . . , Xn]/(g1, . . . , gm) then the module of differen-
tials ΩB/A is the cokernel of the B-linear map Bm → Bn with matrix (∂gi/∂Xj)i,j .
The Fitting ideal FitB(ΩB/A) is the B-ideal generated by all n × n minors of this
m×n matrix. Clearly, FitB(ΩB/A) is a principal B-ideal if we can take m = n. The
theorem below gives sufficient conditions for the converse to hold. We say that B is
generically étale over A if ΩB/A is annihilated by a non-zero divisor of A.

Theorem 1.1

Let A be a noetherian ring and let B be an A-algebra that is finitely generated

and projective as an A-module. Then the following are equivalent:

(1) B is a generically étale complete intersection algebra over A;

(2) there exists a finite free B-module F and a short exact sequence

0 → F → F → ΩB/A → 0.

If the maximal dimension of A is at most 1 then these are also equivalent to

(3) FitB(ΩB/A) is free of rank 1 as a B-module;

(4) B is generically étale over A and FitB(ΩB/A) is a principal B-ideal.

We explain the terminology in the next section and we give the proof in
Section 3. The proof follows ideas of Mohan Kumar [7], Vasconcelos [14], and
Lipman [10]. It uses a ring-theoretic result of Auslander-Buchsbaum [2] and a result
of Serre [13] on projective modules. The equivalence of (1) and (2) in the case that
B is reduced can also be deduced from Kunz [6, Th. 9.5].

Suppose that O is an order in a number field K. If O is the maximal order in
K then FitO(ΩO/Z) is equal to the different of K over Q; see [12, Ch. III, §7]. The
theorem implies that O is a complete intersection over Z if and only if FitO(ΩO/Z)
is a principal O-ideal.

In the context of Wiles’s proof of Fermat’s Last Theorem one takes a com-
plete discrete valuation ring A as a base ring, and one considers only finite local
A-algebras B with the same residue field as A. One can show that B is then a com-
plete intersection over A if and only if B is of the form A[[X1, . . . , Xn]]/(f1, . . . , fn);
see [3]. The theorem above gives a criterion to decide whether B is a complete in-
tersection in the case that B is generically étale over A. A slightly weaker criterion
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in this setting, which was suggested by Mazur, was shown recently by Lenstra with
a method close to Wiles’s arguments [9, pp. 106–108].

If B is a finite projective algebra over a ring A then we say that B is locally a
complete intersection over A if for all primes p of A the ring B ⊗A Ap is a complete
intersection over the localization Ap. One can deduce from 1.1 that a finite projective
algebra B over a noetherian ring A is both generically étale and locally a complete
intersection if and only if FitB(ΩB/A) is projective of rank 1 as a B-module. Some
further ring-theoretic properties of (locally) complete intersections are mentioned
in 2.4 below.

2. Terminology

In this section we give the definitions used in Theorem 1.1, and we mention some of
the ingredients of the proof. The main statement of this section is the formulation
in Proposition 2.6 of four equivalent criteria for a finite projective algebra over a
noetherian ring to be generically étale.

2.1 The maximal dimension and Serre’s theorem

Let A be a ring, and let X(A) be the set of prime ideals of A that can be
written as an intersection of a collection of maximal ideals of A. We define the
maximal dimension m-dim(A) of A to be the largest integer k for which there is a
chain p0 ⊂ p1 ⊂ · · · ⊂ pk of prime ideals in X(A) in which all inclusions are strict.
In particular, m-dim(A) is at most the Krull-dimension dim(A) of A, and we have
m-dim(A) = 0 if A is local. If B is a finite A-algebra then m-dim(B) ≤ m-dim(A),
because pulling back prime ideals gives a map X(B) → X(A) that preserves strict
inclusions [1, 5.8, 5.9]. It is not hard to show that m-dim(A) is the dimension of the
topological subspace of SpecA consisting of the maximal ideals; cf. [5, Ch. I, §1].

A theorem of Serre [13, Th. 1] says that every finitely generated projective
module of constant rank over a noetherian ring A is the direct sum of a free A-
module and a projective A-module of rank at most m-dim(A). For Dedekind A and
for local A this is well-known; see [8, Ch. III, Ex. 13] and [8, Ch. XVI, Th. 3.8].

2.2 Fitting ideals

Let R be a ring and let M be a finitely generated R-module. Choose an R-
linear surjection Rn

ϕ−→M for some n ≥ 0. The Fitting ideal FitR(M) is the R-ideal
generated by the determinants det(v1, . . . , vn) with v1, . . . , vn ∈ Kerϕ. The ideal
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FitR(M) does not depend on the choice of ϕ. See [8, Ch. XIX, §2] for details. For
each set X of R-module generators of Kerϕ, the Fitting ideal FitR(M) is already
generated by those determinants for which the vi are contained in X. If S is an
R-algebra then FitS(M⊗RS) = FitR(M) ·S. IfM ∼= R/a1⊕· · ·⊕R/an for R-ideals
ai, then FitR(M) = a1 · · · an.

2.3 The trace map

Let A be a ring and let B be a finite projective A-algebra, i.e., an algebra that
is finitely generated and projective as an A-module. We denote by B† the A-linear
dual HomA(B,A) of B. It has a B-module structure given by (bϕ)(x) = ϕ(bx) with
b, x ∈ B and ϕ ∈ B†. Since B is projective as an A-module the canonical map
B ⊗A B† → EndA(B) that sends b ⊗ ϕ to the endomorphism x �→ bϕ(x), is an
isomorphism. The trace map TrB/A: B → A is defined to be the composition of
canonical maps B → EndA(B) ∼= B ⊗A B† → A, where the first map sends b to
the endomorphism x �→ bx and the last map is the evaluation map b ⊗ ϕ �→ ϕ(b).
This gives rise to a canonical B-linear map ψB/A: B → B† that sends x to the map
y �→ TrB/A(xy).

Remark 2.4. With this terminology in place we can state two properties of (locally)
complete intersections. We will not need them in the sequel. Let A be a ring and let
B be a finite projective A-algebra which is locally a complete intersection over A.
Then B is Gorenstein over A, which means that B† is projective of rank 1 over B; cf.
[6, E.16]. Moreover, if B is a complete intersection over A then B† is free of rank 1
over B. Secondly, we have FitB(ΩB/A) = AnnB(CokerψB/A) = FitB(CokerψB/A).
One can show these properties with [3, Prop. 1.1].

2.5 Étale algebras

We say that a finite projective A-algebra B is étale if the following equivalent
conditions hold:

(1) the map ψB/A: B → B† is an isomorphism;
(2) ΩB/A = 0;
(3) for all maximal ideals m of A we have a Cm-algebra isomorphism Cm⊗AB ∼=

Cm × Cm × · · · × Cm, where Cm is the algebraic closure of A/m.

Let us briefly sketch the proof that these statements are equivalent. Using the fact
that ΩB/A and ψB/A are well-behaved under base change (cf. the proof of 2.6 below),
and Nakayama’s lemma, one first reduces to the case that A is a field, and then to
the case that A is an algebraically closed field. Now B is a product of local Artin
rings with residue field A, and we reduce to the case that B is local. Write m for the
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maximal ideal of B. Note that the map B → B/(A + m2) = m/m2 is a derivation,
and that TrB/A(m) = 0. Then deduce that all three statements are equivalent to
m = 0.

Proposition 2.6

Let A be a noetherian ring with total ring of quotients Q(A). For a finite

projective A-algebra B the following are equivalent:

(1) the map ψB/A: B → B† is injective;

(2) B ⊗A Q(A) is étale over Q(A);
(3) ΩB/A is annihilated by a non-zero divisor of A;

(4) ΩB/A is annihilated by a non-zero divisor of B.

Recall that the total ring of quotients of A is the localization of A at the
multiplicative set of non-zero divisors of A. We say B is generically étale over A
if (1)–(4) hold. If A is a domain of characteristic zero, then a finite projective A-
algebra B is generically étale if and only if it is reduced. In the remainder of this
section we give the proof of 2.6. We start with a lemma in linear algebra.

Lemma 2.7

Let R be a noetherian ring, and let f : P → Q be an injection of finitely

generated projective R-modules of the same constant rank r ∈ Z≥0. Then the

following three statements are equivalent:

(1) f is injective;

(2) the induced map det f :
∧r
P → ∧r

Q is injective;

(3) the induced map f ⊗ 1: P ⊗R Q(R) → Q⊗R Q(R) is an isomorphism.

Proof. The associated primes Ass(M) of an R-module M are those prime ideals p

of R for which p = AnnR(x) for some x ∈ M . We show first that (1) is equivalent
to

(4) for p ∈ Ass(R) the map fp: Pp → Qp of localizations is an isomorphism.

Assume that (1) holds. Suppose that p ∈ Ass(R), so p = AnnR(x) for some x ∈ R.
Clearly f injects xP to xQ. Since multiplication by x identifies P/pP with xP and
Q/pQ with xQ, and since f commutes with multiplication by x, we deduce that
the map P/pP → Q/pQ that one gets by reducing f modulo p is injective. By
localizing at p we get an injection Pp/pPp → Qp/pQp. But this is an injection of
vector spaces of the same dimension, so it is an isomorphism. With Nakayama’s
lemma (4) follows.
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Now assume that (4) holds and suppose that V = Ker f is not zero. By [8,
Ch. X, 2.7] there exists a prime p ∈ Ass(V ), so p = AnnR(x) for some x ∈ V . Since
V can be embedded in a finitely generated free R-module F we have Ass(V ) ⊂
Ass(F ) = Ass(R); see [8, Ch. X, 2.12]. But by (4) we then have Vp = 0, and in
particular ax = 0 for some a ∈ R− p, which contradicts p = AnnR(x). Thus V = 0,
so (4) implies (1).

Using the fact that a matrix over a commutative ring is invertible if and only
if its determinant is a unit, one sees that (4) is equivalent to the statement that
det fp:

∧r
Rp
Pp → ∧r

Rp
Qp is an isomorphism for all p ∈ Ass(R). Since exterior

products commute with base change, and since we already have equivalence of (1)
and (4), we conclude that (1) is equivalent to (2).

Since P and Q inject to P⊗RQ(R) and Q⊗RQ(R) it is clear that (3) implies (1).
We now assume (4) and we will show (3). We may assume that Q is free because

Q ⊕ Q′ is free for some projective R-module Q′, and if we know (3) for the map
P ⊕ Q′ f⊕1−→ Q ⊕ Q′, then (3) follows for f . It suffices to show that the induced
map

∧r
P ⊗R Q(R) → ∧r

Q⊗R Q(R) is an isomorphism, so we reduce to the case
that r = 1 and Q is free. This means that f can be taken to be the inclusion of
a projective R-ideal I of rank 1 in R. We have to show that I contains a non-zero
divisor of R. One can infer this from a result of Auslander-Buchsbaum that we will
need later (see the proof of 3.4), but we will sketch an easier argument here. For
every p ∈ Ass(A), our assumption says that Ip = Rp and in particular this means
that I �⊂ p. Since R is noetherian, the set Ass(R) is finite, and the union of all
primes in Ass(R) is the set of zero divisors of R; see [8, Ch. X, 2.9]. Our non-zero
divisor in I can now be produced with the following general fact, known as “prime
avoidance.”

Lemma 2.8

Let R be ring, let I be an R-ideal, and let S be a finite collection of R-ideals,

none of which contain I. If at most two ideals in S are not prime then I contains

an element that does not lie in any ideal in S.

For a proof see [11, Ex. 1.6] or [4, §3.2]. This finishes the proof of 2.7. �

Remark 2.9. For the equivalence of (1) and (2) the noetherian hypothesis is not
needed. One can see this by reducing to the noetherian case, or by using a ma-
trix argument [11, Ex. 2.4(b)]. The implication (3) ⇒ (1) also holds without the
noetherian condition, but its converse does not. To see this, one may consider the
following example, which was pointed out to the author by H. W. Lenstra, Jr. Let
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A be a Dedekind domain that has a maximal ideal m that generates an infinite
cyclic subgroup of the class group. Now let R = A ⊕ V where V 2 = 0 and V is
the A-module

⊕
p
A/p with the direct sum taken over all maximal ideals of A that

are distinct from m. One verifies that mR = m ⊗A R, by checking each summand
of R. Now m is projective of rank 1 as an A-module, so mR is a projective R-ideal
of rank 1. Yet, it does not contain a non-zero divisor, and in fact R = Q(R).

Proof of 2.6. We first note that ψB/A is compatible with base change. More precisely,
for any A-algebra A′ one can put B′ = B ⊗A A′ and the composite map

B′ ψB′/A′−→ HomA′(B′, A′) ∼−→ HomA(B,A) ⊗A A′

is equal to the map ψB/A⊗ 1. Taking A′ = Q(A) we see with (2.7) that B⊗AQ(A)
is étale over Q(A) if and only if ψB/A is injective. This shows equivalence of (1) and
(2).

To see that (2) and (3) are equivalent, note that ΩB⊗Q(A)/Q(A) = ΩB/A⊗AQ(A).
Since ΩB/A is finitely generated as an A-module it follows that ΩB⊗Q(A)/Q(A) = 0
if and only if (3) holds.

Since B is flat over A, multiplication on B by a non-zero divisor of A is injective,
so (3) implies (4). Now let us suppose that (4) holds and show (3). We may assume
that B is of constant rank r ≥ 1 over A, so that A ⊂ B. We know that ΩB/A is
annihilated by some non-zero divisor x ∈ B. The norm N(x) of x is the unique
element of A such that multiplication by x on B induces multiplication by N(x) on
∧r
AB. With Lemma 2.7 one sees that N(x) is a non-zero divisor of A. We claim that

N(x) = xy for some y ∈ B, so that N(x) also annihilates ΩB/A. To see this, write
B′ = B ⊗A B, which we view as a B-algebra via the first factor, and let ϕ be the
B-algebra homomorphism B′ → B given by a⊗ b �→ ab. Multiplication by 1⊗ x on
B′ now induces induces multiplication by N(x) on

∧r
B B

′. Using the isomorphism
∧r
B B

′ ∼= (
∧r−1
B Kerϕ) ⊗B (

∧1
B B), one then sees that N(x) = yx, where y ∈ B is

the element such that 1 ⊗ x induces multiplication by y on
∧r−1
B Kerϕ. �

3. Proof of the theorem

For any B-module M that can be generated by m elements we have

(3.1) AnnB(M)m ⊂ FitB(M) ⊂ AnnB(M).
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See [8, Ch. XIX, Prop 2.5] for a proof. Taking M = ΩB/A one sees that FitB(ΩB/A)
contains a non-zero divisor of B if and only if AnnB(ΩB/A) does. With 2.6 it follows
that (3) and (4) of Theorem 1.1 are equivalent.

By Lemma 2.7 one sees that (2) implies (3). In the case that m-dim(A) ≤ 1 the
converse follows from the observation that m-dim(B) ≤ m-dim(A) (see 2.1) and the
following proposition, which was given by Lipman [10] for local rings.

Lemma 3.2 (Lipman)

Let R be a noetherian ring with m-dim(R) ≤ 1 and letM be a finitely generated

R-module. Then FitR(M) is free of rank 1 as an R-module if and only if for every

n ≥ 0 and every R-module surjection Rn
ϕ−→M the kernel of ϕ is free of rank n.

Proof. “If” is clear, because by 2.7 the determinant of an injective endomorphism
of Rn is a non-zero divisor. So let us assume that FitR(M) is free of rank 1, and
let Rn

ϕ−→ M be a surjection of R-modules. Let V be the kernel of ϕ, and view
elements of V as column vectors. We need to show that V is free of rank n over R.

Let us assume first that R is local. The Fitting ideal FitR(M) is generated
by the n × n determinants over R whose columns lie in V . Since R is local, and
FitR(M) is principal, we can pick v1, . . . , vn ∈ V so that ∆ = det(v1, . . . , vn) is
a generator of FitR(M). Now consider the map Rn α−→ Rn that sends (ai)ni=1 to
a1v1 + · · · + anvn. This map is injective, because its determinant ∆ is a non-zero
divisor. By Cramer’s rule, every x ∈ Rn satisfies ∆x = ∆1v1 + · · · + ∆nvn where
∆i = det(v1, . . . , vi−1, x, vi+1, . . . , vn). If x ∈ V then ∆i ∈ FitR(M) = ∆R, and
since ∆ is a non-zero divisor it then follows that x ∈ Rv1 + · · · + Rvn. Thus, α is
an isomorphism Rn

∼−→V .
Now let us drop the assumption that R is local. We know by the local case

that V is locally free of rank n, and since R is noetherian this means that V is a
projective R-module. Assume that n ≥ 1. By Serre’s theorem 2.1 we can write V
as a direct sum of a free submodule F of rank n− 1 and a projective submodule P
of rank 1. If w1, . . . , wn−1 is an R-basis of F , then the map P → FitR(M), sending
x to det(w1, . . . , wn−1, x), is surjective. By Nakayama’s lemma this map must be
an isomorphism locally, so it is an isomorphism. Thus, P is free of rank 1, and V is
free of rank n. �

Note that the noetherian condition was not used in the proof of the local case.
It remains to show that (1) and (2) in Theorem 1.1 are equivalent. For suffi-

ciently large n we can write B = R/I with R = A[X1, . . . , Xn] and I an R-ideal.
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By the “second fundamental exact sequence” [11, Th. 25.2] we then have an exact
sequence of B-modules

(3.3) I/I2 → ΩR/A ⊗R B → ΩB/A → 0.

Since ΩR/A is a free R-module of rank n, the B-module ΩR/A ⊗R B is free of rank
n.

Suppose that statement (1) of 1.1 holds. Then we can choose our presentation
of B as an A-algebra in such a way that I is an R-ideal generated by n elements.
This means that we have a B-module surjection Bn → I/I2. Thus one gets an exact
sequence

Bn
ϕ−→ Bn −→ ΩB/A −→ 0

and we have FitB(ΩB/A) = (detϕ)B. Since B is generically étale over A, the B-ideal
AnnB(ΩB/A) contains a non-zero divisor of B, and by (3.1) it follows that detϕ is
a non-zero divisor of B. Therefore, ϕ is injective and (2) follows.

Let us now assume (2) and show (1). By tensoring the sequence in (2) with
Q(A) we see with 2.7 that ΩB/A⊗AQ(A) = 0, so that B is generically étale over A.

Let X be the image of I/I2 in B⊗RΩR/A ∼= Bn under the map in sequence (3.3)
above. With the sequence in (2) Schanuel’s lemma [8, Ch. XXI, Lemma 2.4] implies
that X ⊕ F ∼= F ⊕Bn. Therefore X is projective over B of rank n.

If αi denotes the image of Xi in B then the Koszul complex of the regular
sequence X1 − α1, . . . , Xn − αn in B[X1, . . . , Xn] is a finite resolution of B with
projective R-modules; see [8, Ch. XXI, Th. 4.6]. An R-module M that has such
a resolution is said to be of finite projective dimension. We will need two basic
properties of this notion: a direct summand of a module of finite projective dimension
is again of finite projective dimension, and secondly, if two out of three modules in a
short exact sequence are of finite projective dimension, then so is the third. One can
see this from the fact that a moduleM over a ring R is of finite projective dimension
if and only if there is an integer d such that for all k > d and all R-modules N we
have ExtkR(M,N) = 0; see [11, Appendix B]. By considering the exact sequence
0 → I → R → B → 0 of R-modules, we conclude that I is an R-ideal of finite
projective dimension.

In order to show that the map I/I2 → X is an isomorphism we will use a result
of Vasconcelos [14], which we now state in the form that is most convenient for our
application.

Proposition 3.4 (Vasconcelos)
Let R be a noetherian local ring and let I be an R-ideal of finite projective

dimension over R. Put S = R/I, and suppose that we have an S-linear surjection
I/I2

ϕ−→ V for some free S-module V of rank n = dimR − dimS. Then ϕ is an
isomorphism.
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Proof. We will use two basic facts: first, if x is neither a zero divisor nor a unit
in a noetherian local ring R then dimR/xR = dimR − 1; see [1, 11.18]. Secondly,
such an element x can often be shown to exist with a proposition of Auslander
and Buchsbaum [2, Prop. 3.9]: in a noetherian ring every non-zero ideal of finite
projective dimension contains a non-zero divisor. A short proof of this fact can also
be found in Matsumura [11, Th. 19.8].

It is clear that 3.4 holds if I = 0, so assume that I �= 0. We may also assume
that I �= R. By Auslander-Buchsbaum, I contains a non-zero divisor x of R. Putting
R′ = R/xR and I ′ = I/xR ⊂ R′, we then have S = R′/I ′ and dimR′−dimS = n−1.
If n = 0 then we get a contradiction, so 3.4 holds for n = 0.

For n ≥ 1 we proceed with induction to n. Write V ∼= S ⊕ V ′ and let
π be projection on the first factor. Let f be the composition of surjections
I −→ I/I2

ϕ−→ V
π−→ S. Consider the collection S = Ass(R) ∪ {f−1(mS)} of

R-ideals, where mS is the maximal ideal of S. By 2.8 our non-zero divisor x in I can
be chosen in such a way that f(x) �∈ mS . The restriction of f to xR then induces
an isomorphism xR/xI

∼−→S.
It follows that the short exact sequence 0 → xR/xI → I/xI → I ′ → 0 splits,

with the splitting map I/xI
f−→ S

∼−→xR/xI. This implies that I ′ is a direct
summand of I/xI = I⊗RR′, so it has finite projective dimension over R′. Tensoring
the split exact sequence over R with S we get an exact sequence 0 → xR/xI →
I/I2 → I ′/(I ′)2 → 0. By the induction hypothesis the map I ′/(I ′)2 = I/(xR+I2) →
V/ϕ(xR) = V ′ is an isomorphism. It follows that ϕ is an isomorphism too. �

We continue the proof of the implication (2) ⇒ (1) of Theorem 1.1. Suppose
that m is a maximal ideal of R containing I. Then the localization Im is an ideal of
finite projective dimension in Rm. The pull-back mA of m to A is a maximal ideal
of A because B is integral over A; see [1, 5.8]. Since both R and B are flat over A
one sees with [11, Th. 15.1] that

dimRm = dimAmA
+ dimRm/mARm;

dimBm = dimAmA
+ dimBm/mABm.

Putting k = A/mA one sees that B⊗Ak is artinian so its localization Bm/mABm has
dimension zero. The ring Rm/mARm = k[X1, . . . , Xn]m has dimension n; see [11,
Ex. 5.1] or [4, §13]. We are now in the situation that dimRm = n+ dimRm/Im and
we know that Xm is free of rank n over Rm/Im. This means that we can apply 3.4
and conclude that the surjection Im/I2m → Xm is an isomorphism. Since this holds
for all maximal ideals m of R that contain I, it follows that the map I/I2 → X is
an isomorphism.
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We now proceed as in Mohan Kumar [7]. Let m be the B-rank of F and
consider the ring R′ = R[Y1, . . . , Ym] with the ideal I ′ = IR′ + (Y1, . . . , Ym). We
have R′/I ′ = B and I ′/(I ′)2 ∼= X ⊕ F ∼= F ⊕ Bn ∼= Bn+m. Take n +m elements
fi in I ′ that generate I ′/I ′2 as a B-module and let J be the R′-ideal generated by
the fi. Now I ′/J is an ideal in R′/J that is equal to its own square. With the
determinant trick [1, 2.5] it follows that it is generated by an idempotent emod J
with e ∈ R′, so that we have a product-decomposition of rings R′/J = R′/I ′× I ′/J .
But then B = R′/I ′ = R′[Z]/(J, (1 − e)Z − 1), so we have now written B as an
A-algebra with the same number of generators and relations. This finishes the proof
of Theorem 1.1. �

Remark 3.5. In the proof of the implication (2) ⇒ (1) we needed n + m + 1
generators to write B as a complete intersection algebra over A, where n is the
minimal number of algebra generators of B over A and m is the rank of the module
F in (2). If m-dim(A) ≤ 1 then m-dim(B) ≤ 1, so by 2.1 the B-module I/I2 in the
proof is free, and we need only n+ 1 generators.
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