Collectanea Mathematica (electronic version): http://www.imub.ub.es/collect

Collect. Math. 44 (1993), 125-127
(c) 1994 Universitat de Barcelona

A Fourier inequality with A_{p} and weak- L^{1} weight

H.P. Heinig
Department of Mathematics and Statistics, Mc Master University
Hamilton, Ontario, Canada L8S4K1

Abstract

The object of this note is to generalize some Fourier inequalities.

The following weighted Fourier norm inequality is known:
Theorem A ([1], [2]).
Suppose w is a radial weight function on \mathbb{R}^{n} and as radial function nondecreasing on $(0, \infty)$. Let $1<p \leq q \leq p^{\prime}<\infty$, then there is a constant $C>0$ such that

$$
\begin{equation*}
\left\{\int_{\mathbb{R}^{n}}|\hat{f}(x)|^{q}|x|^{-n\left(1-q / p^{\prime}\right)} w\left(\frac{1}{|x|}\right)^{q / p} d x\right\}^{1 / q} \leq C\left\{\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right\}^{1 / p} \tag{1}
\end{equation*}
$$

holds, if and only if $w \in A_{p}$.
Here \hat{f} denotes the Fourier transform of f, defined by

$$
\hat{f}(x)=\int_{\mathbb{R}^{n}} e^{-i x y} f(y) d y, \quad x \in \mathbb{R}^{n}
$$

whenever the integral converges. The Muckenhoupt weight class A_{p} consists of all non-negative measurable functions w for which

$$
\sup _{Q \subset \mathbb{R}^{n}}\left[\frac{1}{|Q|} \int_{Q} w(x) d x\right]\left[\frac{1}{|Q|} \int_{Q} w(x)^{1-p^{\prime}} d x\right]^{p-1}<\infty
$$

where Q denotes a cube in \mathbb{R}^{n} with sides parallel to the coordinate axes, $|Q|$ its Lebesgue measure and $p^{\prime}=\frac{p}{p-1}$ is the conjugate index of p.

A function φ belongs to weak L^{1} (i.e. $\varphi \in L_{\text {weak }}^{1}$) if there is a constant $C>0$ such that for all $\lambda>0, \lambda m\left(\left\{x \in \mathbb{R}^{n}:|\varphi(x)|>\lambda\right\}\right) \leq C$, or equivalently $y \varphi^{*}(y) \leq C, y>0$, where $\varphi^{*}(y)=\inf \left\{\lambda>0: m\left(\left\{x \in \mathbb{R}^{n}:|\varphi(x)|>\lambda\right\}\right) \leq y\right\}$ is the equimeasurable decreasing rearrangement of φ.

Since $|x|^{-n} \in L_{\text {weak }}^{1}$ one might expect that the term $|x|^{-n}$ occurring in (1) can be replaced by any $\varphi \in L_{\text {weak }}^{1}$. The object of this note it to prove this is indeed the case.

Theorem 1

Suppose w is a radial weight function in A_{p} and as radial function nondecreasing in $(0, \infty)$. If $1<p \leq q \leq p^{\prime}<\infty$ and $\varphi \in L_{\text {weak }}^{1}$, then there is a constant $C>0$, such that

$$
\begin{equation*}
\left\{\int_{\mathbb{R}^{n}}|\hat{f}(x)|^{q} w\left(\frac{1}{|x|}\right)^{q / p} \varphi(x)^{1-q / p^{\prime}} d x\right\}^{1 / q} \leq C\left\{\int_{\mathbb{R}^{n}}|f(x)|^{p} w(x) d x\right\}^{1 / p} \tag{2}
\end{equation*}
$$

Note that the case $q=p^{\prime}$ may be found in [2] while the case $w(x)=1$ yields Corollary 1.6 of [4].
Proof. The hypotheses of Theorem 1 imply that inequality (1) holds. Writing $u(x)=|x|^{n\left(\frac{1}{p^{\prime}}-\frac{1}{q}\right)} w\left(\frac{1}{\mid x)^{\frac{1}{p}}}\right.$ and $v(x)=w(x)^{\frac{1}{p}}$ then u and v are radial and as radial functions decreasing on $(0, \infty)$. Hence with this change (1) implies by [3, Theorem 3.1] that

$$
\sup _{s>0}\left\{\int_{0}^{\kappa} u(t)^{q} t^{n-1} d t\right\}^{1 / q}\left\{\int_{0}^{\bar{\kappa}} v(t)^{-p^{\prime}} t^{n-1} d t\right\}^{1 / p^{\prime}}<\infty
$$

where $t=|x|, \kappa=s^{-2} \theta_{n}^{\frac{-1}{n}}, \bar{\kappa}=s^{2} \theta_{n}^{\frac{-1}{n}}$, and θ_{n} is the measure of the unit n-sphere. Writing $\bar{w}(t)=w\left(\frac{1}{t}\right)$ the supremum takes the form

$$
\sup _{s>0}\left[\int_{0}^{\kappa} t^{n\left(\left[1 / p^{\prime}-1 / q\right] q+1\right)-1} \bar{w}(t)^{q / p} d t\right]^{1 / q}\left[\int_{0}^{\bar{\kappa}}\left(\frac{1}{w}\right)(t)^{p^{\prime} / p} t^{n-1} d t\right]^{1 / p^{\prime}}<\infty
$$

and the change of variable $t=y^{\frac{1}{n}} \theta_{n}^{\frac{-1}{n}}$ shows that this implies

$$
\begin{equation*}
\sup _{s>0}\left[\int_{0}^{s^{-2 n}} \bar{w}\left(y^{1 / n} \theta_{n}^{-1 / n}\right)^{q / p} y^{q / p^{\prime}-1} d y\right]^{1 / q}\left[\int_{0}^{s^{2 n}}\left(\frac{1}{w}\right)\left(y^{1 / n} \theta_{n}^{-1 / n}\right)^{p^{\prime} / p} d y\right]^{1 / p^{\prime}}<\infty \tag{3}
\end{equation*}
$$

But \bar{w} and $\frac{1}{w}$ are decreasing as radial functions and so equal to their radially decreasing rearrangements. Now the equimeasurable rearrangement of a function g, defined by

$$
g^{*}(y)=\inf \{\lambda>0: m(\{x:|g(x)|>\lambda\}) \leq y\},
$$

is related to its radially decreasing rearrangement g^{\otimes} by $g^{*}(y)=g^{\otimes}\left(y^{\frac{1}{n}} \theta^{\frac{-1}{n}}\right)$ (cf. [3]). Hence, with $\lambda=s^{2 n}$, (3) takes the form

$$
\sup _{\lambda>0}\left[\int_{0}^{1 / \lambda} \bar{w}^{*}(y)^{q / p} y^{q / p^{\prime}-1} d y\right]^{1 / q}\left[\int_{0}^{\lambda}\left(\frac{1}{w}\right)^{*}(y)^{p^{\prime} / p} d y\right]^{1 / p^{\prime}}<\infty .
$$

But since $\varphi \in L_{\text {weak }}^{1}, \varphi^{*}(y) \leq \frac{C}{y}, y>0$, so this implies

$$
\sup _{\lambda>0}\left[\int_{0}^{1 / \lambda} \bar{w}^{*}(y)^{q / p} \varphi^{*}(y)^{1-q / p^{\prime}} d y\right]^{1 / q}\left[\int_{0}^{\lambda}\left(\frac{1}{w}\right)^{*}(y)^{p^{\prime}-1} d y\right]^{1 / p^{\prime}}<\infty .
$$

Since powers and rearrangements commute, i.e. $\left(g^{\alpha}\right)^{*}=\left(g^{*}\right)^{\alpha}$ and since for any h and $g, h^{*}(y) g^{*}(y) \geq(h g)^{*}(2 y)$, then after a change of variable the last supremum inequality implies

$$
\sup _{\lambda>0}\left[\int_{0}^{1 / \lambda}\left(\bar{w}^{q / p} \varphi^{1-q / p^{\prime}}\right)^{*}(y) d y\right]^{1 / q}\left[\int_{0}^{\lambda}\left(\frac{1}{w}\right)^{*}(y)^{p^{\prime}-1} d y\right]^{1 / p^{\prime}}<\infty .
$$

But this (cf. [5]) implies the inequality (2).
It is a pleasure to express my appreciation to Professor Raymond Johnson for some fruitful conversations on this topic.

References

1. J.J. Benedetto, H.P. Heinig and R. Johnson, "Fourier inequalities with A_{p}-weights", Proc. Conf. Oberwolfach 1986, General Inequalities 5. Internat. Series Numerical Math. 80 Birkhäuser, Basel (1987), 217-232.
2. H.P. Heinig and G.J. Sinnamon, "Fourier inequalities and integral representations of functions in weighted Bergman Spaces over tube domains", Indiana Univ. Math. J. 38(3) (1989), 603-628.
3. H.P. Heinig, "Weighted norm inequalities for classes of operators", Indiana Univ. Math. J. 33(4) (1984), 573-582.
4. L. Hörmander, "Estimates for translation invariant operators in L^{p}-spaces", Acta Math. 104 (1960), 93-140.
5. B. Muckenhoupt, "A note on two weight function conditions for a Fourier transform norms inequality", Proc. Amer. Math. Soc. 88(1) (1983), 97-100.
