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A Fourier inequality with Ap and weak-L1 weight
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Abstract

The object of this note is to generalize some Fourier inequalities.

The following weighted Fourier norm inequality is known:

Theorem A ([1], [2]).
Suppose w is a radial weight function on R

n and as radial function non-

decreasing on (0,∞). Let 1 < p ≤ q ≤ p′ < ∞, then there is a constant C > 0 such

that

{ ∫
Rn

|f̂(x)|q|x|−n(1−q/p′)w
( 1
|x|

)q/p

dx

}1/q

≤ C

{ ∫
Rn

|f(x)|pw(x)dx
}1/p

(1)

holds, if and only if w ∈ Ap.

Here f̂ denotes the Fourier transform of f , defined by

f̂(x) =
∫

Rn

e−ixyf(y)dy, x ∈ R
n

whenever the integral converges. The Muckenhoupt weight class Ap consists of all
non-negative measurable functions w for which

sup
Q⊂Rn

[
1
|Q|

∫
Q

w(x)dx
][

1
|Q|

∫
Q

w(x)1−p′
dx

]p−1

< ∞ ,
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where Q denotes a cube in R
n with sides parallel to the coordinate axes, |Q| its

Lebesgue measure and p′ = p
p−1 is the conjugate index of p.

A function ϕ belongs to weak L1 (i.e. ϕ ∈ L1
weak) if there is a constant

C > 0 such that for all λ > 0, λm({x ∈ R
n: |ϕ(x)| > λ}) ≤ C, or equivalently

yϕ∗(y) ≤ C, y > 0, where ϕ∗(y) = inf{λ > 0:m({x ∈ R
n: |ϕ(x)| > λ}) ≤ y} is the

equimeasurable decreasing rearrangement of ϕ.
Since |x|−n ∈ L1

weak one might expect that the term |x|−n occurring in (1) can
be replaced by any ϕ ∈ L1

weak. The object of this note it to prove this is indeed the
case.

Theorem 1

Suppose w is a radial weight function in Ap and as radial function non-

decreasing in (0,∞). If 1 < p ≤ q ≤ p′ < ∞ and ϕ ∈ L1
weak, then there is a

constant C > 0, such that

{ ∫
Rn

|f̂(x)|qw
( 1
|x|

)q/p

ϕ(x)1−q/p′
dx

}1/q

≤ C

{ ∫
Rn

|f(x)|pw(x)dx
}1/p

. (2)

Note that the case q = p′ may be found in [2] while the case w(x) = 1 yields
Corollary 1.6 of [4].

Proof. The hypotheses of Theorem 1 imply that inequality (1) holds. Writing
u(x) = |x|n( 1

p′ −
1
q )
w( 1

|x| )
1
p and v(x) = w(x)

1
p then u and v are radial and as radial

functions decreasing on (0,∞). Hence with this change (1) implies by [3, Theorem
3.1] that

sup
s>0

{ ∫ κ

0

u(t)qtn−1dt

}1/q{ ∫ κ

0

v(t)−p′
tn−1dt

}1/p′

< ∞

where t = |x|, κ = s−2θ
−1
n

n , κ = s2θ
−1
n

n , and θn is the measure of the unit n-sphere.
Writing w(t) = w( 1

t ) the supremum takes the form

sup
s>0

[ ∫ κ

0

tn([1/p′−1/q]q+1)−1w(t)q/pdt
]1/q[ ∫ κ

0

( 1
w

)
(t)p

′/ptn−1dt

]1/p′

< ∞

and the change of variable t = y
1
n θ

−1
n

n shows that this implies

sup
s>0

[ ∫ s−2n

0

w(y1/nθ−1/n
n )q/pyq/p

′−1dy

]1/q[ ∫ s2n

0

( 1
w

)
(y1/nθ−1/n

n )p
′/pdy

]1/p′

< ∞ .

(3)
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But w and 1
w are decreasing as radial functions and so equal to their radially de-

creasing rearrangements. Now the equimeasurable rearrangement of a function g,
defined by

g∗(y) = inf
{
λ > 0:m({x: |g(x)| > λ}) ≤ y

}
,

is related to its radially decreasing rearrangement g⊗ by g∗(y) = g⊗(y
1
n θ

−1
n

n )
(cf. [3]). Hence, with λ = s2n, (3) takes the form

sup
λ>0

[ ∫ 1/λ

0

w∗(y)q/pyq/p
′−1dy

]1/q[ ∫ λ

0

( 1
w

)∗
(y)p

′/pdy

]1/p′

< ∞ .

But since ϕ ∈ L1
weak, ϕ

∗(y) ≤ C
y , y > 0, so this implies

sup
λ>0

[ ∫ 1/λ

0

w∗(y)q/pϕ∗(y)1−q/p′
dy

]1/q[ ∫ λ

0

( 1
w

)∗
(y)p

′−1dy

]1/p′

< ∞ .

Since powers and rearrangements commute, i.e. (gα)∗ = (g∗)α and since for any h

and g, h∗(y)g∗(y) ≥ (hg)∗(2y), then after a change of variable the last supremum
inequality implies

sup
λ>0

[ ∫ 1/λ

0

(wq/pϕ1−q/p′
)∗(y)dy

]1/q[ ∫ λ

0

( 1
w

)∗
(y)p

′−1dy

]1/p′

< ∞ .

But this (cf. [5]) implies the inequality (2). �
It is a pleasure to express my appreciation to Professor Raymond Johnson for

some fruitful conversations on this topic.
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