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ABSTRACT

The deep relations wich exist between the fundamental
notions in Mathematics of principal fiber bundle , associated
vector bundle , connection , curvature and Bianchi identities ,
and the basic concepts in Physics of gauge , potencial , field ,
Maxwell equations , conservation laws and Yang-Mills equations ,
are worked out . In detriment of mathematical rigor , intrinsic-
ness or generality , special emphasis is put on the detailed
derivation of the explicit expressions wich relate both catego-
ries of concepts , degrees of freedom are pointed out .

RESUM

En aquest treball es posen de manifest les profundes corres-—
pondéncies que existeixen entre les nocions fonamentals en Mate-
matiques de fibrat , fibrat vectorial associat , connexié ,
curvatura i identitats de Bianchi , i els conceptes basics en la
Fisica de gauge , potencial , camp , equacions de Maxwell , lleis
de conservacié i equacions de Yang—-Mills . Sacrificant generali-
tat, concisié i rigor matematic , en l'exposicis es posa un
emfasi especial en la deduccié acurada de les expressions
explicites que relacionen ambdues categories de conceptes .
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1 Introduction.

Laws are written in the Book of Nature in mathematical language. This is
not, of course, the only role of Mathematics, but it is the one that really
counts for a scientist. Historically, there has always been a traditional reluc-
tance among the bulk of the comunity of physicists against the incorporation
of new mathematical concepts. For instance, some decades ago against those
of (multi-)linear algebra, as general vector spaces, tensors, spinors, of non-
euclidean geometry, of Lie algebras, etc., and now against those of exterior
calculus, twistors and fiber bundles. For the grown up physicist mathemati-
cal background is as difficult to change as religion or political creed is for the
plain man. Making reference to past succesful experiences is commonly no
use. Not either to realize the tremendous importance that the new mathe-
matical concepts and methods have had on the impressive advances ocurred
in the physical comprehension of our world during the present century.

In spite of the great ammount of books and research articles which have
appeared in the last 10 or 15 years dealing with the concepts of fiber bun-
dles, both from the mathematical [1-3] and from the physical [4-8] point
of view, this subject continues to be tabu —which means no use or highly
irrelevant— to the majority of our colleages. Very deep, general and rigorous
treatises are now on hand for everyone having enough time to spend in such
important questions, and it is not he purpose of this paper to try to compete
with them, not even to try to substitute any in some way or other. The
intention of this elementary paper is very modest, but maybe not so easy to
accomplish. Namely, to explain in very few words and formulas the physical
and mathematical concepts involved in this (already not so) new discipline,
performing carefully the (rather trivial) proofs that are not to be found in
those more advanced texts, and with particular attention being put in small
details, as minus signs or factors which differ from one notation to another.
The following pages are addressed, in particular, to these physicists who are
worried or feel some interest about fiber bundles, want to now the essentials
of them, and do not have very much time to spend on the subject.

95



2 Fibration. Fiber bundle. Principal fiber
bundle. Associated vector bundle.

2.1 Fibration.

It is a triplet (P, M, ), with P (called fiber space) and M (called base
space) differentiable manifolds, and 7 : P — M projection, satisfying
the local triviality condition: ¥ z € M,3 U, neighborhood, Fy, differ-
entiable manifold, and ¢ : 7~*(U;) — U, x Fy, diffeomorphism, such that
wle(y,2)] =y, Yy € Us, 2z € Fy,. 7 '(z) = P; C P is called the fiber
over £ € M. s: M — P such that 7 o s = Ijs is a section.

2.2 Fiber bundle.

It is a fibration, (P, M, ), such that P, ~ F, Vz € M. If F' is a vector space,
it is called a vector bundle, and if F is a Lie group, a principal fibration.
A trivial fiber bundle is

(MXF’Map'rl)- (21)

Given (P, M, ) and (P', M', '), a2 morphism is a couple (f,g) such that
7’ og = fom,i.e the following diagram is commutative:

P X M
gl /Il Lf (2.2)
P M

A fiber bundle, (P, M, ), is trivializable if there exists a morphism, (f,9),
from it into (2.1), being f = In.

It is immediate that every vector bundle admits a section, namely the
zero section. This is not true in general for a principal fibration.

2.3 Principal fiber bundle.

(P,M,G,~) with P, M and = as before, and G a Lie group which acts on
P freely on the right (i.e. p-g = p = g = e neutral element). Moreover,
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7 : P — M must satisfy that Yz € M, U, neighborhood and ¢ : 7~Y(U,) —
U, x G diffeomorphism such that

e ,9) =y, ¢ Hu99)=¢"'(v,9)-d,
YyeU, g, €G. (2.3)

Proposition 1.

7(p1) = m(po) iff it exists g € G such that p; = p, - g.
Proof. =) Let 7(p;) = m(ps) = z. Locally, in Uy, 7 = ¢\ (z,g:), ¢ = 1,2;
therefore, py = ¢7'(z,91) = ¢7'(2,92) - 951, so that p; = p, - g, with
9=9:'91

<) Let pp=ps-g. Thenps-g=¢7'(z,92)- g = ¢7!(,929) = p1. We
see that 7(p;) = z and p, = p~!(z,9,), with g; = gy9, that is g = g;'¢;. In
particular, m(p;) = 7(p,), and g is unique.

We notice that locally the principal fiber bundle is obtained from the
zero-section by action of G: for any p € 7~(U,) there exists (y,9) € U, x G
with p = ¢~!(y,e) - g. This can be generalized as follows.

Proposition 2.

A principal fiber bundle is trivializable iff it admits a section (s : M — P
global, everywhere defined and smooth).
Proof. Define ¢, : (P, M.G,7) = (M x G, M, G,pr1), ¢;'(z,9)=s(z)-g.
It is a trivialization (C* and 1 —1). In fact, for every p € P, let 7(p) = z.
Then 7(p) = 7(s(z)), and 3! g € G such that p = s(z) - g.

2.4 Vector bundle associated to a principal fiber bun-
dle.

Given (P, M,G, ) and a representation r : G — GL(V), V vector space,
consider P X V, the action (p,v) - g = (p- g,7(¢9*)v), the orbit space E =
(P x V)q, and the projection #(p,v) = 7(p). The associated vector bundle
is, by definition, (E, M, ).

It can be proven that (E, M, %) is locally trivializable with neighborhoods
of type U x V and fiber isomorphic to V. Moreover, the associated vector
bundle is trivializable iff there exists a maximal set of linearly independent
sections (i.e., as much as the dimension of the fiber). Then the principal fiber
bundle is also trivializable. In fact,
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1. The projection 7, #((p,v)) = 7(p), verifies:

(a) 7 is a well defined mapping: (p1,v1) € (p,v) means that there
exists g € G such that (py,v1) = (p,v) - g = (p- g,7(g7")v). Then
n(p) =m(p-g) = =(p); :

(b) 7 is a projection: immediate, because = is, ie., for any z € M
there exists p € P such that 7(p) = z, that is #((p,0)) = .

2. The local trivialization of (E,M,#) will be called ¢ and it is con-
structed, starting from ¢, (2.3), as follows

b7 NU,) — U, xV,

¥((p,v)) = (x(p),r(g)v)- (2.4)

(a) % is well defined, because (p1,v1) = (p,v) - ¢' = (P~ ¢',7(¢"")(v))
implies m(p1) = 7(p- ¢') = 7(p), and r(g1)(v1) = r(g)r(¢" " )(v) =
r(g19'")(v) = f(g)(v), because p; = p- ¢, ie, o7 (n(p1), 1) =
@71 (r(p),9) - ¢ = ¢ (n(p), gg), and therefore g1 = gg'.

(b) ¥ is injective: (m(p), r(g)v) = (n(p1),7(g1)v1) implies 7(p) = 7(p1)
and r(g)v = r(g1)v1, that is p = p- g’ and v; = (g7 9)v.
But g and g; are not arbitrary: p = ¢~ '(«(p),g) and p =
¢} (n(p),1) = p- ¢ = ¢ (n(p),g¢"). That is, ¢’ = g7" g1, thus
(p1,v1) = (p, )¢, or (p1,01) = (p,v).

(c) ¥ is ezhaustive: for any (y,v) € Uy X V, let p = ¢7'(y, €); then

¥((p,v)) = (w(p),r(e)v) = (y,)-

3. The fibers are isomorphic to V, that is #~!(z) ~ V, for any ¢ € M. In
fact, we only need to consider 3 : #~}(U;) — U, x V restricted to z,

that is o : 7~ 2({z}) = V, o((p,v)) = r(g)v. o is well defined and it is
an isomorphism, because % is.

2.5 Example.
Gauge principal fibration (My x SU(N), My, SU(N),pr1). V is the N-di-

mensional representation space of isospin.
The mathematical structure in which a gauge theory is formulated in a
natural way is the associated vector bundle (E, My,pry), with E = (M, X
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SU(N) x V);suv)- In fact, the elements of this space of orbits correspond
to physical vectors, in the sense that those of them which differ by a gauge
transformation are equivalent, belong to the same class (orbit), and define a
unique vector of E. The physical process of fixing the gauge corresponds in
this language in selecting a canonical representative for each of these equiv-
alence classes (elements of E), i.e. in coordinating the vector bundle.

2.6 Definition of a fiber bundle by means of local
charts.

Let {U;}ier be an atlas of the manifold M, such that on each neighborhood U;
there is a local trivialization of P. Let U;NU; # 0 and the local trivializations

©i :W—I(U,‘) — U; x F;,

;77 (U;) = Uj x Fj. (2.5)
Consider

Pji (U,' n Uj) x F; — W_I(U; n Uj), (2.6)
and
’(,b_,'.' E(p,‘jO(pj_il : (U;nt) X F;, — (U;nt) X F,

(z,2) — (=, fii(z,2)), (2.7
where z € M, z € F;, fii(z) : F; — F;. The ¢;; are called transition
functions. They satisfy the patching or cocycle condition:

¥ji = ik 0 Y. (2.8)
In the particular case of a principal bundle (F; = F; = G) we have the local
sections

8;:U; — W—l(U;),

si(z) = ‘Pi-l(:':’e)v
s;:U; — =7 Y(U;), (2.9)
si(z) = 50;1(1', 6)-
Then, transition functions g;; are defined such that
gi; :UinU; = G, sj(z) = si(z)gii(z). (2.10)
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3 Connections on vector bundles.

3.1 The connection l-form.

Let (E, M, ) be an arbitrary vector bundle, with M a n-dimensional man-
ifold and fibers isomorphic to R™, and let S(M, E) the vector space of all
C*> sections of E. Consider A?(T' M) the bundle of p-forms on the tangent
space of M.

A connection or covariant differentiation 7 is a mapping (for each
pEN)

v :S(M,E @ A (TM)) — S(M, E ® A**(TM)), (3.1)
with the following properties:
1. linearity
V(@181 + az83) = a1 Y s1 + a2V 82, Vag,a; €R, (3.2)

2. Leibniz rule
V(sQw)=35Qdw+ Vs Aw, (3.3)

with d exterior differential and A exterior product. In particular, for
p=0 and f a smooth function

V (sf) = s®@df + (Vs)f. (3.4)

Given a local trivialization in U x R™ with z*, k = 1,2,...,n, local
coordinates on U C M, and s;, ¢ = 1,2,...,m, linearly independent sections
on U, then

Vs;:Zsj Qui, wieT*M, (3.5)

J=1

where the matrix wf is called the connection 1- form (in U). In matrix
form (Chern)

Vs=3Qw, $=(81,.5m), w=(wi). (3.6)

The connection 1-form w is a matrix of Lie a;lgebra. valued 1-forms.
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Let us see how it changes under a linear, transformation of sections, which
locally can be written as

§'(z) = s(z)g(z)," g(z) € GL(n,R), 3.7)

where the components of g(z) are smooth functions of z € M. If E is a vector
bundle associated to a principal fiber bundle by a certain representation
r: G — GL(m,R), then g(z) is a local section of the principal fiber bundle.
In the new reference

vs=sQu, (3.8)
that is,
V(sg) = s®dg+(Vs)g=s® (dg+wyg)
= sQgu', guw' =dg+wg. (3.9)
Therefore,
W' =g ldg + g lwg. (3.10)

3.2° The curvature 2-form.

Consider the iterated application ot the covariant differential operator 7 on
sections:

V(Vs) =V(sQw)=s@dw+ Vs Aw =35 Q (dw +w Aw). (3.11)
The curvature 2-form matrix § is defined by 7(Vs) =s® Q, i.e.
D=dw+wAw. (3.12)
The components Qf of 2 are Lie algebra valued 2-forms
O = dwi + Wi AWk, (3.13)
Under the linear transformation (3.7)
QO = d'+w AW =d(g7'dg + g7 wg)
(97'dg + g7 wg) A (g7 dg + g7 'wg)
= —g7'dgg™' Adg+g7'd’g - g7dgg™! Awg
+ g l'dwg—g'wAdg+g ldgAgldg
+ g7ldgAglwg + g wg A g~tdg 4 (3.14)
+ g'wgAglwg = g7Hdw 4w Aw)g.

+
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Thue the curvature 9-form () transforms as a tensor under a local gauge
transformation
Q = ¢g710g. (3.15)

3.3 Exterior covariant differentiation.

It can be defined in an intrinsic way [2], but for the moment let us introduce
it in coordinate form [5]. Recall the ordinary expressions of the covariant
differential of vectors, one-forms and tensors

v"'vj = a,'UJ + F',’:k'l)k, (316)
Viv; = 6.~vj - I‘fjvk, (317)
Vit, = Ot} +Thth — Tht], (3.18)

respectively, where I‘}k are the Christoffel symbols of the manifold’s connec-
tion. Now, let

wi = datTs;, d=da*d, v = de* i (3.19)

These expressions can be generalized, in the sense that the natural coor-
dinate basis {2} and {dz'} can be substituted by other ones: {e;} and {6'}.
For the sake of concreteness, however, we shall restrict ourselves to (3.19).
Taking into account the expressions (3.16)-(3.18), one defines the exterior
covariant differential of 1- and 2-forms é’ and ¢!, respectively, by

D¢ = do’ +wi A", (3.20)
D& = del +wingF—wing
= de +uwing —g AW, (3.21)

where d is the exterior differential and A the exterior product. In matrix
form

DO=dd+wA0, DE=dé+wAéE—ENAw. (3.22)

In particular, for the connection 1-form and curvature 2-form we have, re-
spectively,

Dv = dw4wAw=1Q, (3.23)

DQ A+ wA Q- QAw = D(Dw). (3.24)
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3.4 Bianchi identities.

We are now going to prove the following equality, called Bianchi identity
(BI)

DR =0. (3.25)
In fact,
AV = d*wl + dwl A wk — wi A duk,
wi AQF =Wl Adwl —w Awf AW, (3.26)
AW = dwl AwF —wi Al AWE,
therefore,

DY = O +wi AQF— QL AWF
= dwl AwF —wl A dwf + w] A dwf
- wi/\w,’f/\wf‘—dwi/\wf (3.27)
+ W AW AWE = 0.

4 Bianchi identities in General Relativity,
Maxwell equations and Yang-Mills equa-
tions.

4.1 BI in General Relativity.

The BI (3.25) reduce indeed to the well-known form for the curvature 4-tensor
Riin . . .

Vi R;'kh + ka_'jhl + VhR;-“, =0 (41)
(for a Riemannian manifold in the natural basis). In order to prove this, we
start from the relation between the curvature 4-tensor R}y, and the curvature
2-form ;. As is well known,

which contracted with 1dz* A dz*, gives

1 1 i () m
§Rjkhdzk A dzh = dUJJ + wm A w] 5 (4.3)
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where we have used eq. (3.19). Comparing with (3.13), it turns out that

J

1
Q“ = 5 jkhdzk A dzh. (4.4)
Now, the covariant differential of a tensor of the type of Rj,, is

lej‘kh = alR;‘kh - F{]I‘R;’kh - F:‘;Rg‘k’h
T} Ry + Diy Rip. (4.5)
The BI (3.25), in terms of R}, and '}, is

%&R}khdzl A dz* A dzh
+ %I‘}'mR;-’,:hdm' A dzF A dzh (4.6)
- %r;;ij,,,,,,dzk Adsh Ade = 0.
The coefficient of the term dx' A dz* A dz® of the basis of 3-forms, is
> (ORiun + Tin R — TR RE) =0 (4.7)
perm lkh

(each summand with its corresponding sign), and because of the antisymme-

try of Ry, in kh, we have

dzlkh (8iRiws + Dip Ry, — TR RLy,) = 0. (4.8)
cyclic

The cyclic sum in lkh of eq. (4.5) is

Z VIR;'kh
cyclic lkh
= > (alR;kh + Dim Rty — P;?R:nkh)
cyclic lkh
+ DBmn — T Rimn + Thk R (4.9)

- Pz;l.R;ml + Fij'mh - FmR;mk

_ m i _Qgmpi _ gmpi
= _Slk ‘jmh thjml Shl jmk o
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where eq. (4.8) has been used. Summing up,

Z VIRj'kh =- E Sk j’mh’ (4.10)
cyclic lkh cyclic lkh
where
w =TI -Th (4.11)

Eqgs. (4.10) are the well-known Bl in General Relativity. For a Rieman-
nian manifold in the natural basis one has Sf =0, Vm, 1, k, and the BI are
given by (4.1) in this case.

4.2 Maxwell equations.

They are (9]
G.B=p IxB-Z = (412)
¥.B=0, vxm%‘f-:a. (4.13)

In terms of the electromagnetic tensor F,,

0 E E E
| -B. 0 -B; B
Fu=|_p B 0 B | (4.14)

-E; —B; B 0

and of the current J*

JE = (p,f), (4.15)
eqs. (4.12) and (4.13) are (with F* = g**Fy,g*")
o F* = J¥, (4.16)
6)\Fuv + 6,,F,,,\ + auFAu = 0, (417)
respectively [5,9]. In terms of the dual tensor
o = 2 F, (4.18)
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the homogeneous equations (4.13) or (4.17) are written as
8, F™ = . (4.19)

Summing up, the Maxwell equations can be either given by (4.16) and
(4.19), or by (4.17) and

O\F;, +08,F), +0,F;, =J3,, (4.20)
which is (4.16) in terms of the dual tensors, with
Sy = € d’. (4.21)
In terms of the potential A,, the electromagnetic field is
F,, =0,A, - 0,A,. (4.22)

We recognize in the homogeneous Maxwell equations (4.17) the BI (3.25),
(3.24), with
D =dz*d), Q= F,dz* Adz". (4.23)

In the particular case J = 0, the inhomogeneous Maxwell equations (4.20)
are recognized as a sort of BI (3.25) for the dual tensor

DQ* =0, Q= F:,de* Ads” (4.24)

In general (J # 0) the inhomogeneous egs. (4.20) or (4.16) give rise to a
different BI for the current J*

9,J" = 0,0, F* = %[6,,,6,,]F““ =0. (4.25)

This is the continuity equation for the 4-current. Using Stokes’ theorem, one
gets from (4.25) the conservation law for the electric charge.

4.3 Yang-Mills equations.

We shall follow here the opposite direction. The BI (3.25) for the dual Q*
of the curvature 2-form will give rise to the Yang-Mills (YM) equations,
while the ordinary BI (3.25) for the curvature 2-form Q will continue to be
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identities, which are normally neglected in the literature. We shall work in
Euclidean space.
The connection 1-form and the curvature 2-form are now

w = A,dz", (4.26)
N=dwtwAw = (0,A, +ALA)dz" Adz”,

with A, Lie algebra valued (generally SU(2) or SU(3)). The components of
w are the potential, and those of 2 the YM field-strength

Q= F,dz* Adz", F,, =0,A, —0,A,+[A, A (4.27)
The BI (3.25) formulated for the dual 2-form Q*
QO = F, dz* A dz”, (4.28)

are
DY =dP+w A -Q"Aw =0, (4.29)
and, in terms of A, and F},,

Y (0hFi + ANFL - FAL)

perm Apv

=2 Y (&F; +AF, - F,A) =0. (4.30)

cyclic Apv
In particular, for A =1, p =2, v =3, we get

01F01 + 02Foy + 03Fo3 + ArFoy + Az Fo
+ A3FQ3 — F03A3 - FozAz — F01A1 = 0, (431)

i.e. (notice that Fgo = 0)

0uF 0+ [Ay, Fluol = 0. (4.32)
In general, for the rest of the components, we obtain

OuFu + (AL Fu)=0. (4.33)
which are the YM equations, ordinarily written as

D,F,, =0, D,=0,+[A,, . (4.34)
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It is now immediate that starting from the BI (3.25) we get (notice that
F*m = 1")
Du.F;u = 0, (435)

or, in terms of F,,,
-D,\Fuu+-DuFu)\+DuF)\u=07 (436)

which correspond to the homogeneous Maxwell equations.

Solutions of the YM equations (4.33) (or (4.34)) are the celebrated in-
stantons and merons 10,11}, while the BI (4.36) (or (4.35)) are identically
satisfied by F,, given by (4.27). Combining (4.34) and (4.35), we see that
imposing

F,, =F,, (4.37)
the YM equations (4.34) are an immediate consequence of the BI (4.35), so
that the solutions of (4.37) are also solutions of (4.34). These are the very
important self-dual solutions, of which the instantons constitute the most

famous example. In Euclidean space and for G = SU(2) it is given by the
gauge potential

2
z -
A“(l‘) = 2 + agg l(z)aﬂg(x)i
g(z) = 29—?;_‘:—.—2—:, z? =,z (4.38)
v = 0,1,2,3,

being & the SU(2) Lie algebra generators (Pauli matrices). Then F,,, is given
by (4.27). Notice that, when z? — oo, A,(z) is pure gauge

Au(x) ~ g7 (2)8ug(z), 2% — oo. (4.39)
Analogously, the solutions of

F, =-F, (4.40)

are also solutions of the YM equations (3.4). They are also called anti-self-
dual solutions (anti-instantons).

We shall not say anything about the physical importance nor about the
classification in Pontryagin classes of the solutions of the YM equations.
There is a very extense literature dealing with these subjects [12,13].
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5 Connections on principal fiber bundles.

Also called principal connections. There are several equivalent definitions
in the literature. Chern, Koszul, Elie Cartan and Ehresmann are names
associated with them. In what follows (P, M, G, r) will be a principal fiber
bundle.

5.1 First definition of connection.

It is a smooth family of vector subspaces H, of T,P (called horizontal),
such that

1. H:pw Hpis a C* distribution on P.

2. Hypy = H,-g = Ry.H,, Vg € G, i.e. the family of horizontal subspaces
transforms naturally under the right action of G.

3.Vpe P, T,P = H, ®V,, where V, is the tangent space to the fiber
over w(p). V, is called vertical subspace.

The third axiom can be replaced by the following one:

4. 7, H, = Trz)M, i.e. the H, project onto the tangent bundle of M.

The star * means here the Jacobian map. If M has dimension n and G
has m parameters (its Lie algebra G has dimension m), then

dimT,P=n+m, V,=Kerm,~g. (5.1)

An equivalent definition of connection is the following: it is a smooth
family of morphisms I, : T, M — T,P, V p € 7~ }(z) = F,, such that

1.T:p—T,is C*™.

2. I'py = RaTy.

3. meo Ty = ITpm.

Then, T',(T,M) = H,, V, =T,(F,).
It is usual to define the maps

v: TP — Ty(Fy), h:T,P — H,, To(F.)*G.
X=Xp+Xo—»X, X~—Xy - (5.2)
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5.2 Dual definition.

The dual version of the preceding definition of connection is: smooth fam-
ily of G-valued 1-forms w, (called connection 1-forms), w, : T,P —
G, X —i(X,), w,=1o0uv,such that

l. w:pr—wyis C™.

2. w(X) is vertical, VX € T,P, ie. w(X) = w(X,) = X, € G, and
wX)=0<= X € H,.

3. (Rw)(X) = w(RuX) = (ad g7 )w(X), Vg € G, X € TP, where
ad g7' € L(G,G), being ad : G — G the adjoint representation.

This definition of connection is equivalent to the former one. In fact,

Iy (or H,) gives w, satisfying these three conditions, and reciprocally, wp

satisfying the last three axioms defines I',. w, is called an Ehresmann
connection. One has

H, = Ker w,. (5.3)

Under very general conditions, there exists a great number of connections on
a principal fiber bundle [2].

5.3 Exterior covariant differential (intrinsic definition).

It is the operator

D:V®A(TP) — V @AY(TP),
(DW)(X]_, ooy XP‘H-) = de(th, ceny th+1), (54)
ie. Dw=dwoh, h:T,P — H, horizontal projection. Here V is a (finite
dimensional) vector space of representation (say ) of G, and w are V-valued

forms such that Rjw = r(g~!)w (pseudotensorial).
Given w, the connection 1-form, the curvature 2-form ( is defined as

Q= Dw = dwoh. (5.5)

It turns out that
OQ=dw+wAw (5.6)
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and
DA=dl+wAQ-QAw. (5.7)

It can also be proven that [2]
DO =0, (5.8)

which are the Bl in this general case.

5.4 Definition of connection on local charts.

It is the usual definition in Physics. Let U; and U; local charts on M and,
in order to make contact with section 3, consider the particular case G =
GL(m,R). We have already seen that for vector bundles we have

- wy;, = g;7'dgi; + 95w, 95, gii € G, (5.9)

where g;;(z) depends differentially on z € U; N U;. w is the G-valued con-
nection 1-form. In general, one has [2]

wy; = g5 dgi; + ad(g3;" )wu;- (5.10)

A connection is a family of G-valued 1-forms wy, adapted to the covering
{Ui:}ier of M and related on the intersections U; N U; # B by eq. (5.10).

5.5 A note on flat connections.

Let P = M x G a trivial principal fiber bundle. Then M x {g} is a subman-
ifold of P, Vg € G, and M X {e} is a subbundle of P (because {e} is a Lie
group). The canonical flat connection on P consists in taking, for p = (z, g),

Hy, =T,(M x {g}). (5.11)

It is reducible to a unique connection on M x{e}. A connectionon (P, M,G,)
is called flat if Vz € M, 3U, such that the induced connection in 7~ 1(U,)
is isomorphic with the canonical flat connection in U, X G. It can be proven
that a connection w is flat iff Q (curvature 2-form) vanishes [2].

111



6 Parallel transport.

6.1 Definition. The holonomy group.

Let (P, M, G, ) a principal fiber bundle with connection 1-form w (matrix of
G-valued 1-forms on T*M). In a local trivialization U x G, U C M, (z,9)
local coordinates, w is given by

Az) = A;(z)%:,-dz“, (6.1)

with z#, p = 1,2,...,n local coordinates on U C M, and \,, a = 1,2,...m
constant matrices which generate G. Let z(¢), 0 < t < 1, curve on M
piecewise C'. An horizontal lift of z(t) is another curve p(t) in P such that
n(p(t)) = z(t), 0 < t < 1, and such that all its tangent vectors are horizontal.
It can be proven [2] that given z(t) and po € P with 7(po) = zo = z(0), there
exists a unique horizontal lift p(t) with p(0) = po.

The parallel transport of fibers can be defined as follows: when pq
varies over the fiber 77*(zo) one obtains p; = p(1) such that (p,) = z, =
z(1), i.e. a mapping from ‘

7 (zg) = 77 (). (6.2)

This map is a fiber isomorphism.

In the particular case that zo = z; (closed curve), we have an automor-
phism of the fiber #7!(z,). For each closed curve on zo = z; we have one
such automorphism. Under composition they constitute a group, called the
holonomy group of the connection with reference point zo. When we re-
strict ourselves to parallel transport about loops on z, which are homotopic
to zero, we get the restricted holonomy group. It is easy to see that both
are subgroups of G in a natural sense [2].

6.2 Expression in coordinates.

In the local trivialization formerly defined, the section g;;(t) is, by definition,
parallel-transported along the curve z(t) iff

9ij + Auik(z) 2 gr; = 0 (6.3)
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(this comes from the general expression of parallel transport &#(8,z'+ T}, 2*) =
0). Differentiation along the lifted curve is given by

d _u0 . 9
ik + gi; 395" (6.4)

and since it is a parallel lift, using (6.3) we get

d 0 1 0
2 _ u( Y 4pa NP
dt m (6:1:“ 21 A“(x)()\a)‘kgkj 6g;j)
. 0 . .
= ¥ (5; “A“(m)RQ) = i*D,, (6.5)
where the covariant derivative is defined as
0 N 1 a
Du = 5;; — A“(E)Ra, Ra, =1ir (ZZAdgagT) ) (66)

{R,} being a right invarriant basis of the tangent space of G. In fact, if ¢’ =
gh then g,cj‘,—,%; = gif%ﬁ,—’ because from gi; = gj,(h~!);; and % = hj”'gﬁ—m

(chain rule), one has gkja_‘g‘f; = g;cl(h_l)ljhjmﬁ‘ = g}cm%. The R, verify

[Rava] = — fabe Re, (6.7)

with fae structure constants of G. The spliting of T, P into horizontal and
vertical part, T,P = H, ® V,, is given by

(Dy, R,). (6.8)

It is immediate to see that the curvature defined as the commutator of the
basis for the horizontal subspace H, has only vertical components. In fact,

[Du, D))= —F.,R,, Fj, =0,A;—0,A; + f,,,,cAZAf,. (6.9)

In the dual approach, the connection w is a G-valued 1-form in TP whose
vertical component is the Maurer-Cartan form g~'dg

w=g 'Ag+ g 'dg, (6.10)
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with A(z) given by (6.1). As it must be, w annihilates the horizontal vectors
and is constant on vertical ones

<w,D,>=0, <w,R,>= 51{,\,,. (6.11)

The Maurer-Cartan form is invariant under the left action g — gog for con-
stant go € G
(909)'d(g09) = 97" dg. (6.12)

It can be expanded as !
g—ldg = anAa, (613)
with %,\a € G constant matrices, and 0, a basis of left-invariant 1-forms.

From d(g~'dg) + g~'dg A g~'dg = 0, it turns out that 8, obeys the Maurer-
Cartan equation

oa + %fabcob A oc =0. (614)
The dual of the 8, are
1 7] 1 0
L,=tr (-2?9/\.,%;) = 'é‘i‘gik(/\a)kjaa (6.15)
which obey
< 0;, Ly >= 5,,1,, [La, Lb] = fabch- (6.16)

On the other hand, w transforms as a tensor under the right action g — ggo
for constant go € G

w — g5 lwgo. (6.17)
In general g — gg, (g1 not constant)
w > g7wgr + g7 dg; . (6.18)

For the curvature 2-form, we have

= dvtwAw=gFg,

F = dA+AANA= %F‘fu%/\adz“ A da®. (6.19)
It obeys the BI
DA+wAQ-QAw=0, (6.20)
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and transforms as a tensor
Q- 9701, Vg €G,

as we already know.

Acknowledgement

This work has been partially supported by CAICYT.

(6.21)

115



References

[1] N. Steenrod, The topology of fibre bundles, Princeton University Press,
1951.

(2] S. Kobayashi and K. Nomizu, Foundations of differential geometry, In-
terscience, New York, vols. I and II, 1963 and 1969.

[3] N. Bourbaki, Variétés différentielles et analytiques, Hermann, Paris,
1967-71.

[4] T.T. Wu and C.N. Yang, Phys. Rev. D12, 3843 and 3845 (1975).

[5] W. Drechsler and M.E. Mayer, Fiber bundle techniques in gauge theories,
Springer, Berlin, 1977.

(6] C. von Westenholz, Differential forms in mathematical Physics, North-
Holland, Amsterdam, 1978.

[7] M. Daniel and C.M. Viallet, Rev. Mod. Phys. 52, 175 (1980).
[8] T. Eguchi, P.B. Gilkey, and A.J. Hanson, Phys. Rep. 66, 213 (1980).

[9] J.D. Jackson, Classical electrodynamics, 2nd Ed., Wiley, New York,
1985.

[10] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin, Phys.
Lett. 598, 85 (1975).

(11] V. DeAlfaro, S. Fubini, and G. Furlan, Phys. Let. 65B, 163 (1976).

[12] R. Jackiw, Topological investigations of quantized gauge theories, Les
Houches lectures, 1983.

[13] N. Sanchez, Exact solutions in gauge theory, general relativity, and their
supersymmetric extensions, Schweningen Lectures 1984. Lecture Notes
in Mathematics, Springer, Berlin, 1985.

116



