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Abstract 

Al-Samaw’al’s work Exposure of the Errors of the Astronomers contains a 

single numerical table, a highly unusual table of sines. In order to avoid the 

problem of approximating sin(1 degree), al-Samaw’al redefines the number 

of degrees in a circle from 360 to 480. In the accompanying chapter, al-

Samaw’al criticizes his predecessors for deviating from geometrical preci-

sion and explains how his table is to be calculated. However, our analysis 

demonstrates that al-Samaw’al did not follow his own instructions, simply 

interpolating his entries from a traditional sine table. 

Trigonometry was the mathematical heart of ancient Greek and medieval 

Islamic astronomy. The need to convert geometric models of planetary mo-

tion into quantifiable predictions of positions led to the birth of trigonometry 

and its associated tables, first by the hand of 2
nd

 century BC scientist Hippar-

chus of Rhodes (whose table is now lost), and later by Claudius Ptolemy (fl. 

AD 140) in the Almagest [Toomer, 1984]. The sine function (or, in Greece, 

the chord) was therefore the mathematical foundation of astronomy. 

Methods of table computation and levels of precision improved gradually 

throughout the medieval period. However, the subject of this paper, the 12
th
-

century scientist Ibn Ya¬y× al-Samaw’al al-Maghribī, brought a voice of cri-

tique to the standard techniques, claiming that a mistake was made in 

allowing inherently approximative methods to enter the geometric realm of 

trigonometry. His curious resolution of the matter, to redefine the circle to 
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contain 240 or 480 parts rather than the standard 360º, appears to have been 

carried through to a completely new trigonometric table. However, we shall 

demonstrate that the way he constructed his table violated his own principle. 

The sine function, an Indian invention, simplified the geometric proce-

dures needed in mathematical astronomy. Although the sine dominated in 

Islam as well, the chord continued to be used occasionally, presumably 

through its appearance in the Almagest. The transition between the two func-

tions is simple. If one needs to compute a chord length for a given arc in a 

circle of radius R, one takes the sine of half of the arc and doubles the result 

(see Figure 1). Thus, while a table of sines reaches a maximum value of R1
 

at θ = 90º a table of chords reaches its maximum value of 2R at θ = 180º. 

Other than these differences, tables of sines and chords are identical. 

Tables usually were calculated similarly to Ptolemy’s method in Almagest 
I.10.

2
 For a table of chords, one starts with those that are easily found via ru-

ler and compass methods: for instance, using the standard sexagesimal nota-

tion
3
 in a circle of radius R = 60, Crd 60º = 60, Crd 90º = 60    = 84;51,10 

(to three places), and Crd 120º =            = 103;55,23. A geometrical 

argument related to Euclid’s construction of the regular pentagon leads to the 

discovery that Crd 36º = 37;4,55 and Crd 72º = 70;32,3. Once these chords 

have been obtained, the use of chord equivalents to the sine sum, difference 

and half-angle laws in various combinations eventually allow the computa-

tion of the chord of each multiple of 3º. It is not possible to determine the 

chords of other integer-valued arcs: to arrive at a value for Crd 1º would 

require a procedure equivalent to trisecting the angle, which is impossible 

using ruler and compass. 

To proceed further, Ptolemy appeals to the following theorem: 

If 0º < β < α < 180º, then Crd

Crd

 

 
 . 

Since 3
2

Crd   and 3
4

Crd   may be found by applying the half-angle 

formula to the known Crd 3º, we may calculate lower and upper bounds to 

 
1 Most pre-modern scientists defined the sine as a length in a circle of radius R. Although R = 

60 was almost universal in Islam, various different radii were used in India. In this article 

“Sin” will denote such a sine, which is simply R times the modern function. 
2 Accounts of the construction of the Almagest chord table may be found in [Aaboe, 1964, 

101-125] and [Pedersen, 2010, 56-63]. 
3 For instance, 103;55,23 = 103 + 55/60 + 23/602. 
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Crd 1º by substituting first 3
2

, 1     , and then 3
4

1 ,     , into 

the theorem. Ptolemy obtains 

 1;2,50 < Crd 1º < 1;2,50, (1) 

from which he concludes that Crd 1º = 1;2,50. 

Several Muslim scientists through the 11
th
 century AD improved on Ptole-

my’s efforts when constructing their own sine tables. In the late 10
th
-century 

©×kimī Zīj, Ibn Yūnus applied essentially Ptolemy’s method but used 
9
8

Sin   and 15
16

Sin   rather than 3
2

Sin   and 3
4

Sin   (along with an 

additional approximative improvement technique) to achieve tighter bounds 

on Sin 1º
 
[King, 1972, 78-80]. In his determination of 1

2
Sin  , Ibn Yūnus’s 

contemporary Abū’l-Waf×’ modified the method slightly to consider the 

magnitudes of differences between sines rather than the sines themselves, 

improving the bounds significantly [Woepcke, 1860]: 

   15 18 15 15 151 1 1 12
32 3 32 32 2 32 3 32 32

Sin Sin Sin Sin Sin Sin Sin         .  (2) 

In the early 11
th
-century Q×nūn al-Masþūdī al-Bīrūnī determined Crd 40º 

(the side length of a regular nonagon) using an iterative procedure, from 

which Crd 1º may be found by conventional geometric means [Schoy 1926; 

Schoy 1927, 18-30]. Finally, four centuries later Jamshīd al-K×shī would 

provide a numerical method that generates a value for Sin 1º of arbitrary 

accuracy [see Aaboe 1954 and Rosenfeld/Hogendijk 2002/03].  

Not all scientists were satisfied with approaches of this kind. We have on 

record a criticism of Ptolemy’s presentation of his determination of Crd 1º 

by another leading early 11
th
-century mathematician/astronomer, Ibn al-

Haytham, in the fourth essay of his Doubts Concerning Ptolemy:
4
 

[Ptolemy] states in the ninth
5
 chapter of the first book concerning the extraction 

of a chord of one degree that the chord of one [degree] is smaller than 1;2,50 

and greater than 1;2,50, so that it is 1;2,50. Thus he makes the same line which 

is the chord of one degree, which is smaller than the same amount and greater 

than that same amount to be equal to that same amount. This is a contradictory 

statement. Besides, it is ugly, and jars the ears and no one is able to hear 

 
4 Altered slightly from [Voss, 1985, 28-29], which is a translation of the edition 

[Sabra/Shehaby, 1971, 9-10]. 
5 Actually the tenth chapter. 
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it...When [the sexagesimal places that follow 1;2,50] are explained, then the 

chord of one degree is not 1;2,50 but greater than that value...
6
 So long as he 

does not mention these small fractions, his statement on the chord of one degree 

being smaller than one amount precisely and greater than that same amount 

precisely is ugly and contradictory and nothing like it is permitted in the 

mathematics books. 

Ibn al-Haytham’s objection to Ptolemy’s statement is his transition from 

the statement 1;2;50 < Crd 1º < 1;2,50 to the conclusion that Crd 1º = 1;2,50. 

This apparently trivial complaint will be echoed more strongly in al-

Samaw’al’s text. 

Al-Samaw’al’s Life and Work 

Ibn Ya¬ya al-Samaw’al al-Maghribī grew up Jewish in Baghdad early in the 

12
th
 century, but converted to Islam and spent the latter part of his life near 

Mar×gha, Iran. His best known work is a criticism of the Jewish faith written 

after his conversion [Perlmann, 1964; Marazka et al., 2006]; he also wrote a 

medical treatise on sexual diseases and ailments. He studied mathematics 

and science from a young age, and wrote his most prominent mathematical 

book –Al-B×hir, “The Dazzling”– before his twentieth birthday 

[Ahmad/Rashed 1972]. This algebraic work contains an early foreshadowing 

of negative numbers, uses mathematical induction to establish several rela-

tions [Rashed, 1972], and solidifies the reliance of algebra on arithmetic. 

Many of his other writings are now lost. 

The work under consideration here, Kashf ‘uwar al-munajjimīn (Exposure 

of the Errors of the Astronomers, written AD 1165/6), is a 25-chapter 

collection of what al-Samaw’al perceived as inadequacies and shortcomings 

in the works of many of his astronomical predecessors. Few scientists escape 

al-Samaw’al’s critical eye in this work of the same tradition as Ibn al-

Haytham’s Doubts Concerning Ptolemy. The book deserves more attention 

than it has received. Three modern studies have examined particular 

chapters: [Rosenthal, 1950] discusses and translates part of the book’s 

introduction relating to scientific progress. [Rashed, 1991] is a study and 

translation into French of the seventh chapter on al-Samaw’al’s suggested 

improvements to second-order interpolation methods. [Berggren/Van 

Brummelen 2003] describes and translates into English part of the fifteenth 

 
6 This is odd, because the chord of 1º is actually less than 1;2,50. 
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chapter, where al-Samaw’al criticizes Abū Sahl al-Kūhī for situating the 

observer (rather than the Earth’s center) at the center of the universe while he 

was determining the angle of depression to the horizon for an observer on a 

raised platform. We concern ourselves here with the fourth chapter, “On 

showing [the astronomers’] incapacity to find the true sine of one degree, on 

which the sine table is constructed”, as well as the associated trigonometric 

table, the only table in the book. An edition and translation of the text of 

Chapter 4 may be found at the end of this article; we also translate and 

analyze the table. 

Commentary on the text 

Al-Samaw’al begins by referring to the four theorems that astronomers use 

to calculate chords: 

 the chord difference formula; 

 the chord sum formula; 

 the chord half-angle formula; 

 if 0º < β < α < 180º, then Crd α / Crd β < α / β. 

These are the four theorems that Ptolemy uses in the Almagest. Next al-

Samaw’al describes the standard procedure for generating chords of smaller 

and smaller arcs: begin with the chords of 72º (the length of a side of a regu-

lar pentagon inscribed in the circle) and 60º (a hexagon); use the chord diffe-

rence formula to determine Crd 12º; and then successively apply the half-

angle formula to get Crd 6º, Crd 3º, 1
2

Crd1  , and 3
4

Crd  . Finally, applying 

the fourth theorem as Ptolemy does, al-Samaw’al gets 

 32 1 4
3 2 3 4
Crd1 Crd1 Crd     ,                         (2) 

resulting in the bounds 

 1;2,49,48 < Crd1º < 1;2,49,52.                            (3) 

The inclusion of a sexagesimal place beyond Ptolemy’s calculation allows 

al-Samaw’al to avoid Ibn al-Haytham’s complaint, although the matter is not 

remarked upon in the text. Al-Samaw’al’s lower bound is correct to all 

places; the upper bound should be 1;2,49,53. These values are more accurate 

than Ptolemy’s, but tables of this accuracy and better (usually for sines rather 

than chords) were commonplace at this time. 

Al-Samaw’al’s disagreement with the astronomers is that Crd 1º is only 

known to lie between the two bounds, and to take a value between the 
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bounds to be the correct Crd1º
 
requires that we lapse into approximation 

(taqrīb) rather than truth (ta¬qīq). His solution is to redefine the unit of angle 

measurement in a circle. Rather than dividing the circle into the standard 360 

degrees, he adopts two (unnamed) new units of measurement wherein either 

240 or 480 parts constitute a circle. We shall refrain from referring to these 

new units as degrees, since al-Samaw’al uses the word “degree” (daraja) 

only in the context of a 360-degree circle. 

The Ptolemaic sequence of chord calculations with 480-part units pro-

ceeds as follows: the pentagon is the chord of 96 parts (72º), while the hexa-

gon is the chord of 80 parts (60º). The chord difference formula gives the 

chord of 16 parts (12º), and successive application of the half-angle formula 

generates the chord of eight, four, two, and finally one part ( 3
4
 ). Thus in the 

new units, the approximation methods of Ptolemy and his successors are 

unnecessary. Al-Samaw’al does not provide any values for the chords of 

these arcs; given our analysis below, he may never have computed them. 

Al-Samaw’al’s chord table 

The table of chords is reproduced in Table 1, with errors displayed in units of 

the last sexagesimal place. It is entitled “Table Constructed by al-Samaw’al 

on the Correction of the Altitudes of the Stars”, referring to its first 

astronomical use early in the treatise. The table is used later in Exposure of 
the Errors of the Astronomers in a variety of contexts as a source of chords 

and sines. Obviously it differs from Ptolemy’s chord table in how arcs are 

measured; also, the chords are given for a circle of diameter 60, not of radius 
60. We shall see why al-Samaw’al made this choice in an application below. 

Several of the table’s entries are corrupted by scribal errors, but never-

theless it is clear from the pattern in the errors that an interpolation grid 

exists with nodes at every fourth entry in the table: these entries are close to 

correct, while the others diverge from the correct values. These are the en-

tries in al-Samaw’al’s table that would correspond to every third entry in an 

ordinary sine table. The errors in the remaining entries are very closely re-

produced by interpolating linearly between multiples of 3º of a hypothetical 

sine table, calculated accurately to three sexagesimal places for every degree 

of arc.
7
 So, for example, Samaw’al calculated the entries between 108 and 

112 parts as follows: 

 
7 Thanks to Clemency Montelle for this suggestion. 
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 The entries for 108 and 112 parts were taken from the corresponding 

entries of a conventional sine table
8
 for 81º and 84º. 

 The entry for 109 parts was computed by interpolating between the 

entries in a sine table for 81º and 82º: 31
4 4

Crd109 Sin 81 Sin 82    (since 

109 parts is three times as close to 82º as it is to 81º). 

 The entry for 110 parts was computed as 
1 1
2 2

Crd110 Sin 82 Sin 83   . 

 The entry for 111 parts was computed as 
3 1
4 4

Crd111 Sin 83 Sin 84   . 

The difference between the errors produced by this method and the errors 

in the table is displayed in the column entitled “Difference” in Table 1. Our 

recomputation accounts for most of the error; the small remaining 

differences are caused partly by errors of 1º in the last sexagesimal place in 

some of the entries of the underlying 360º sine table, as well as corrupted 

entries, rounding, and small computational deviations.  

We must therefore conclude that al-Samaw’al did not in fact pursue the 

project that he advocates in chapter 4. Indeed, his table was computed by 

interpolating from each entry in a conventional sine table, including the en-

tries that rely on the procedures that he condemns. 

The sine table from which al-Samaw’al’s table was generated appears to 

be mostly accurate to three sexagesimal places, with about 1/4 of the entries 

in error by 1 in the last place. Such tables were commonplace by al-

Samaw’al’s time, although none of the sine tables we checked provides a 

close enough fit to the table that al-Samaw’al used for us to be confident of 

identifying the source.
9
 It is thus possible that the underlying table was com-

puted in the usual way by al-Samaw’al himself. The function is symmetric, 

reaching its peak at 120 parts; most, but not all, of the symmetric pairs of 

entries on opposite sides of the peak match. A patch of interpolated entries 

between 156 and 160 parts contains unusually large errors, suggesting that a 

mistake was made in the interpolation process. 

 
8 It is also possible that the underlying table was of chords, although sine tables were much 

more common in al-Samaw’al’s time. 
9 Among the sine tables checked are those found in the zījes (astronomical handbooks) of al-

Khw×rizmī, al-Batt×nī, Ibn Yūnus, Kushy×r ibn Labb×n (the J×miþ Zīj),  the Mumta¬an Zīj, al-

Bīrūnī’s al-Q×nūn al-Masþūdī, and the Sh×mil Zīj. (The latter postdates al-Samaw’al, but it 

was checked due to the possibility that the two tables share a common source.) 
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In addition to his chord table al-Samaw’al includes a “Table of Correc-

tions”, which simply tabulates the fraction of the circle that comprises a 

given angle. This allows al-Samaw’al to work occasionally with fractions of 

a circle, rather than 360º , 240-part, or 480-part units. The values of the en-

tries increase uniformly by 0;0,15 for each part. The use of this table is illus-

trated in the following section. 

How the tables were used: an application 

Al-Samaw’al uses his chord table several times in Exposure of the Errors of 
the Astronomers; we sample one episode here,

10
 the application for which 

the table receives its name: “On the Correction of the Altitude of the Stars”. 

Chapter 2 is a criticism of the use of the astrolabe to measure the altitudes of 

stars above the horizon. Al-Samaw’al’s complaint is that the true altitude of 

a star should be measured from the center of the Earth rather than from its 

surface. Al-Samaw’al’s universe is finite in extent and he has a measure of 

its radius, so he is able to propose a correction to all altitude measurements. 

The only other way to be accurate, he says, is to build an astrolabe with its 

center at the center of the Earth, and it would need to be so large that its edge 

extends beyond the Earth’s surface. 

Clearly there would be a few hurdles to overcome in building such an as-

trolabe, so al-Samaw’al proceeds with the mathematical correction. In Figure 

2 (simplified from the treatise) AUB is the celestial sphere, GXD is the 

Earth’s surface, and ZS is an astrolabe being used to measure the altitude of 

star Q. Suppose that the altitude is measured to be ∠QHM = 30º; then the 

correct altitude is the unknown ∠QEU. 

Al-Samaw’al prepares for the problem by scaling the universe so that its 

radius is 60 units; this leads him to determine the radius of the Earth to be 

approximately 0;2,44. The rest of the mathematics revolves around ∆QHE, 

with given ∠H = 120º. A chord equivalent to the planar law of sines is 

applied: 

 Crd 2 Crd 2
, or Crd 2 Crd 2

60 60

Q H EH
Q H

EH

   
     

 
.        (4) 

To look up Crd 2∠H = Crd (2· 120º) in his table, al-Samaw’al first con-

verts to units of right angles, so that ∠H = 1;20. He wants to look up the 

 
10 Another may be found in [Berggren/Van Brummelen 2003, 122-124]. 
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chord of twice this value, which is 2;40 right angles; but in units of fractions 

of a circle he must divide this by 4, so he finds 2;40 / 4 = 0;40 in the Table of 

Corrections. From this row in the table, he finds that the angle measure for 

0;40 in a 240-part circle is 160 parts, and the corresponding chord is 

51;57,41. Substituting this value into (4), he finds that Crd 2∠Q = 

0;2,22,1,40. Interpolating backward within his table he gets 2∠Q = 0;3,0,51, 

in a 240-part circle. But this quantity is just ∠Q itself in a 480-part circle, a 

felicity in an otherwise cumbersome process. Determining ∠E is now just a 

matter of subtracting ∠H and ∠Q from 240 parts (= 180º); he gets 

79;56,59,9. This value is divided by 120 to get the value 0;39,58,29,34 in 

right-angle units, and the result is subtracted from one right angle to get 

∠QEU = 0;20,1,30,26. At the end, here and elsewhere, al-Samaw’al converts 

his result back to ordinary degrees, obtaining ∠QEU = 30;2,15,39º. 

Apparently he felt that readers would not accept a final result unless it was 

given in units that they would recognize. 

Conclusion 

By adopting a circle broken into 480 parts rather than the usual 360 degrees, 

al-Samaw’al found an ingenious solution to his complaint with his prede-

cessors: he was able to compute an entire sine table using only purely geo-

metric methods, without having to rely on the approximations that Ibn al-

Haytham earlier had rejected. However, our analysis of the table reveals that 

al-Samaw’al did not in fact compute his sine table in this way; rather, he 

simply interpolated his sine values between entries in an unidentified con-

ventional sine table. Our discovery is intriguing and certainly undermines 

what al-Samaw’al’s was trying to accomplish. But it does not change the fact 

that al-Samaw’al felt strongly enough about the proper methodological 

boundaries between mathematical disciplines that he wrote a long scientific 

treatise with this table at its heart. Clearly some mathematicians, at least, 

were worried enough about the appropriate relationship between geometry 

and computation that they were willing to make public statements on the 

matter – Ibn al-Haytham with the complaint, and al-Samaw’al with the solu-

tion. At the moment it is unknown whether al-Samaw’al’s approach was 

taken up by other authors (although a similar objection was to be expressed 

several centuries later, in another culture, by Giordano Bruno), or whether 

similar tables were constructed. In the meantime, al-Samaw’al’s chord table 

stands as a substantial statement of a concern within medieval trigonometry 
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that the methodological boundary between geometric reasoning and numeri-

cal methods should be maintained. 

Translation of Chapter 4 

Exposure of the Errors of the Astronomers exists in two manuscripts. Leiden 

Or. 98 (which we call L) is well composed; the table is laid out carefully on 

two adjacent pages with 40 rows of entries each. However, it contains a large 

lacuna that begins about 2/3 of the way through chapter 4. Thus the last part 

of our translation is based only on Bodleian Hunt 539 (called B). In the latter 

manuscript the first two pages of the table consist of 26 rows of entries; the 

third and final page has 28 rows. Various scribal errors in the tables that are 

shared between the two manuscripts and similarities in their colophons 

suggest that they have a common source. See the section on the Arabic text, 

below. 

 

Chapter 4: On showing their [i.e. astronomers’] incapacity to find the true sine 

of one degree, on which the table of sine is constructed 

And one of those that keep them [i.e. astronomers] from truth in their 

computational operations is their incapacity to determine the sine of one 

degree, and from it to construct the sine table. Now, we will cite the method 

which brings them to the sine of one degree by approximation, not by truth; 

that is, the path that they have all taken when deriving the sine of one degree. 

They have no method other than giving the following four lemmata: 1) if the 

chords of two arcs are known, then the chord of their difference is known; 2) 

if the chords of two arcs are known, then the chord of their sum is known; 3) 

if the chord of an arc is known, then the chord of its half is known; 4) the 

ratio of a larger chord to a smaller chord is smaller than the ratio of the arc of 

the larger chord to the arc of the smaller chord. 

After they establish these lemmata, they derive the chord of a fifth [of a 

circle] and the chord of a sixth [of a circle] by geometrical methods that lead 

to truth, so that the chord of 60 [degrees] is known and the chord of 72 

[degrees] is known. By the first lemma, the chord of 12 [degrees] is known; 

by the third lemma, the chord of 6 [degrees] is known, and the chord of 3 

[degrees] is known, and the chord of one and a half [degrees] is known, and 

the chord of three fourths [of a degree] is known. 

It is implied by the fourth lemma that the ratio of the chord of one and a 

half degrees to the chord of one degree is smaller than the ratio of the arc that 

is one and a half degrees to the arc whose amount is one degree. Thus, the 



 Al-Samaw’al’s Curious Approach to Trigonometry 19 

  

ratio of the chord <of one degree> to the chord of one and a half degrees is 

larger than the ratio of one degree to one and a half degrees. But the ratio of 

one degree to one and a half degrees is two thirds, so the chord of one degree 

is larger than two thirds of the chord of one and a half degrees. And two 

thirds of the chord of one and a half degrees is 1;2,49,48. Hence, the chord of 

one degree is larger than 1;2,49,48. 

Next, the ratio of one degree to three fourths of a degree is larger than the 

ratio of the chord of one degree to the chord of three fourths of a degree. But 

the ratio of one degree to three fourths of a degree is one and a third, so the 

chord of one degree is smaller than one and a third times the chord of three 

fourths [of a degree]. One and a third times the chord of three fourths [of a 

degree] is 1;2,49,52. Hence, the chord of one degree is smaller than 

1;2,49,52. It was already shown that it is larger than 1;2,49,48. Therefore, 

they rely on the amount whose distance from the two limits is the same [that 

is, the mean of the two limits, i.e. 1;2,49,50], neglecting the effect of the 

inequality, since it [i.e. the distance] belongs to the third [sexagesimal] unit. 

Enclosing the chord of one degree between two different amounts, each one 

of whose distance to it [i.e. the chord of one degree] is not known, is how it 

stands for them [i.e. astronomers] at this approximation. 

The truth is that there is no great diligence behind what they rely on. But 

if they divide the circumference [of a circle] not into their division, i.e. 360 

[degrees], and they make [the division] equal to 240 or 480 [parts], it is 

possible for them to derive the chord of one part with truth; because when a 

circle is 240 [parts], the chord of the fifth [i.e., pentagon] and sixth [i.e., 

hexagon] are known, and [from the first lemma] the chord of their difference 

is known, so the chord of 16 [parts] is known, and [from the third lemma] 

the chord of 8 [parts] is known, and the chord of 4 [parts] is known, and the 

chord of 2 [parts] is known, and the chord of one [part] is known in truth. If 

they do that, it is possible for them to derive these chords by this division and 

derive the chord of each of the 360 degrees. Q.E.D.  
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Arabic Text 

List of the manuscripts we use  

L:  Leiden, University Library MS or. 98; ff. 1a–100a; copied on Saturday, 19 

RamaÅ×n 682 AH (i.e. 11 December 1283 AD) by Nýr al-D÷n b. Ma¬mýd 

b. ‘Izzat al-Tafl÷s÷.  

Colophon: 

 
The date of the transcription of it [i.e. the book]: it was completed by its 

orator and composer al-Samaw’al Ya¬y× ‘Abb×s in the year 561 [AH, i.e. 

1165/6 AD]. The date of the copying is on Saturday, the 19th of blessed 

RamaÅ×n in 682 [AH, i.e. 11 December 1283 AD], written by Nýr al-D÷n b. 

Ma¬mýd b. ‘Izzat al-Tafl÷s÷ al-Maghrib÷, a well-known [scholar]. 

B:  Oxford, Bodleian Library, MS Hunt. 539; ff. 1a–99b; copied on Wednesday, 

6th night of Rab÷‘ al-Awwal in 988 AH (i.e. 21 April 1580 AD) by 

Mu¬ammad b. Yýsuf b. ‘Abd al-Q×d÷ b. Mu¬ammad al-Dumy×Ð÷.  

Colophon: 

 
The author of it dictated: “it was completed by its orator and composer al-Sa-

maw’al Ya¬y× ‘Abb×s al-Maghrib÷ in the year 561” (end of [quotation]). I 

found [a sentence] like that in a manuscript of the autograph. The book is fi-

nished, thank God alone. The copying of it and drawing of its diagrams were 

completed by Mu¬ammad b. Yýsuf b. ‘Abd al-Q×d÷ b. Mu¬ammad al-

Dumy×Ð÷, a Hanafite muwaqqit, at the Madrasa of the sultan al-Malik al-Ashraf 

Barsb×y –with silk garments– during Wednesday, 6th night of Rab÷ ‘ al-Awwal 

–according to the calculation of general months– in 988 AH [i.e. 21 April 1580 

AD]. 
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Their colophons confirm that al-Samaw’al composed this book in 561 AH 

(1165/6 AD). And the fact that they have almost the same sentence about the au-

tograph implies that these two manuscripts were based on manuscripts connected 

to the author’s autograph.  

Signs used in the Arabic text and apparatus  

< > added by the editor  

(L-15b) denotes the beginning of the verso of 15th folio of the Leiden MS.  

– Missing from  

+ Added in 
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Figure 1: The relation between the chord and the sine 
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Figure 2: Determining the true altitude of a star 
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Table Constructed by al-Samaw’al 

on the Correction of the Altitude of the Stars 

Argument Chord  Difference Corrections 

1 0;47,8 [+1] [+1] 0;0,15 

2 1;34,15 [+1] [+1] 0;0,30 

3 2;21,20   0;0,45 

4 3;8,25   0;1,0 

5 3;55,29 [+2] [+3] 0;1,15 

6 4;42,29 [+2] [+3] 0;1,30 

7 5;29,26 [+2] [+2] 0;1,45 

8 6;16,18   0;2,0 

9 7;3,7 [-1]  0;2,15 

10 7;49,53 [-1]  0;2,30 

11 8;36,34   0;2,45 

12 9;23,10   0;3,0 

13 10;9,38 [-1]  0;3,15 

14 10;56,2 [-1]  0;3,30 

15 11;42,19 [-1]  0;3,45 

16 12;28,29   0;4,0 

17 13;14,29  [-2]  0;4,15 

18 14;0,21 [-3] [-1] 0;4,30 

19 14;46,8 [-1] [+1] 0;4,45 

20 15;31,45   0;5,0 

21 16;17,10 [-1]  0;5,15 

22 17;2,26 [-1] [+1] 0;5,30 

23 17;47,32 [-1] [+1] 0;5,45 

24 18;32,28   0;6,0 

25 19;17,911 [-2]  0;6,15 

26 20;1,39 [-3]  0;6,30 

27 20;45,59 [-2] [+1] 0;6,45 

28 21;30,8 [+1] [+1] 0;7,0 

29 22;13,58 [-2]  0;7,15 

30 22;57,37 [-3]  0;7,30 

31 23;41,2 [-3] [-1] 0;7,45 

32 24;24,15   0;8,0 

33 25;7,4 [-7] [+5] 0;8,15 

34 25;49,4712 [-3]  0;8,30 

35 26;32,12 [-2] [+1] 0;8,45 

36 27;14,22   0;9,0 

37 27;56,10 [-3]  0;9,15 

38 28;37,43 [-3] [+1] 0;9,30 

39 13   0;9,45 

40 30;0,0   0;10,0 

Table 1: Al-Samaw’al’s 480-part chord table 

 
11 Both manuscripts have the scribal error 19;7,9. 
12 B has 29;49,47. 
13 Both manuscripts have the incorrect 29;18,6. 
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Argument Chord  Difference Corrections 

41 30;40,37 [-2] [+1] 0;10,15 

42 31;20,56 [-4]  0;10,30 

43 32;0,58 [-3]  0;10,45 

44 32;40,42   0;11,0 

45 33;20,0 [-3]  0;11,15 

46 33;59,0 [-4]  0;11,30 

47 34;37,30 [-3]  0;11,45 

48 35;16,2   0;12,0 

49 35;53,56 [-2] [+2] 0;12,15 

50 36;31,28 [-4] [+1] 0;12,30 

51 37;8,42 [-2] [+2] 0;12,45 

52 37;45,34 [+1] [+1] 0;13,0 

53 38;21,56 [-3] [+1] 0;13,15 

54 38;57,57 [-4] [+1] 0;13,30 

55 39;33,36 [-3] [+1] 0;13,45 

56 40;8,52   0;14,0 

57 40;43,37 [-4]  0;14,15 

58 41;17,59 [-6]  0;14,30 

59 41;51,58 [-5] [-1] 0;14,45 

60 42;25,35   0;15,0 

61 42;58,37 [-4] [+1] 0;15,15 

62 14   0;15,30 

63 15   0;15,45 

64 44;35,19   0;16,0 

65 45;6,33 [-4] [+1] 0;16,15 

66 45;37,22 [-6]  0;16,30 

67 46;7,45 [-5] [-1] 0;16,45 

68 46;7,43 [-1] [-1] 0;17,0 

69 47;7,3 [-5]  0;17,15 

70 47;35,58 [-6] [+1] 0;17,30 

71 48;4,26 [-5]  0;17,45 

72 48;32,27 [-1] [-1] 0;18,0 

73 48;59,49 [-6] [-1] 0;18,15 

74 49;26,45 [-6] [+1] 0;18,30 

75 49;53,12 [-5]  0;18,45 

76 50;19,13   0;19,0 

77 16   0;19,15 

78 51;9,23 [-7]  0;19,30 

79 51;33,46 [-6]  0;19,45 

80 51;57,41   0;20,0 

Table 1, continued 

 
 

 
14 Both manuscripts have the incorrect 43;39,39. 
15 Both manuscripts have the incorrect 44;2,57. 
16 Both manuscripts have the incorrect 50;45,18.  
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Argument Chord  Difference Corrections 

81 52;20,54 [-5]  0;20,15 

82 52;43,38 [-6] [+1] 0;20,30 

83 53;5,52 [-5]  0;20,45 

84 53;27,36 [-1] [-1] 0;21,0 

85 53;48,39 [-6] [-1] 0;21,15 

86 54;9,11 [-7]  0;21,30 

87 54;29,14 [-5] [+1] 0;21,45 

88 54;48,46   0;22,0 

89 55;7,3317 [-6]  0;22,15 

90 55;25,51 [-7]  0;22,30 

91 55;43,28 [-15] [-9] 0;22,45 

92 56;0,55 [+2] [+2] 0;23,0 

93 56;17,15 [-14] [-8] 0;23,15 

94 56;33,23 [-8]  0;23,30 

95 56;48,51 [-6]  0;23,45 

96 57;3,48   0;24,0 

97 57;17,59 [-5] [+1] 0;24,15 

98 57;31,38 [-7] [+1] 0;24,30 

99 57;44,45 [-5] [+1] 0;24,45 

100 57;57,20   0;25,0 

101 58;9,8 [-6]  0;25,15 

102 58;20,24 [-8]  0;25,30 

103 58;31,8 [-6]  0;25,45 

104 58;41,24 [+4]  0;26,0 

105 58;50,44 [-6]  0;26,15 

106 58;59,35 [-8] [+1] 0;26,30 

107 59;7,53 [-7] [-1] 0;26,45 

108 59;15,41   0;27,0 

109 59;22,39 [-6]  0;27,15 

110 59;29,4 [-8]  0;27,30 

111 59;34,57 [-6]  0;27,45 

112 59;40,17   0;28,0 

113 59;44,48 [-6]  0;28,15 

114 59;48,45 [-9] [-1] 0;28,30 

115 59;52,12 [-6]  0;28,45 

116 59;55,4   0;29,0 

117 59;57,8 [-5] [+1] 0;29,15 

118 59;58,33 [-13] [-5] 0;29,30 

119 59;59,35 [-6]  0;29,45 

120 60;0,0   0;30,0 

Table 1, continued 

 
  

 
17 Both manuscripts have the scribal error 55;9,33. 
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Argument Chord  Difference Corrections 

121 59;59,35 [-6]  0;30,15 

122 59;58,33 [-13] [-5] 0;30,30 

123 59;57,8 [-5] [+1] 0;30,45 

124 59;55,4   0;31,0 

125 59;52,12 [-6]  0;31,15 

126 59;48,44 [-10] [-2] 0;31,30 

127 59;44,48 [-6]  0;31,45 

128 59;40,17   0;32,0 

129 59;34,57 [-6]  0;32,15 

130 59;29,4 [-8]  0;32,30 

131 59;22,39 [-6]  0;32,45 

132 59;15,41   0;33,0 

133 59;7,53 [-7] [-1] 0;33,15 

134 58;59,35 [-8] [+1] 0;33,30 

135 58;50,44 [-6]  0;33,45 

136 58;41,20   0;34,0 

137 58;31,8 [-6]  0;34,15 

138 58;20,24 [-8]  0;34,30 

139 58;9,8 [-6]  0;34;45 

140 57;57,20   0;35,0 

141 57;44,45 [-5] [+1] 0;35,15 

142 57;31,38 [-7] [+1] 0;35,30 

143 57;17,59 [-5] [+1] 0;35,45 

144 57;3,48   0;36,0 

145 56;48,43 [-14] [-8] 0;36,15 

146 56;33,2318 [-8]  0;36,30 

147 56;17,26 [-3] [+3] 0;36,45 

148 56;0,53   0;37,0 

149 55;43,37 [-6]  0;37,15 

150 19   0;37,30 

151 55;7,3320 [-6]  0;37,45 

152 54;48,46   0;38,0 

153 54;29,13 [-6]  0;38,15 

154 54;9,11 [-7]  0;38,30 

155 53;48,39 [-6] [-1] 0;38,45 

156 53;27,37   0;39,0 

157 53;5,23 [-34] [-29] 0;39,15 

158 52;43,22 [-22] [-15] 0;39,30 

159 52;21,53 [+54] [+59] 0;39,45 

160 51;57,41   0;40,0 

 

Table 1, continued 
 

 

 
18 B has 56;33,43. 
19 Both manuscripts have the incorrect 55;26,34. 
20 Both manuscripts have the scribal error 55;9,33. 
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Argument Chord  Difference Corrections 

161 51;33,46 [-6]  0;40,15 

162 51;9,23 [-7]  0;40,30 

163 50;44,32 [-5]  0;40,45 

164 50;19,13   0;41,0 

165 49;53,1321 [-4] [+1] 0;41,15 

166 49;26,45 [-6] [+1] 0;41,30 

167 48;59,49 [-6] [-1] 0;41,45 

168 48;32,27 [-1] [-1] 0;42,0 

169 48;4,26 [-5]  0;42,15 

170 47;35,58 [-6] [+1] 0;42,30 

171 47;7,3 [-5]  0;42,45 

172 46;37,4322 [-1] [-1] 0;43,0 

173 46;7,45 [-5] [-1] 0;43,15 

174 45;37,22 [-6]  0;43,30 

175 45;6,33 [-4] [+1] 0;43,45 

176 44;35,19   0;44,0 

177 23   0;44,15 

178 24   0;44,30 

179 42;58,37 [-4] [+1] 0;44,45 

180 42;25,35   0;45,0 

181 41;51,58 [-5] [-1] 0;45,15 

182 41;17,59 [-6]  0;45,30 

183 40;43,37 [-4]  0;45,45 

184 40;8,52   0;46,0 

185 39;33,36 [-3] [+1] 0;46,15 

186 38;57,57 [-4] [+1] 0;46,30 

187 38;21,56 [-3] [+1] 0;46,45 

188 37;45,34 [+1] [+1] 0;47,0 

189 37;8,42 [-2] [+2] 0;47,15 

190 36;31,28 [-4] [+1] 0;47,30 

191 35;53,55 [-3] [+1] 0;47,45 

192 35;16,2   0;48,0 

193 34;37,40 [-3]  0;48,15 

194 33;59,0 [-4]  0;48,30 

195 33;20,0 [-3]  0;48,45 

196 32;40,42   0;49,0 

197 32;0,58 [-3]  0;49,15 

198 31;20,56 [-4]  0;49,30 

199 30;40,37 [-2] [+1] 0;49,45 

200 30;0,0   0;50,0 

Table 1, continued 

 

 
21 B has 49;53,3. 
22 Both manuscripts have the scribal error 46;37,3. 
23 Both manuscripts have the incorrect 44;2,57. 
24 Both manuscripts have the incorrect 43;30,9. 



 Al-Samaw’al’s Curious Approach to Trigonometry 31 

  

Argument Chord  Difference Corrections 

201 25   0;50,15 

202 28;37,43 [-3] [+1] 0;50,30 

203 27;56,10 [-3]  0;50,45 

204 27;14,22   0;51,0 

205 26;32,12 [-2] [+1] 0;51,15 

206 25;49,47 [-3]  0;51,30 

207 25;7,4 [-7] [-5] 0;51,45 

208 24;24,15   0;52,0 

209 23;41,2 [-3] [-1] 0;52,15 

210 22;57,37 [-3]  0;52,30 

211 22;13,58 [-2]  0;52,45 

212 21;30,8 [+1]  0;53,0 

213 20;45,59 [-2] [+1] 0;53,15 

214 20;1,39 [-3]  0;53,30 

215 19;17,9 [-2]  0;53,45 

216 18;32,28   0;54,0 

217 17;47,32 [-1] [+1] 0;54,15 

218 17;2,26 [-1] [+1] 0;54,30 

219 16;17,10 [-1]  0;54,45 

220 15;31,45   0;55,0 

221 14;46,8 [-1] [+1] 0;55,15 

222 14;0,21 [-3] [-1] 0;55,30 

223 13;14,29 [-2]  0;55,45 

224 12;28,29   0;56,0 

225 11;42,19 [-1]  0;56,15 

226 10;56,2 [-1]  0;56,30 

227 10;9,38 [-1]  0;56,45 

228 9;23,10   0;57,0 

229 8;36,34  [+1] 0;57,15 

230 7;49,53 [-1]  0;57,30 

231 7;3,7 [-1]  0;57,45 

232 6;16,18   0;58,0 

233 5;29,24   0;58,15 

234 4;42,27  [+1] 0;58,30 

235 3;55,27  [+1] 0;58,45 

236 3;8,25   0;59,0 

237 2;21,20   0;59,15 

238 1;34,14   0;59,30 

239 0;47,6 [-1] [-1] 0;59,45 

240 0;0,0   1;0,0 

 

Table 1, continued 
 

 

 

 
25 Both manuscripts have the incorrect 29;18,6. 



 




