COMPONENTES REGULADORES DE LA ADENILATO CICLASA UN MODELO DE TRANSMISION DE INFORMACION A TRAVES DE LA MEMBRANA CELULAR

Dr. IOAN CODINA SALADA Department of Cell Biology Baylor College of Medicine HOUSTON, Texas 77030, USA

SUMMARY: REGULATORY COMPONENTS OF THE ADENYLATE CYCLASE. A MODEL OF INFORMATION TRANSDUCTION THROUGH THE CELLULAR MEM-BRANE.- In the adenylate cyclase system, the hormone binds specifically to the receptor protein at the external surface of the cellular membrane. In the second step, the hormone-receptor complex H.R. interacts with a second protein, situated within the membrane and referred as N protein.

In the third step, the activated N protein interacts with the catalytic component C of the adenylate cyclase, and the activation of this component, a transmembrane protein, provokes the intracellular formation of cAMP from ATP in the presence of Ma++ and GTP.

There are two species of N proteins: one of them is called N_s of $\alpha_s \beta \gamma$ subunits composition and the other is called N_i of α_i β_i composition. There are also two types of hormones able to work through the adenylate cyclase system: H_e or stimulant hormones which increase the synthesis of cAMP through N_s protein, and H_i or inhibitory hormones which decrease the synthesis of cAMP through Ni protein.

 N_s protein can be preactivated by the hormone-receptor complex $H_s \cdot R_s$, with the participation of GTP and Mg^{++} , and the preactive form GTP- α_s $\beta\gamma$ is afterwards dissociated in GTP- α_s^* and $\beta\gamma$ complex. N_s protein can be likewise preactivated by the hormone-receptor complex $H_s \cdot R_s$, and the preactive form GTP- $\alpha_s \beta\gamma$ is afterwards dissociated in GTP- α_i and $\beta\gamma$. The active complex GTP- α_s * is able to interact with C increasing the synthesis of cAMP, and the active complex GTP- α_i^* decreases such synthesis interacting with C at a different site of this catalytic component.

In the subsequent processes of deactivation, provoked by the GTPase activity of N_s or N_s , $GTP-\alpha_s^*$ or $GTP-\alpha_i^*$ are hydrolysed at the GTP group and simultaneously reassociated with the $\beta\gamma$ complex, so that the inactive $GDP-\alpha_s$ $\beta\gamma$ or $GDP-\alpha_s$ α, βγ complexes are formed. These complexes may be reactivated, by loss of GDP and incorporation of GTP in the presence of Mg++, when another H molecule binds to R starting in this way a new N activation cycle.

The receptors affinity to the hormones is high when N proteins are deactivated and diminishes during N proteins activations. The interactions or interchanges between distinct N_s and N_i molecules may be possible through $\beta \gamma$ complex, as it

is identical or the same to both species of N proteins.

In Fig. 5 are represented all the reactions mencioned above concerning to No. protein. The cholera toxin (C.T.) blocks GTP $-\alpha_s$ * deactivation by ADP-Ribosylation of α_s , which inhibits the GTPase activity of N_s protein.

The functional value of the adenylyl cyclase system at the intestinal epithelials cells and the efficiency of laudanum and opiates in the control of diarrhoea are

commented.