
QÜESTIIÓ, vol. 26, 1-2, p. 247-258, 2002

MAINTENANCE POLICY UNDER MULTIPLE
UNREVEALED FAILURES

F. G. BADÍA BLASCO
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1. INTRODUCTION

The classical age and block replacement policies are only useful when the failures of
a unit are detected as soon as they occur. However, the failures of spare units or in a
system during the stand-by mode, may remain undiscovered until the next demand of
activity, causing important availability losses. Periodic inspection or testing is the only
way to fight against failures of this sort (see Lewis (1987)).

The works due to Nakagawa and Yasui (1991), Vaurio (1995, 97, 99) and Berrade
(1999) deal with unrevealed failures; all of them consider maintenance policies for
single-unit systems. On the contrary, Ebrahimi (1997) provides an extension of the age
replacement policy for multi-unit systems under revealed failures.

In this work we provide a new inspection policy to detect the occurrence of failures in a
system, otherwise being unrevealed, along with a maintenance procedure to improve its
reliability. This policy can be carried out in multi-unit systems with an only type of fai-
lure, or in single-unit systems with multiple «hidden» causes of failure. Many systems
of this sort can be found in practice: the fluid levels in a car are checked periodically
so that an eventual leakage of oil, water, etc can be observed. The inspection policies
are concerned not only with engineering systems: the periodic tests carried out to detect
disorders of health in humans constitute the most common example of such procedure.

We assume the possibility of dependent times to failure between units or types of failure
which is a realistic assumption when the occurrence of a type of failure is likely to
have an effect on the probability of an event of another type. We characterize optimum
policies so as to minimize the cost per unit of time for an infinite time span, thus,
limt ∞

C�t�
t with C�t� the cost incurred in �0� t�.

Under this policy, the unit is periodically checked and replaced, hence, the maintenance
process yields a renewal process. In fact, it corresponds to the particular class of the
renewal-reward processes with the term cost being used instead of reward. The proper-
ties of the renewal reward processes ensure that the previous cost function converges,
with probability 1, to the next one

Q�T � �
E �C�τ��

E�τ�

A cycle, denoted τ, is the time span between two consecutive renewals of the system
(see Ross (1996)) with C�τ� denoting its associated (random) cost. From now on Q�T �,
depending on the time between consecutive inspections, T , will denote the objective
function.

In section 2, the maintenance policy is described along with the conditions that guaran-
tee the existence of an optimum policy for a series system (Theorem 1) and a parallel
system (Theorem 2). In addition, we consider multivariate distributions which are natu-
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ral extensions of the exponential random variable: the bivariate Gumbel distribution, as
well as the Marshall-Olkin model. These distributions allow the dependence between
components and, provided they hold, we obtain particular conditions for the existence
of an optimum policy. Finally, section 3 contains some examples involving the previous
distributions which illustrate the theoretical results.

2. THE MODEL

The system consists of n units which are periodically checked at times kT , k � 1�2� � � �.
In addition each unit, had it failed or not, is replaced by a new one. Times of inspections
and replacements are assumed to be negligible.

The following notation will be handled:

� Xi, is unit i’s random time to failure �i � 1�2� � � � �n�

� µi, Fi, fi, Ri and ri are, respectively, the mean value, cumulative distribution function,
density function, reliability function and failure rate of Xi, �i � 1�2� � � � �n�

� T �: optimum replacement time

Let c1 be the cost of the replacement when no failure has occurred and c 2i, �i � 1�2� � � � �
n� the corresponding cost if the unit i has failed. In practice, it is usual to consider c 1 �

c2i. In addition, we will take into account the cost derived from the down-time which
represents the losses incurred while the failure of the system remains undiscovered. It
can be due to defective production, unavailability of the system when it is needed, etc.

Let also consider the ordered times to failure of the units, thus, X �1��X�2�� � � � �X�n�. In
addition, µ�i�, F�i�, f�i�, R�i�, and r�i� are the mean value, distribution function, density
function, reliability function and failure rate corresponding to X �i�. Finally, the multiva-
riate distribution and reliability functions of the system are, respectively

F�x1�x2� � � � �xn� � P�X1 � x1�X2 � x2� � � � �Xn � xn�

R�x1�x2� � � � �xn� � P�X1 � x1�X2 � x2� � � � �Xn � xn�

In what follows, we will analyze the maintenance policy for series and parallel systems,
and we will begin with the former.

CASE I. The system works if all the component work.

In this case, the time to failure of the system is given by

X�1� � min�X1�X2� � � � �Xn�
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being R�1��t� � R�t� � � � � t� its corresponding reliability function. Now, cdi is the cost
derived from the down-time when component i fails.

The next result provides the expression of the cost function.

Proposition 1 Consider a n-out-of-n system whose failures are only detected by ins-
pection. Under the maintenance policy previously described, the following results hold

E�C�τ�� � c1R�1��T ��
n

∑
i�1

c2iFi�T ��
n

∑
i�1

cdi

� T

0
Ri�u�du�

n

∑
i�1

cdiT(1)

Q�T � �
n

∑
i�1

cdi �
c1R�1��T ��∑n

i�1 c2iFi�T ��∑n
i�1 cdi

� T
0 Ri�u�du

T
(2)

Proof

At times kT , �k � 1�2� � � � �� the system is renewed, hence, the mean length of a cycle is
E�τ� � T . The cost of a cycle under this maintenance procedure is

C�τ� � c1I�X1 � T�X2 � T� � � � �Xn � T ��
n

∑
i�1

c2iI�Xi � T ��
n

∑
i�1

cdi �T �min�Xi�T ��

where I��� represents the indicator function. The expectation of the expression above,
leads to (1).

Both E�τ� and (1) provide Q�T � given in (2). �

The following theorem gives a sufficient condition which guarantees the existence of
an optimum policy.

Theorem 2 Consider the same conditions given in Proposition 1, under the next ine-
quality

(3)
n

∑
i�1

c2i �

n

∑
i�1

cdiµi� i � 1�2� � � � �n

there exists T � in �0�∞� minimizing Q�T � in (2). Moreover, T � is one of the roots of the
following equation

T

�
�c1 f�1��T ��

n

∑
i�1

c2i fi�T ��
n

∑
i�1

cdiRi�T �

�
�

�

�
c1R�1��T ��

n

∑
i�1

c2iFi�T ��
n

∑
i�1

cdi

� T

0
Ri�u�du

�
� 0

(4)
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Proof

Q�T � can be expressed as

Q�T � �
n

∑
i�1

cdi �
a�T �

T

where

a�T � � c1R�1��T ��
n

∑
i�1

c2iFi�T ��
n

∑
i�1

cdi

� T

0
Ri�u�du

a�T � is a continuous function in �0�∞� verifying a�0� � c 1 � 0. From (3), it is derived
that a�∞� � ∑n

i�1 c2i �∑n
i�1 cdiµi � 0. Note that the two limiting cases, T � 0 and

T � ∞, correspond, respectively, to a continuous inspection and no inspection at all.
Therefore, there exists T0 in �0�∞� such that a�T0�� 0, hence, Q�T0��∑n

i�1 cdi �Q�∞�.
In addition, Q�0� �∞, so, there exists T1, 0� T1 � T0, satisfying Q�T �� infx��0�T1� Q�x�
for all T � T1.

Q�T � is a continuous function, therefore it has a minimum, T �, in �T1�∞�. Moreover,
next inequality

Q�T1�� Q�∞�� Q�T0�

leads to T1 � T � �∞. Therefore, T � is also the minimum in �0�∞�, and the result holds.
Finally, by differentiation of Q�T �, (4) is obtained. �

The particular case of time to failure exponentially distributed is analyzed in the follo-
wing result.

Proposition 3 Consider the same conditions given in Proposition 1, and X i, exponen-
tially distributed with failure rate λi, i � 1�2� � � � �n. If the next two conditions hold

λi �
cdi

c2i
� i � 1�2� � � � �n(5)

r2
�1��T �� r��1��T �(6)

with r��1��T � being the derivative of r�1��T �. Then, T � is the only root of (4).

Proof

Denote A�T � the left-hand side in equation (4). In this case, the derivative of A�T � is
expressed as

dA�T �

dT
� T

�
c1

�
r2
�1��T �� r��1��T �

�
R�1��T ��

n

∑
i�i

λ2
i e�λiT

�
c2i�

cdi

λi

��
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The hypotheses (5) and (6) assure that the expression above is positive and, therefore,
A�T � has an only root. �

The multivariate extensions of exponential distribution arise easily to model the time to
failure when the maintenance of multi-unit systems is studied. We consider the follo-
wing bivariate extensions

1. The bivariate Gumbel distribution (Gumbel (1960))

The corresponding bivariate reliability function is given by

R�x�y� � e�x�λ1�λ3y��λ2y
� 0� λ3 � λ1λ2� λ1�λ2 � 0� x�y � 0

This distribution has exponential marginal distributions, however, the failure rate defi-
ned as

r�x�y� �
f �x�y�
R�x�y�

is not a constant, unlike the univariate exponential.

2. The Marshall-Olkin model (Marshall-Olkin (1966))

Marshall and Olkin derived the joint reliability distribution

R�x�y� � e�λ1x�λ2y�λ3 max�x�y�
� λ1�λ2 � 0� λ3 � 0� x�y� 0

so as to describe a two-component system subject to shocks following a Poisson pro-
cess. An important property of this distribution is that X � min�T1�T2�, Y � min�T2�T3�
where T1, T2 and T3 are independent exponential random variables. It follows that
min�X �Y � is also exponentially distributed. In addition, �X �Y � is the only distribution
to have the so-called no-aging property

P�X � x� t�Y � y� t � X � t�Y � t� � P�X � x�Y � y� x�y� t � 0

which means that the remaining lifetime, given that both components have survived up
age t, does not depend on t.

In the former models, both X and Y are exponentially distributed. Hence, by direct
application of Proposition 2, the following corollaries are derived

Corollary 4 Consider a two-out-of-two system whose time to failure is distributed as
the bivariate Gumbel model. Under the following conditions

λi �
cdi

c2i
� i � 1�2

�λ1 �λ2�
2
� 2λ3

T � is the only root in equation (4).
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Proof

The reliability function and the failure rate corresponding to X �1� � min�X �Y � are, res-
pectively

R�1��T � � e��λ1�λ2�T�λ3T 2

r�1��T � � �λ1 �λ2��2λ3T

The hypotheses of Proposition 2 are satisfied and the result follows. �

Corollary 5 Consider a two-out-of-two system whose time to failure is distributed as
the Marshall-Olkin model. T �, is the only root of equation (4), provided

λi �λ3 �
cdi

c2i
� i � 1�2

Proof

X and Y are exponentially distributed with parameters λ 1�λ3 and λ2�λ3, respectively.
Besides, the reliability function of X�1� � min�X �Y � and its failure rate are respectively
given by

R�1��T � � e��λ1�λ2�λ3�T

r�1��T � � λ1 �λ2 �λ3

again, Proposition 2 leads to the result. �

Next, the particular case of independence between times to failure of the components is
considered.

Proposition 6 Let X1�X2� � � � �Xn be independent random variables, and such that

αi �
cdi

c2i
� i � 1�2� � � � �n(7)

with αi � sup0�t�∞ ri�t�. Then, T � is the only root of (4).

Proof

Denoting A�T � the left-hand side of (4), its derivative can also be expressed

dA�T �

dT
� T

�
c1r2

�1��T �R�1��T ��
n

∑
i�1

c2ir
�
i�T �Ri�T �

�
�

� T

�
c1r��1��T �R�1��T ��

n

∑
i�1

ri�T � fi�T �

�
c2i�

cdi

ri�T �

��
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The independence of �X1�X2� � � � �Xn� leads to

R�1��T � � ∏n
i�1 Ri�T �, r�1��T � � ∑n

i�1 ri�T �, r��1��T � � ∑n
i�1 r�i�T �

hence

dA�T �

dT
� T

�
�c1

�
n

∑
i�0

ri�T �

	2 n

∏
i�1

Ri�T ��
n

∑
i�1

r�i�T �Ri�T �

�
c2i� c1 ∏

j ��i

R j�T �

	

��

� T

�
ri�T � fi�T �

�
c2i�

cdi

ri�T �

�


Usually, it is assumed c1 � c2i, i � 1�2� � � � �n. This fact along with the hypotheses given
in (7), prove that the derivative of A�T � is positive and the result holds. �

CASE II. The system works if at least one component works.

The time to failure in a parallel system is given by the longer lifetime, thus

X�n� � max�X1�X2� � � � �Xn�

with µ�n� � E
�
X�n�

�
. Its reliability function is

R�n��x� � 1�P�X1 � x�X2 � x� � � � �Xn � x� � 1�F�x�x� � � � �x�

Now, we consider a unique cd representing the cost derived while the failure of the
whole components is not detected. First, the cost function is obtained.

Proposition 7 Consider a 1-out-of-n system whose failures are only detected by ins-
pection. Under the maintenance policy previously described, the following results hold

E�C�τ�� � c1R�1��T ��
n

∑
i�1

c2iFi�T �� cdT � cd

� T

0
R�n��u�du(8)

Q�T � � cd �
c1R�1��T ��∑n

i�1 c2iFi�T �� cd
� T

0 R�n��u�du

T
(9)

Proof

In Proposition 1, it was proved that E�τ� � T . The cost of a cycle is

C�τ� � c1I�X1 � T�X2 � T� � � � �Xn � T ��
n

∑
i�1

c2iI�Xi � T ��

� cd
�
T �min

�
X�n��T

��
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The expected value of the expression above is given by (8), therefore, (9) holds. �

The following result provides a sufficient condition for the existence of an optimum
policy.

Theorem 8 Consider the same conditions of Proposition 4, if

(10) µ�n� �
∑n

i�1 c2i

cd

then, there exists T �, 0 � T � � ∞ minimizing Q�T � in (9). Moreover, T � is one of the
roots of the following equation

T

�
�c1 f�1��T ��

n

∑
i�1

c2i fi�T �� cdR�n��T �

�
�

�

�
c1R�1��T ��

n

∑
i�1

c2iFi�T �� cd

� T

0
R�n��u�du

�
� 0

(11)

Proof

Q�T � can be also expressed as

Q�T � � cd �
a�T �

T

where

a�T � � c1R�1��T ��
n

∑
i�1

c2iFi�T �� cd

� T

0
R�n��u�du

Clearly, a�0� � c1 � 0 and, from hypothesis (10), it is obtained a�∞� � ∑n
i�1 c2i �

cdµ�n� � 0. Hence, there exists T0, 0 � T0 � ∞ such that Q�T0� � cd � Q�∞�. In
addition Q�0� � ∞, and the same strategy used in Theorem 1 shows the existence of T �,
finite, minimizing Q�T �.

On the other hand, the roots of the derivative of Q�T � should verify (11). �

Remark 1 Conditions (3) and (10) mean that an optimum policy exists whenever the
mean cost incurred for the down-time is greater than the cost derived from the preven-
tive maintenance. �
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3. EXAMPLES

We present two examples that aim at illustrating the results presented in this work. The
first of them refers to a series system following a bivariate Gumbel distribution and the
second deals with a parallel system whose time to failure is distributed as the Marshall-
Olkin model.

The periodic tests which are carried out so as to detect disorders in the blood pressure
and the cholesterol level, correspond to the case of a series system. No sooner does one
of the causes appear than the health disorder arises. In general if the cholesterol level
is high so does the blood pressure, that is to say, both turn out to be related and may
indicate the occurrence of a more serious illness. The disorders in the blood pressure
and the cholesterol level are unrevealed failures as, apart from the corresponding tests,
there is no other way to detect them.

Consider now an engineering system with two spare units being available. Both can be
modeled by a parallel system and should be tested periodically so as to detect its failures
which may occur even while they are not in use. The failures may be dependent if the
units are stored under the same conditions, hence a failed unit makes more likely the
failure of the second spare component.

Table 1

E�X�1�� λ1 λ2 λ3 T �

1 Q�T �1 � T �2 Q�T �2 �

2849�98 10�4 2�10�4 10�8 12�92 1�56 15�82 1�28
2263�39 10�4 3�10�4 10�8 11�19 1�80 14�16 1�46

1868 10�4 4�10�4 10�8 10�01 2�02 12�93 1�56
1586�3 10�4 5�10�4 10�8 9�14 2�21 11�97 1�57
1376 10�4 6�10�4 10�8 8�46 2�39 11�20 1�81

1332�84 10�4 6�10�4 2�10�8 8�46 2�39 11�20 1�81
1295�53 10�4 6�10�4 3�10�8 8�46 2�39 11�20 1�81
787�44 5�10�4 5�10�4 2�10�7 7�08 2�87 8�18 2�49

285 10�3 2�10�3 10�6 4�09 5�01 5�01 4�11
158�63 10�3 5�10�3 10�6 2�90 7�10 3�80 5�47
152�30 10�3 5�10�3 2�10�6 2�90 7�10 3�80 5�47
147�02 10�3 5�10�3 3�10�6 2�90 7�10 3�80 5�47
140�71 1�1�10�3 5�10�3 4�10�6 2�88 7�17 3�75 5�55
47�81 0�01 0�01 10�5 1�59 13�51 1�84 11�81
46�04 0�01 0�01 2�10�5 1�59 13�51 1�84 11�81
42�14 0�01 0�01 5�10�5 1.59 13�51 1�84 11�81
28�50 0�01 0�02 10�4 1�30 16�58 1�60 13�74
22�63 0�02 0.02 10�4 1�13 19�60 1�30 17�21
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1. Series system with Gumbel distribution

Suppose that c1 � 10, c21 � 75, c22 � 35, and cd1 � 400. We assume two different costs
for the down-time due to failure in the second component: c d2 � 400 or cd2 � 200, being
T �

1 and T �
2 their corresponding optimum inspection times.

Table 1 contains the optimum inspection times as well as the corresponding optimum
cost for different mean times to failure of the system. The smaller E�X �1�� is, the smaller
T �; on the contrary, Q�T �� increases. In addition T �

1 � T �
2 and Q�T �

1 �� Q�T �
2 �, which

means that the higher the down-time cost is, the more frequent the inspection and,
therefore, the more expensive the total cost.

2. Parallel System with the Marshall-Olkin model

Costs: c1 � 10, c21 � 75, c22 � 35 and cd � 400 (T �
3 ) or 200 (T �

4 ).

Table 2 shows that the optimum inspection time, T �, is non-monotonic when the mean
time to failure decreases. Moreover, T �

3 � T �
4 and Q�T �

3 � � Q�T �
4 �; therefore, the con-

clusions derived are similar to those in the previous example.

Table 2

E�X�n�� λ1 λ2 λ3 T �3 Q�T�3 � T �4 Q�T �4 �

12150 10�4 10�5 7446�10�8 25�92 0�79 36�67 0�56
11070 10�4 10�4 2967�10�8 40�71 0�50 57�37 0�36
10632 10�4 10�4 3422�10�8 37�97 0�54 53�55 0�38
10414 10�4 2�10�4 1229�10�8 60�05 0�34 83�16 0�24
10371 10�4 2�10�4 1276�10�8 59�11 0�34 81�93 0�25
10334 10�4 2�10�4 1317�10�8 58�32 0�35 80�90 0�25
10290 10�4 2�10�4 1366�10�8 57�42 0�35 79�71 0�26
3213 5�10�4 2�10�4 1507�10�7 18�09 1�15 25�52 0�83
1215 10�3 10�3 1975�10�7 15�19 1�40 21�14 1�03
1058 10�3 2�10�3 1055�10�7 18�15 1�14 24�47 0�87
1053 10�3 2�10�3 1103�10�7 17�90 1�16 24�18 0�88
1048 10�3 2�10�3 1160�10�7 17�62 1�18 23�84 0�89
1041 10�3 2�10�3 123�10�6 17�30 1�21 23�45 0�91
968 1�1�10�3 2�10�3 1358�10�7 16�56 1�27 22�48 0�96
158 0�01 5�10�3 2421�10�6 4�34 5�51 6�06 4�21
154 0�01 5�10�3 2628�10�6 4�19 5�71 5�86 4�35
152 0�01 6�10�3 2030�10�6 4�62 5�18 6�40 3�98
122 0�01 0�01 1976�10�6 4�47 5�33 6�13 4�14
77 0�02 0�01 5142�10�6 2�96 8�63 4�13 6�72

257



ACKNOWLEDGEMENT

We would like to thank an associate editor of Qüestiió and the two anonymous refe-
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