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ON SUPERLINEAR MULTIPLIER UPDATE
METHODS FOR PARTIAL AUGMENTED

LAGRANGIAN TECHNIQUES�

E. MIJANGOS�

The minimization of a nonlinear function with linear and nonlinear cons-
traints and simple bounds can be performed by minimizing an augmented
Lagrangian function, including only the nonlinear constraints. This proce-
dure is particularly interesting in case that the linear constraints are flow
conservation equations, as there exist efficient techniques to solve nonli-
near network problems. It is then necessary to estimate their multipliers,
and variable reduction techniques can be used to carry out the succes-
sive minimizations. This work analyzes the possibility of estimating these
multipliers using Newton-like methods. Several procedures are put forward
which combine first and second-order estimation, and are compared with
each other and with the Hestenes-Powell multiplier estimation by means of
computational tests.
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1. INTRODUCTION AND MOTIVATION

Consider the linearly and nonlinearly constrained problem (EGP):

minimize f �x�(1)

subject to: Ax � b(2)

c�x� � 0(3)

l � x � u�(4)

where

1. f :�n
�. f �x� is nonlinear and twice continuously differentiable on the feasible

set defined by constraints (2) and (4).

2. A is an m�n matrix and b an m-vector.

3. c :�n
�

r � is such that c � �c1� � � � �cr�
t , ci�x� being linear or nonlinear and twice

continuously differentiable on the feasible set defined by constraints (2) and (4) �i�
1� � � � �r�

Throughout this work the gradient of f at x is defined as the column vector ∇ f �x�, and
matrix ∇c�x� � �∇c1�x�� � � � �∇cr�x�� is the transpose of the Jacobian of c at x, though
here, for convenience, it will simply be called Jacobian.

The idea is to solve EGP by solving a series of approximate problems whose solutions
«converge» on the solution of the original problem in a well-defined sense.

In practice, it is only necessary to solve a finite number of approximate problems to
arrive at an acceptable approximate solution to the original problem.

Real problems with this same structure exist and have a high dimensionality (e.g., when
A is a node-arc incidence matrix). They often need to be solved and it is important to
find the procedure that will solve them with the highest efficiency. The short-term hy-
droelectric power generation optimization problem [5, 32] and the short-term hydrot-
hermal coordination of electric power generation [16] are examples of this type.

One possible way to address problem EGP would be to use of Projected Lagrangian
methods [12]. This would lead to solution of a series of subproblems of the type:

minimize Φk�x�

subject to: Ax � b

l � x � u

∇c�xk�t x ��c�xk��∇c�xk�t xk
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where Φk�x� is either a quadratic approximation to the partial Lagrangian function, or
a nonlinear function based on the partial augmented Lagrangian, as the well-known
MINOS 5.5 package [27] does. When A is a node-arc incidence matrix this subproblem
is a nonlinear network flow problem with linear side constraints, which could be solved
by specialized techniques of primal partitioning for network flow problems [19]. This
possibility has already been explored [15].

In this work EGP is solved using partial augmented Lagrangian techniques [1, 2, 3,
6, 30], as is done in [4, 7, 21, 22, 23, 24], where only the general constraints (3) are
included in the Lagrangian.

There is a class of problems for which these techniques have potential interest, in par-
ticular those that incorporate flow conservation equations as linear constraints (2), as
there are efficient techniques for solving nonlinear network problems, see [9, 31]. In
[21, 22, 23, 24] the constraints (3) are the side constraints of a nonlinear network flow
problem. The application of these techniques consists of two fundamental steps. The
first is the solution of problem (EGS):

minimize
x

Lρ�x�µ�

subject to Ax � b(5)

l � x� u�

where ρ � �, such that ρ � 0, and µ � �r are fixed,

Lρ�x�µ� � f �x��µtc�x��
1
2

ρc�x�t c�x��

Should the solution �x obtained by solving EGS be infeasible with respect to (3), the
second step, which is the updating of the estimation µ of the Lagrange multipliers of
constraints (3), is carried out —also updating, if necessary, the penalty coefficient ρ—
followed by a return to the first step. Should �x be feasible (or the violation of constraints
(3) sufficiently small) the procedure ends.

It is of paramount importance that the estimation of multipliers µ be as accurate as
possible, otherwise the convergence of the algorithm can be severely handicapped, as
shown in [2].

In practice there are two first-order procedures to estimate µ. On the one hand the met-
hod put forward by Hestenes [18] and Powell [29]

�µ � µ�ρc��x��
and on the other hand µL obtained through the classical solution to the system of Kuhn-
Tucker necessary conditions

(6) ∇ f ��x��∇c��x�µ�Atπ�λ � 0
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by least squares, as suggested in [12]. A study of the viability of using these multiplier
estimation techniques together with the solution of problem EGS (5) by the Murtagh
and Saunders’s active set technique [26] was carried out in [21], using the method
suggested by Hestenes & Powell, and in [24], by solving the Kuhn-Tucker necessary
conditions using least squares.

An interesting alternative to these methods is the second-order multiplier estimation for
inexact minimization suggested by Tapia in [30], and whose convergence analysis is
due to Bertsekas in [2].

In this paper the applicability of the Tapia’s second-order multiplier estimate is analyzed
when subproblem (5) is solved using variable reduction techniques. As a consequence,
under variable reduction techniques an algorithm that is a combination of superlinear
and first-order multiplier methods is designed to improve the results obtained using
first-order estimates over large-scale nonlinear network problems with side constraints
[21, 24]. In the same algorithm, it is shown how to compute the superlinear-order mul-
tiplier estimate efficiently by means of suitable matrix computations. Finally, these te-
chniques are extended to problem (IGP):

minimize f �x�(7)

subject to Ax � b(8)

α � c�x�� β(9)

l � x � u�(10)

using the results of the work by Mijangos and Nabona in [21], which is based on the
theory developed by Bertsekas (1982) in [2] for extending the multiplier methods ob-
tained for equality constrained problems to one-sided inequality constrained problems,
without need of using slack variables. Numerical tests over nonlinear network problems
with side constraints are carried out, several algorithmic alternatives being compared
with each other and with the Hestenes-Powell multiplier estimation.

The paper is organised as follows. Section 2 analyzes the applicability of these te-
chniques to solve problem EGP when subproblem (5) is solved by the Murtagh and
Saunders procedure [26]. Also, in Section 2, an algorithm combining superlinear and
first-order multiplier estimate techniques is put forward and various practical issues are
analyzed. Section 3 extends these techniques to problem IGP. Section 4 offers some
details about the implementation. Section 5 presents computational tests. Finally, Sec-
tion 6 offers the conclusions.

2. APPLICABILITY OF THE NEWTON-TYPE METHODS

There follows a new analysis of the applicability of the inexact Newton-like methods in
combination with variable reduction techniques.
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Let us consider any update formulaU of µ in the solution of EGP by means of multiplier
methods, where the subproblem to solve is (5). The first-order optimality conditions to
be fulfilled by the optimizer �x��µ��π��λ�� at the end of this sequential procedure, for
all ρ � 0 large enough, give rise to the following system

∇xLρ�x�µ��Atπ�λ � 0(11)

c�x� � 0(12)

Ax � b�(13)

where
∇xLρ�x�µ� � ∇ f �x��∇c�x��µ�ρc�x���

Throughout this work we assume that �x��µ��π��λ�� is an optimizer at the end of the
sequential procedure satisfying the strict complementarity condition.

Likewise, we assume that given a pair �µ�ρ�, ρ is greater than a certain threshold (see
Lemma 1.25 in [2]) in order to make sure the full rank of the reduced Hessian of the
augmented Lagrangian in the subproblem EGS, see (5). Since this work is concerned
with the solution of problems where the aforementioned reduced Hessian is dense in
general, the highest dimension of this matrix is limited to 500�500.

Let be �x � x�µ�ρ� an optimizer of this subproblem. It is obvious that the only informa-
tion we have about the active variables at x� and the bound where they are fixed is given
by the solution of subproblem EGS.

Newton’s method for solving the system consisting of (11–13) and the equations of the
active variables at �x involves solving the linear system

(14)

n r m �t
∇2

xxLρ��x�µ� ∇c��x� At 00

1l

∇c��x�t
A 00

00 1l

∆x

∆µ

∆π
∆λ

�

�∇xLρ��x�µ�
�Atπ�λ

�c��x�
0
0

,

where �t stands for the number of variables fixed at their bounds in the solution of sub-
problem (5).

Let ∇2
� denote the matrix of coefficients of (14), which should be nonsingular. Let

us assume that matrix ∇2
xxLρ��x�µ� is nonsingular and A has full row rank; then, the

necessary and sufficient condition for matrix ∇2
� to be nonsingular is that
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(15) �A��x� � ∇cB��x�t ∇cS��x�t ∇cN��x�t �r

BA SA NA �m

00 1l ��t
has full row rank, where the second row section contains the matrix A partitioned into
three submatrices, BA and SA corresponding to the last basic and superbasic submatrices
after using the Murtagh and Saunders method to solve subproblem EGS (5), N A being
the columns of A corresponding to the �t active variables in �x. The partition of ∇c��x�t

is the same as that of A. The variables associated with columns NA are precisely those
variables whose bound is predicted to be active at the optimizer. However, it could
happen that the submatrix

BS �
∇cB��x�t ∇cS��x�t

BA SA

does not have full row rank, which could be due to one of two reasons:

� either ∇c��x�t does not have full row rank in spite of ∇c�x��t having it;

� or ∇c��x�t has full row rank, but �∇cB��x�t ∇cS��x�t � does not have it, because the
prediction about the variables whose bound will be active at the optimizer is not
totally correct.

Both cases can occur if �x is not sufficiently close to x�.

In the second case we can know (or hope) that ∇c��x� t has full row rank either because�x is already close enough to the optimizer, or due to the structure of the problem, or
because the rank is checked explicitly. Then, it may be interesting to enlarge BS by
adding columns of the submatrix

(16) N �
∇cN��x�t

NA

until a matrix is obtained with full row rank. However, this would mean excluding these
variables from being bound active variables and forcing their λ � multiplier to be zero,
against the prediction in �x. If these variables were not suitably chosen (assuming that
«suitable» ones exist), it could happen that the ∆x displacement associated with them
would not be feasible, and thus all the computational effort expended in solving system
(14) would have been lost. Therefore, when �x is sufficiently close to x �, and in order
to complete the row rank of BS (if necessary), we suggest enlarging BS by adding
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the columns of N whose associated active variables have a multiplier estimate zero or
almost zero, see Appendix A in [24].

2.1. Multiplier update in problem EGP

In practice, one does not need to solve system (14). Let Z be the following matrix:

(17) Z �

�
Zt

A 00

00 1l

�
�

where the unit matrix has dimension r�m��t and ZA is the variable reduction matrix:

(18) ZA �

��� �B�1
A SA

1l

00

��	 �
such that SA is enlarged with columns of NA if it is necessary for BS to have full row
rank.

Premultiplying both sides of (14) by Z and, since there is a vector ∆x S and only one
such that

(19) ∆x � ZA∆xS�

using this last expression we are led from system (14) to the reduced Newton system:

(20)

s r

Zt
A∇2

xxLρ��x�µ�ZA Zt
A∇c��x�

∇c��x�tZA 00

∆xS

∆µ

=

�Zt
A∇xLρ��x�µ�

�c��x�
.

Since ∇2
� is nonsingular and ZA has full column rank, the coefficient matrix of system

(20) is also nonsingular, hence this system has a single solution �∆xS�∆µ�.

By first calculating ∆µ we find that for problem EGP the UINW update is given by

(21) µ � µ��JtH�1J��1�c��x�� JtH�1�Zt
A∇xLρ��x�µ���
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where J � Zt
A∇c��x� is the reduced Jacobian in �x and H is either the exact reduced

Hessian of the augmented Lagrangian —i.e., Z t
A∇2

xxLρ��x�µ�ZA— or an approximation
of it (e.g., quasi-Newton or discrete Newton).

We should not forget that J must have full column rank so that the system matrix of
(20) will be nonsingular and, in consequence, will have an inverse.

2.2. Solution of the reduced Newton system

The procedure that we are going to describe makes it possible to switch from the first-
order update to a superlinear-order update «when the circumstances allow and suggest
it». The final aim of this combination is to increase its convergence rate as far as pos-
sible, at the same time keeping the global convergence of the multiplier method, see
[2].

The rules considered in the previous section are complemented with others added in
order to check the superlinear convergence at the end of the algorithm. Moreover, three
possibilities are considered in relation to the Hessian H (here reduced Hessian) of the
augmented Lagrangian, corresponding to the following cases:

� it is the exact Hessian at xk,

� it is its approximation by finite differences, or

� it is a quasi-Newton approximation (e.g., BFGS).

Let xk � x�µk�ρk� be the solution of the subproblem EGS for pair �µk�ρk�, see (5).

As a consequence of §2.1, if for x � xk the submatrices of the coefficient matrix and the
right-hand side of system (20) are denoted as follows:

Hk � Zt
A∇2

xxLρk�xk�µk�ZA

Jk � Zt
A∇c�xk�

hk � Zt
A∇xLρk �xk�µk��

the solution of (20) at xk is given by the initial calculation of

∆µ � �Jt
kH

�1
k Jk�

�1�c�xk�� Jt
kH

�1
k hk��

µk�1 being calculated by means of

µk�1 � µk �∆µ�
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then hk � Zt
A∇xLρk�xk�µk�1� is obtained, and finally

(22) ∆xS ��H�1
k hk�

from which the remaining components of ∆x are obtained by using expression (19).
This ∆x may be used in the first iteration of the solution of the new EGS subproblem
(see (5)) as search direction d, provided that it is feasible with regard to the simple
bounds of subproblem EGS. However, the reason for this section is to compute the
superlinear-order update of µ, when this is possible, and using it if it is reliable enough.
Therefore, assuming that Hk is either the exact projected Hessian, or a good enough
approximation of it, and that we have a Cholesky factorization Hk �Rt

kRk, the following
algorithm is designed. Let Dk � Jt

kH
�1
k Jk and UO�x�µ�ρ� � µ�ρc�x�.

Algorithm 1

Step 1. Compute the first-order multiplier estimation UO and obtain a projected
Jacobian Jk having full column rank. Set�µ �UO�x

k�µk�ρk��

If Tnw0 (activation rule) (see §2.3) a projected Jacobian Jk having full co-
lumn rank is obtained, if it exists, by means of the method suggested in
Appendix A of [24]. If either Tnw0 is not true, or Jk does not exist in spite
of this rule being true, the algorithm finishes with the update UO by default.

Step 2. Compute Cholesky factorization Dk � R
t
kRk.

(i) The matrix Mk is computed by calculating its columns M �i�
k , for i �

1� � � � �r, which is done by successively solving system

Rt
kM

�i�
k � J�i�k �

where J�i�k denotes the i-th column of Jk.

(ii) The QR factorization of Mk is carried out by obtaining an upper trian-
gular matrix Rk such that �

Rk

00

�
� QkMk�

Qk being a suitable orthogonal matrix.

Step 3. Compute ck � c�xk�� Jt
kH

�1
k hk.

(i) Solve Rt
kRk p � hk�

(ii) Compute ck � c�xk�� Jt
kp�

Step 4. Solve Dk∆µ � ck� By solving R
t
kRk∆µ � ck�
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Step 5. Compute the superlinear-order update of µ. Set

µk�1 �UINW �xk�µk�ρk��

where
UINW �xk�µk�ρk� � µk �∆µ�

Step 6. Check the validation rule. If

Tnw1 :� max
i�1�����r

�µk�1
i ��µi�
��µi�

� τnw1�

(see §2.3) the algorithm finishes with update UINW , achieved in step 5.
Otherwise, it ends with µk�1 � �µ.

2.3. Activation and validation rules

One issue that is interesting to consider is whether it is worth attempting to compute
the superlinear-order update when the current point is not close enough to an optimizer.
The main reason for not doing so is the high computational cost of obtaining a projected
Jacobian Jk having full column rank in the first step of Algorithm 1 (if possible). We run
the risk of finding that the current projected Jacobian Jk does not have full column rank,
in which case we have wasted all the effort taken to compute it. One way of controlling
the closeness to �x��µ�� is given by the following test:

Tnw0 :� Tx and Tµ�

where, for a previously fixed tolerance τ x,

Tx :� τ � τx

is a test carried out at the end of the solution of subproblem EGS (5) in order to know
the closeness of the current point to x�, τ being a tolerance used in the definition of the
optimality tolerance for subproblem EGS (for further details see the definition of τ in
Step 1 of the Algorithm 2 for solving problem IGP in §3.1); and

Tµ :� 	µk�µk�1	� �1�	µk	�τµ�

where τµ is a previously fixed tolerance.

In the event of Tnw0 being false the superlinear-order update is not performed and µ k�1 ��µ, which is the first-order update UO.

The test

Tnw1 :� max
i�1�����r

�µk�1
i ��µi�
��µi�

� τnw1�
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is based on the fact that the second-order update is rarely correct if it is very far from
the first-order update, see [11]. Therefore, there is some level of agreement between the
two estimations.

2.4. A more numerically-stable alternative

In this alternative the second-order update is performed in two steps, as suggested by
Bertsekas in proposition 2.8 of [2].

The first step consists of

� computing the first-order estimation of µ� given by

�µ �UO�x
k�µk�ρk��

� taking �Hk � Zt
A∇2

xxL0�xk��µ�ZA, where L0�xk��µ� means the Lagrangian function (i.e.,
the augmented Lagrangian function for ρ � 0) with µ � �µ,

� and computing a modified Cholesky factorization of �Hk (see [12]), obtaining �Hk ��Rt
k
�Rk.

Note that in Algorithm 1 we replace Rk with �Rk and that

Hk � �Hk �ρkJkJ
t
k�

In the second step Algorithm 1 is applied replacing the Step 5 with

(23) UINW �xk�µk�ρk� � �µ�∆µ�

It is easy to see that the solution obtained with the two procedures is the same, see
§2.3.2 in [2].

The fundamental difference between both methods lies in that instead of the reduced
Hessian (or an approximation of it) of the augmented Lagrangian function L ρk�xk�µk�,
we require the reduced Hessian (or an approximation of it) of the Lagrangian function
L0�xk��µ�, where �µ also appears instead of µk. This precludes using the BFGS approxi-
mation of ∇2

xxLρk�xk�µk� in each k-th major iteration. However, if we have the analytic

reduced Hessian of the Lagrangian function for pair �x k��µ� (or an approximation of it,
e.g., by finite differences) then the procedure considered in this section can be applied.

Since �µ is a better estimate than µk —using known results for Newton’s method— we
expect that (23) will yield a vector µk�1 which is closer to µ� than µk.

Moreover an important advantage of this procedure is that although the condition num-
ber of

Jt
k
�H�1

k Jk
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is present in the error bound of the system to solve, here it is multiplied by a 	∆µ	,
which is generally small compared with that obtained directly from step 5 without mo-
difications, and this reduces the effect of the condition number with regard to the direct
application of the Algorithm 1 —see §2.7.2 in [13]—, as can be observed in the com-
putational tests later.

2.5. Issues concerning the quasi-Newton multiplier update

A quasi-Newton method (here BFGS) is normally used when the number of superbasic
variables is no greater than a number previously given s, which is chosen so that the
computational effort of computing the search direction in this way will be smaller than
carrying out this calculation using another efficient method (e.g., the Truncated Newton
[8]). Here, s � 500 by default. If s � s it is clear that we will not have this factored
approximation, hence we will necessarily either have to compute the reduced Hessian
of the augmented Lagrangian directly, or approximate it by means of finite differences
according to the procedure explained below. In large-scale problems with many degrees
of freedom the possibility of s � s is also an issue to take into account at the moment
of implementing the quasi-Newton techniques for the superlinear-order update, though
it is not a crucial question for the aims of this work. Nevertheless, we must not forget
that there are other algorithmic choices that help to solve this problem as for example:
the L-BFGS method of Nocedal [25, 28] and the partitioned quasi-Newton method of
Griewank and Toint [14].

When using a BFGS approximation in the solution �x of subproblem EGS, see (5), H
will be positive definite and one can directly update its Cholesky factorization. Howe-
ver, the matrix J that we have in �x may not have full column rank. Therefore, it will be
necessary to take columns of N (defined by (16)) to complete its rank, and the reduction
matrix (18) will thus have to be modified as a consequence of enlarging S A with columns
of NA, which makes the current quasi-Newton update H useless as an approximation of
Zt

A∇2
xxLρ��x�µ�ZA in system (20). Hence the quasi-Newton approximation can only be

directly exploited when the reduced Jacobian J at �x does not require that columns of
N be taken in order to complete the column rank of BS and, in consequence, the rank
of J. Otherwise, H could be updated by adding nonbasic variables associated with the
columns of N to the superbasic set one by one and updating for each new superbasic
variable the Cholesky factorization of H (as in [26]). It is worth bearing in mind when
choosing these nonbasic variables that it is appropriate to show preference for those
whose multiplier estimate is zero or small enough, in order to avoid the vector ∆x de-
rived from the superlinear-order update being infeasible. Let �NA denote the submatrix
constituted by these columns of NA; thus, a new variable reduction matrix Z A is defined
by
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(24) ZA � �ZA Z
�N � �

������
�B�1

A SA �B�1
A
�NA

1l 00

00 1l

00 00

�����	 �
Two rules can be used to exploit the current factorization of the quasi-Newton approxi-
mation of the reduced Hessian of the augmented Lagrangian.

1. Updating of the Cholesky by finite differences. Denote

�Z�i�A � �ZA�z1� � � � �zi� � ��Z�i�1�
A �zi��

for i � 1� � � � �m1, where m1 is the column number of �NA and zi denotes the i-th
column of Z

�N such that �Z�0�A � ZA and �Z�m1�
A � ZA.

The procedure used here consists in repeating successively from i � 1 to i � m 1 the
classical method suggested in [26] for updating the Cholesky factor R when adding

a new superbasic variable, in which Z, Z and z are replaced, for each i, by �Z�i�A , �Z�i�1�
A

and zi respectively.

2. Another alternative to keep the positive definiteness. A new approximation �Hk is
taken such that: �Hk �

�
Hk 00

00 1l

�
�

where each element of 1l correspond to a variable whose corresponding column in A
belong to �NA. Therefore, in order to factor �Hk � �Rt

k
�Rk it is enough to set

�Rk �

�
Rk 00

00 1l

�
�

2.6. Approximation of the reduced Hessian of the augmented Lagrangian by finite
differences

Next, an approximation of the reduced Hessian of the augmented Lagrangian is cal-
culated by extending the usual lines in the approximation procedure of the Hessian by
means of finite differences (see [12]).

Denote g�x� � ∇xLρ�x�µ� and G�x� � ∇2
xxLρ�x�µ�. The Taylor-series expansion of g

about x allows us to write g�x�σd� 
 g�x��σG�x�d. Premultiplying by the variable
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reduction matrix Zt
A and taking into account that d � ZAdS, we obtain

Zt
Ag�x�σZAdS�
 Zt

Ag�x��σZt
AG�x�ZAdS�

from which

Zt
AG�x�ZAdS 
 Zt

Ag�x�σZAdS��Zt
Ag�x�

σ
�

Let us consider a given σ � 0, sufficiently (but not too) small, d S � ei is successively
taken for i � 1� � � � �s, where ei is the unit vector that has the one in the i-th position, the
remaining entries being zero, and s is the number of columns of matrix Z A. Then, we

can obtain an approximation of the i-th column of Z t
AG�x�ZA, which is denoted by H

�i�
,

by means of

H
�i�

�
Zt

Ag�x�σZAei��Zt
Ag�x�

σ
�

thus achieving H 
 Zt
AG�x�ZA.

Once H is computed a symmetrical approximation H is obtained by doing H i j �
� 1�2�Hi j �H ji� in order to calculate each entry �i� j� of H; in passing, H i j and H ji

are compared, and if the difference between them is excessive, this approximation must
be rejected and a more suitable σ must be chosen. One classic possibility is to take
σ �

�
εM (εM=machine precision).

3. EXTENSION OF THE NEWTON-LIKE METHODS TO PROBLEM IGP

In [21] the original multiplier method is extended to problems of the IGP type (see
(7–10) in §1), specializing its performance in the case of nonlinear network flows with
side constraints. There an algorithm for solving this problem using the aforementioned
method is put forward, which is summarized in §3.1.

When we have α � β � 0, problem IGP becomes problem EGP. As can be seen in §2,
in the solution of this problem, subproblem EGS (5) must be solved and the vector µ
updated.

Here the extension of update UINW of §2.1 to problem IGP for α � β is considered. At
each iteration of the multiplier method we solve subproblem (IGS):

minimize
x

Lρ�x�µ�

subject to Ax � b(25)

l � x� u�

where ρ � 0 and µ are fixed,

(26) Lρ�x�µ� � f �x��
r

∑
j�1

p j�c j�x��µ j�ρ��
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p j being defined by

(27) p j�c j�x��µ j�ρ� � µjϕ j�c j�x��µ j�ρ��
1
2

ρ�ϕ j�c j�x��µ j�ρ��2�

such that

(28) ϕ j�c j�x��µ j�ρ� �


���

c j�x��β j if µj �ρ�c j�x��β j�� 0

c j�x��α j if µj �ρ�c j�x��α j�� 0

�µj�ρ otherwise.

Replacing in (27) ϕ j�c j�x��µ j�ρ� with its expression in (28) and operating we get the
function p�t�µ�ρ� defined by Bertsekas in §3.2 of [2], which is continuously differen-
tiable with respect to t and twice continuously differentiable for all t except t � α�µ�ρ
and t � β�µ�ρ, see [2].

In [21] the following proposition is shown.

Proposition 1 (a) If f and c are continuous in a subset � of � n , Lρ���µ� is continuous
in � for all µ, and ρ � 0.

(b) If f and c are continuously differentiable in an open subset � of � n , Lρ���µ� is
continuously differentiable in � for all µ, and ρ � 0.

(c) Let K � �1� � � � �r�. If f and c are twice continuously differentiable in an open subset
� of �n , Lρ���µ� is twice continuously differentiable in the set

��µ�ρ � �x � x � �� µj �ρ�c j�x��β j� 
� 0� j � K�
��x � x ��� µj �ρ�c j�x��α j� 
� 0� j � K�(29)

for all µ, and ρ � 0.

On the other hand, let E denote the state vector defined for a given pair �µ�ρ� as follows:

(30) E j �


���

�1� if c j�x�µ�ρ���β j ��µj�ρ

�1� if c j�x�µ�ρ���α j ��µj�ρ

0� otherwise.

Let �c�x� denote the active contraints of c�x� (we say that c j�x� is active in the sense that
Ej 
� 0; see (30)) and �µ its corresponding multiplier vector. Moreover, the zero supers-
cript (e.g., as in ∆µ0 and µ0�ρ) means that the symbol with which is associated refers
to the inactive constraints (in the sense that E j � 0), and �ϕ stands for the current value
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of the vector function constituted by the ϕ j functions (defined in (28)) corresponding
to those constraints c j�x� which are active. Using this notation, let us consider any up-
date formula U of µ in the solution of IGP by means of multiplier methods, where the
subproblem to solve is IGS (25). In IGP the first-order multiplier estimate is given as

(31) U0�x�µ j�ρ� �

�
µ j �ρϕ j�c j�x��µ�ρ�� if E j 
� 0

0� otherwise.

Let us assume that �x��µ��π��λ�� is an optimizer at the end of the sequential procedure
satisfying the strict complementary condition, then there exists a neighborhood N�µ ��

such that for µ � N�µ��, vector x�µ�ρ� belongs to ��µ�ρ, see (29).

First-order optimality conditions to be fulfilled by the optimizer �x ��µ��π��λ�� for all
ρ � 0 large enough, are —in addition to the complementary slackness condition over
λ� (strict by hypothesis)— system

∇xLρ�x�µ��Atπ�λ � 0

ϕ�c�x��µ�ρ� � 0(32)

Ax � b�

where

∇xLρ�x�µ� � ∇ f �x��∇c�x�

�
µ�ρϕ�c�x��µ�ρ�

�
�

Let �x � x�µ�ρ� be a solution of subproblem IGS, see (25). Bearing in mind that both ϕ
and ∇xLρ�x�µ� are differentiable with respect to x in ��µ�ρ, the solution of system (32)
by means of Newton’s method at x � �x means solving the system

(33)

n r0 �r m �t
∇2

xxLρ��x�µ� 00 ∇�c��x� At 00

1l

00 �1l
ρ

∇�c��x�t
00

A
00 1l

∆x

∆µ0

∆�µ
∆π
∆λ

�

�∇xLρ��x�µ�
�Atπ�λ

µ0�ρ

��ϕ
0
0

,

where �1l
ρ stands for the diagonal matrix whose nonzero entries are equal to�1�ρ. Note

that necessarily n � m��r��t and r0 ��r � r.
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As in the case of system (14), we can premultiply system (33) with matrix Z defined as
in (17), consider that the matrix of coefficients is nonsingular and use the equality (19),
in order to finally obtain the system

(34)

s r0 �r
Zt

A∇2
xxLρ��x�µ�ZA 00 Zt

A∇�c��x�
00

�1l
ρ

∇�c��x�tZA 00

∆xS

∆µ0

∆�µ

=

�Zt
A∇xLρ��x�µ�

µ0�ρ

��ϕ

,

which is called the reduced Newton system associated with problem IGP. The solution
of this system provides �∆xS�∆µ0�∆�µ�.
Note that subsystem associated with submatrix �1l�ρ is fully independent of the rest,
its solution being

∆µ0 ��µ0�

where µ0 is the value of the multiplier vector of the inactive constraints before it is
updated, from which we find that the multiplier estimate of these constraints after being
updated is zero. Therefore, the system to solve is the same as (20), but replacing ∆µ,
∇c��x�, and c��x� with ∆�µ, ∇�c��x�, and �ϕ respectively. The solution is performed by means
of the Algorithm 1, but with the above substitutions. Therefore for problem IGP we
have

(35) UINW �x�µ j�ρ� �

�
µj �∆�µj if Ej 
� 0

0� otherwise.

3.1. Algorithm for solving problem IGP

The techniques for the partial elimination of constraints will be used so as to relax
only the general constraints (9) of problem IGP (see (7–10)), i.e. both constraints (8)
and (10) being explicitly maintained. In this way, for each pair �µ k�ρk�, the following
partial augmented Lagrangian is obtained:

(36) Lρk�x�µk� � f �x��
r

∑
j�1

p j�c j�x��µ
k
j �ρk��
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where the function p j is defined as in (27–28). This gives rise to the subproblem (IGS k)
—see the definition of IGS in (25)—, which will be solved approximately for each k
major iteration by Murtagh and Saunders’s active set technique. The minimization pro-
cedure for IGSk will be interrupted when vector xk � x�µk�ρk� satisfies a predetermined
stopping criterion which becomes more rigorous as k increases, so that the minimiza-
tion will be asymptotically exact, as indicated in §2.5 of [2]. In the development of the
algorithm, for each k major iteration, the state vector E k (see (30)) and the violation
vector V k are used, where

(37) V k
j �


�����

c j�xk��β j� if Ek

j ��1

c j�xk��α j� if Ek
j ��1

0� otherwise.

Algorithm 2 (Multiplier method associated with IGP)

Step 0. Initialization. µ0, ρ0, γ0 and the auxiliary vector V �1 are appropriately
selected; set k � 0 and tolerances εopt and τ are set to sufficiently small
values.

Step 1. Solution of subproblem. Subproblem IGS k is solved by Murtagh and
Saunders’s active set technique. The subproblem is considered solved when
the algorithm associated with that active set technique stops for an optima-
lity tolerance equal to τk, which is defined as

τk � τ�ν�πk��

where
τ � max�εk�εopt�� εk � min�εk�γk	V k	�� and

ν�πk� � max

�
1�
	πk	1�

m

�
�

πk being the multiplier vector associated to the constraints Ax � b at the
local minimum obtained for IGSk, xk. (ν�π� is a function used by MINOS
5.5 [27].)

Step 2. Feasibility of xk with respect to the general constraints. If Topt :� τ� εopt ,

(a) if at xk,
	Vk	∞ � τ	c�xk�	�

is fulfilled, go to step 7,

(b) otherwise, go to step 3.
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If Topt is not true, εk and γk are updated so that �εk� 0 and �γk� 0
by means of

εk�1 � θ1εk

γk�1 � θ2γk�

such that 0 � θi � 1 for i � 1�2. Go to step 3.

Step 3. Multiplier update. The vector µ that calculates the general constraint
multipliers is updated following the expresion

µk�1
j �U�xk�µk

j �ρ
k��

where U means any update formula of µ.

Step 4. Update of penalty parameter. The penalty parameter ρ k is updated if the
violation of any active constraint j has not been sufficiently reduced. That
is, if there exists any j, such that Ek

j 
� 0, for which it is verified that �V k
j ��

1
γ̄ �V k�1

j �, then set

ρk�1 � ξρk�

where ξ and γ̄ are such that ξ� γ̄ � �1�10� with ξ � γ̄.

Step 5. Set k � k�1.

Step 6. Return to step 1 with xk�1 as the initial feasible point for the subproblem
IGSk.

Step 7. Optimum solution found. The algorithm is stopped: a local minimum of
problem IGP has been found.

The implementation of this algorithm when it is specialized for networks gives rise to
the code PFNRN. More information about this algorithm and its implementation (for
U �U0 in Step 3, see (31)) can be found in [21].

4. IMPLEMENTATION

The algorithm that is implemented here has Algorithm 1 as an alternative Step 3 in Al-
gorithm 2. The implementation in Fortran-77, called PFNRN03, was designed mainly
to solve large-scale IGP type problems (see (7–10)) when these are nonlinear network
problems with nonlinear side constraints, given the existence of efficient algorithms to
solve this kind of problem when the side constraints are linear. It makes use of the net-
work structure to improve its efficiency, taking into account the specific procedures for
nonlinear networks flows [9, 31] and Murtagh and Saunders’s active set procedure using
a spanning tree as the basis matrix of the network constraints. PFNRN03 also exploits
the sparsity of the Jacobian and of the Hessian (as defined by the user).
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In this code, the user can set up the level of accuracy of the optimizer by means of
the parameter εopt , whose default value is 10�6. Note that �τ� εopt as �εk� 0
—i.e., an asymptotically exact minimization is used, as Bertsekas suggests in [2].

For Step 2 the user can also set up a level of feasibility accuracy for the side constraints
by giving a value to the parameter τ. This value is 10�5 by default. Also, the values of
ε0 and γ0 can be modified, ε0 � 0�01 and γ0 � 0�25 being the default (θ1 � 0�5�θ2 � 0�25
are fixed).

In Step 3, when it is performed by Algorithm 1, the values of the tolerances in the
activation and validation rules are τx � εopt , τµ � 0�1, and τnw1 � 1�0.

The last values have been chosen in order to have a sufficiently large amount of major
iterations where the superlinear-order estimation is used, it allows us to evaluate the
performance of this estimator. The initial multiplier estimate vector µ 0 is the null vector
by default, although it is worth using information on this vector when it is available,
given the substantial improvement that it may bring to bear on the convergence of the
algorithm, as was found by means of numerical experiments.

In Step 4 the default values are ρ0 � 0�1 and ξ � 2�0. These values can also be modi-
fied by the user. Likewise, γ � 0�9ξ, as Bertsekas suggests in [2]. Note that if �V k

j � �
1
γ̄ �V k�1

j �, ρ does not grow in the k-th iteration. Moreover, when the current µ k is suf-

ficiently close to µ� —i.e., 	µk�1 � µk	1 � η0�1� 	µk	1� for a small enough scalar
η0 (here η0 � 0�01)— ξ � 1, so ρk stops growing in order not to increase the ill-
conditioning at the end of the execution. In practice this rule is very stringent, hence
ρ is sufficiently large when it is true. This technique is used by MINOS 5.5 to reduce ρ
or to set it to zero, see [27].

Furthermore, by default, the constraints are initially multiplied by scale factors that
make the norm of ∇c j�x0� equal to 1, for j � 1� � � � �r. The user may eliminate this
scaling.

This implementation includes the two following choices with respect to Algorithm 1:

1. using this algorithm without changes, giving rise to the update US1

2. using the algorithmic alternative given in §2.4, giving rise to the update U S2.

In addition, with regard to the reduced Hessian Hk of the augmented Lagrangian func-
tion at xk three different choices have been considered:

(H) the exact reduced Hessian, if it is positive definite, or otherwise the positive definite
approximation achieved by means of the modified Cholesky method (see §4.4.2.2
in [12]);
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(D) an approximation by finite differences achieved from projected gradients as is put
forward in §2.6; and

(Q) a quasi-Newton approach by means of the BFGS update, using the first rule given
in §2.5 when the projection Jk of the Jacobian over the manifold defined by the
current nonbasic variables does not have full column rank. We must not forget
that BFGS update is only used when the number of superbasic variables s is not
greater than s (s � 500 by default). In this implementation the alternative method
to the BFGS is the Truncated Newton [8]), see §2.5.

In consequence, by combining the two type of updates (U S1 andUS2) and the above three
choices for the projected Hessian we have several updates that are different in practice,
and which are denoted by expressions such as US1H , US1D and US1Q, where these mean
that update US1 is calculated by using the alternatives H, D and Q respectively. The
same is true for update US2. If s � s when using US1Q, the alternative update is UO.
Nevertheless, for US2 it is not possible to compute US2Q because we do not have a quasi-
Newton approximation of the reduced Hessian of the Lagrangian function (whereas we
do have one of the augmented Lagrangian function).

In this package there are other parameters that can also be modified by means of a
specification file, see [20].

The code PFNRN03 and its user’s guide [20] can be accessed for academic purposes
via anonymous ftp at ftp-eio.upc.es in directory: pub/onl/codes /pfnrn.
(Comments, suggestions, or description of any trouble or abnormal situations experien-
ced when using it reported to mepmifee@lg.ehu.eswill be appreciated.)

Code PFNRN03 contains the solver PFNL for nonlinear network flow problems, which
is used in Step 1 (subproblem solution) of the Algorithm 2. Any other nonlinear network
flow code could have been employed instead.

5. COMPUTATIONAL TESTS

In order to evaluate the efficiency and robustness of code PFNRN03 a series of compu-
tational tests are performed, which consist of solving nonlinear network flow problems
with linear and nonlinear side constraints with this code in its various versions (depen-
ding on the kind of US) and comparing it with the results obtained when the multiplier
estimation is carried out by means of UO. All these tests were performed on a Sun Sparc
10/41 work station under UNIX.

Two types of problems are considered: real and artificial. The real problems solved are
of Short-Term Hydrothermal Coordination of Electricity Generation [21]. They corres-
pond to problems whose name starts with «P», and they have two-sided inequality
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nonlinear side constraints. The objective function in strongly nonlinear, with a high
computational cost.

Table 1. Test problems.

test arcs nodes s.c. j.e.n. a.s.c sb.a.

D12e2 1524 360 180 183 3 75
D13e2 1524 360 360 364 9 89
D14e2 1524 360 36 538 31 151
D15e2 1524 360 36 5387 4 107
D16e2 1524 360 36 96 20 83
D13n1 1524 360 360 364 38 681
D21e2 5420 1200 120 135 2 30
D22e2 5420 1200 600 656 13 46
D23e2 5420 1200 120 135 17 238
D31e1 4008 501 5 20 1 63
D32e1 4008 501 50 199 5 83
D31e2 4008 501 5 20 1 60
D32e2 4008 501 50 199 5 65
D41e2 12008 1501 15 182 9 172
D51e1 18000 3000 30 526 8 58
D52e1 18000 3000 150 27118 16 166
P4103 3591 1072 63 3071 10 17
P4101 3591 1072 63 3071 32 63
P4203 5187 1548 91 4443 10 17
P4201 5187 1548 91 4443 32 65
P4403 7581 2262 133 6501 10 20
L13e2 1524 360 360 363 7 67
L21e2 5420 1200 120 138 5 27
L32e2 4008 501 120 138 4 61
L52e1 18000 3000 30 527 10 57
XA48 2256 697 240 1915 145 265

The model that gives rise to the problem «xa» is presented in [16] as a single network
model for Hydrothermal Scheduling obtained by joining the hydrogeneration optimi-
zation network and a series of thermal subnetworks (one for each interval), all of them
with a common sink node. The objective function to be minimized is quadratic with
both equality and inequality linear side constraints.

Problems created from DIMACS random network generators [10] are used as artificial
problems: generators Rmfgen, Gridgen and Grid-on-Torus have been employed, linear
side constraints being created from the Di2no random generator [17], and they give
rise to the problems whose first letter is an «L». The nonlinear side constraints for the
DIMACS networks are generated through the Dirnl random generator described in [21],
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and they give rise to whose first letter is an «D». Several types of objective function
used to create problems with DIMACS networks. The last two letters in the problem
names starting with L or D indicate the type of objective function: «n1» functions are
of the Namur family used in [31] and «e1» and «e2» functions belong to the EI01
family, which was designed by Heredia in [17] (see also [21]) with a view to obtaining
problems with a moderate number of superbasic variables at the optimizer.

Table 1 shows the characteristics of the problems resulting from these models. The
names of the test problems are given in the test column. The arcs and nodes columns
give us, respectively, the number of arcs and nodes in the network, whilst s.c. and j.e.n.
give, respectively, the total number of the problem’s side constraints and the number
of non-null entries in their Jacobian. Finally, the a.s.c. and sb.a. give, respectively, the
number of side constraints that are active and the number of variables that are superbasic
at the optimum (superbasic variables with respect to the nonlinear network subproblem
that is solved in each major iteration of Algorithm 2).

Next there are two subsections dedicated to the computational results. In the first the
results for the various versions of US are compared with each other and with UO. The
second part provides only the efficiency evaluation of the quasi-Newton update U S1Q

with respect to the first-order update UO, though for a greater number of test problems
than in the first part.

5.1. Comparison of results

Each test problem was solved by using the five types of update US considered here. The
only aspect that is modified in each solution of any test problem is the type of update
US with which it is solved. The results have been grouped into two different tables, 2
and 3, as the multiplier update will be US1 or US2. Each table presents the results for the
three types of Hk (projected Hessian matrix of the augmented Lagrangian function, or
an approximation of it, in the k-th major iteration) that are used in this implementation
—i.e., H, D and Q, see §4— except for US2Q, given that the quasi-Newton approxima-
tion of the projected Hessian of the Lagrangian function is not available. The place of
this latter type of update in this table is occupied by the update UO, which is used as a
reference.

In each table, the name of the test problem is given under the heading «TEST»; the
columns «Mit», «mit» and «cpu» are used to give, respectively, the major iteration
number, the minor iteration number (total number of iterations used to solve the con-
secutive network subproblems IGS (25); see §3.1) and the CPU seconds spent by the
execution.
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Table 2. Results for update US1 and various Hk.

US1H US1D US1Q

TEST
Mit mit cpu Mit mit cpu Mit mit cpu

D12e2 18 890 27.4 18 890 21.0 14 790 14.4
D13e2 15 2028 45.7 15 2018 45.9 13 1938 30.9
D13n1 14 3652 5582.8 14 3660 750.5 (†)
D23e2 15 3124 344.9 15 3121 231.9 13 3194 161.7
D32e1 35 3802 265.8 35 3802 201.2 9 3951 116.5
D51e1 130 1277 6981.8 121 1285 594.9 8 1116 91.7
P4203 ��� 12 4038 428.5 10 3167 328.1
P4403 8 3934 722.2 12 5563 1022.4 9 4780 804.0
L13e2 (‡) (‡) 9 508 6.1
L21e2 42 1801 119.6 42 1801 76.9 10 1724 22.6
L32e2 (‡) (‡) 7 856 20.1
L52e1 6 4096 250.5 6 4096 222.5 6 4117 221.8

Table 3. Results for update US2 and various Hk, and UO.

UO US2H US2D

TEST
Mit mit cpu Mit mit cpu Mit mit cpu

D12e2 25 1184 15.6 18 869 22.5 18 869 17.6
D13e2 20 2497 36.3 15 2064 45.7 15 2052 38.3
D13n1 18 3869 478.3 14 3662 5581.7 14 3649 792.8
D23e2 33 4948 279.0 14 3103 306.6 14 3103 194.9
D32e1 28 5114 136.8 35 4437 280.0 35 4437 218.2
D51e1 12 1170 97.0 8 1099 202.2 8 1099 93.5
P4203 7 3071 303.0 6 2859 277.7 7 2895 291.3
P4403 7 3681 547.4 9 4331 716.3 8 4560 748.4
L13e2 16 537 6.4 8 506 6.7 8 506 5.7
L21e2 39 1848 24.2 14 1963 53.7 14 1963 40.4
L32e2 9 868 21.5 6 849 25.8 6 849 23.2
L52e1 6 4116 219.6 6 4116 252.1 6 4116 221.3

Table 2 shows the results for update US1 (which is directly derived from the Algorithm
1) with the three choices of the matrix Hk considered in §4. Note that the running times
of US1H are greater, in nearly all cases, than those of US1D, at the same time as the run-
ning times of US1D are greater than those of US1Q in all cases. The reason of this lies in
the definition of Hk and in the way in which this matrix is computed. If H is the authen-
tic reduced Hessian of the augmented Lagrangian one must compute the Hessian of the
augmented Lagrangian —∇2

xxLρ�x�µ�— and then its projection —Zt
A∇2

xxLρ�x�µ�ZA—,
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whereas if H is an approximation by finite differences achieved from projected gra-
dients as is put forward in §2.6, H is directly computed column by column. On the
other hand, if H is a quasi-Newton approximation (see §4), it is supplied together with
the solution of the subproblem.

In this table (†) means that problem «D13n1» cannot be solved by using a quasi-Newton
approach because in this problem the number of superbasic variables is almost 700, hig-
her than s (here 500), and when this happens the method used is the Truncated Newton
(see §4), which leads to this approximation being unavailable in problem «D13n1».
In addition, (‡) means that the execution stops at the end of a large number of ma-
jor iterations (e.g., in «L13e2» more than 480) since it does not succeed in improving
the current point, as a consequence of a bad updating of the multipliers, which can be
attributed to numerical stability difficulties in the solution of Step 4 in Algorithm 1. Ho-
wever, this trouble does not appear in the solution of the same problem by U S2, as can
be seen in Table 3, which confirms the greater numerical stability of the update U S2,
see the definition of US2 in §4. In «P4203» ��� means that the execution stops at the
end of 14 major iterations and 4533 minor iterations as a result of the bad convergence
caused by an inaccurate estimation of the multipliers. This in turn is a consequence of
the reasons given for (‡), together with the fact that, when using the modified Cholesky
factorization, the Frobenius norm of the modification of the projected Hessian used to
make it into positive definite is of the order of 10�3. However, Table 3 shows how the
results for this problem improve when US2 is used. In Table 3 the symbols (†), (‡) and
��� (if they appear) mean the same as in Table 2.

As is shown in Tables 2 and 3, and as is expected in theory, if we compare for each
problem the number of minor iterations when US is used, it is generally lower than
when UO is used, whereas, in contrast, the running times are higher. This last happens
because of the high computational cost of calculating the superlinear-order estimate
of the multiplier vector with regard to the low cost of using UO. Moreover, it could
happen that in Algorithm 1 condition Tnw0 would hold, but Tnw1 would not; then all the
computations carried out in this algorithm would have been wasted.

On the other hand, the estimation of the multipliers in problems «P4203» and «P4403»
is not very good because of the two following reasons: the projected Hessian of the
augmented Lagrangian function is indefinite in these problems and the aforementioned
issues of numerical stability (e.g., in «P4403» the Frobenius norm of the modification
matrix of the modified Cholesky factorization has occasional values of the order of 10 7).

The high number of major iterations in problem «D51e1» when it is solved by using
US1H and US1D is due to the active side constraints having —in some cases— a very low
activity, and matrix Hk being indefinite but almost positive semidefinite. Hence the mo-
dification matrix of the Cholesky factorization has a Frobenius norm higher than zero,
which yields numerical stability problems. However, these difficulties are not encoun-
tered when using US2H and US2D due to the reasons given above.
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An important effect noticed in many of these tests, and which occurs when using any
US superlinear-order update, is that although the initial conditions are the same, the fi-
nal value of the penalty parameter required for the convergence of the algorithm can
be much smaller than that obtained when using the first-order update; e.g., in problem
«D23e2», ρ� � 33554432 for UO and, however, ρ� � 40 for any US, the initial values
being always ρ0 � 10 and ξ � 2, see Algorithm 2 in §3.1. Hence, as a consequence of
performing the multiplier estimation with US updates, the ill-conditioning is reduced
when solving subproblem IGS (25) in each major iteration. This effect has two nume-
rical consequences: firstly, the algorithm converges faster when a US update is used,
reducing the number of minor iterations (as is shown in these tables); and secondly, the
execution with UO of some tests breaks down because of ill-conditioning, whereas with
US it finished succesfully.

Table 4. Comparison of efficiency with regard to UO.

TEST US1H US1D US1Q US2H US2D

D12e2 0.57 0.74 1.08 0.69 0.89
D13e2 0.79 0.79 1.17 0.79 0.95
D13n1 0.09 0.64 (†) 0.09 0.60
D23e2 0.81 1.20 1.73 0.91 1.43
D32e1 0.51 0.68 1.17 0.49 0.63
D51e1 0.01 0.16 1.06 0.48 1.04
P4203 ��� 0.71 0.92 1.09 1.04
P4403 0.76 0.54 0.68 0.76 0.73
L13e2 (‡) (‡) 1.05 0.96 1.12
L21e2 0.20 0.31 1.07 0.45 0.60
L32e2 (‡) (‡) 1.07 0.83 0.93
L52e1 0.88 0.97 0.99 0.87 0.99

In order to give a clearer idea of the efficiency of the different U S updates in comparison
with the update UO, Table 4 has been constructed (where the symbols (†), (‡) and ���
mean the same as in Table 2). For this same reason we have used bold type for all those
efficiency values that are one or greater than one, where each efficiency value (ev) is
given by the following ratio:

(38) ev�XY� �
CPU time using UO

CPU time using USXY
�

X being either 1 or 2, and Y being H, D or Q, excluding XY � 2Q for the reasons given
at the beginning of this section. Therefore, ev�XY �� 1�00 means that the efficiency of
USXY is at least as good as that of UO, and hence, the greater ev�XY �, the greater the
efficiency of USXY with respect to UO. Below each heading USXY we find the different
values of ev�XY � for each test problem.
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Since the interesting results for the update US1Q at Table 4, we compare in a more
detailed way the efficiency of this update with respect to the first-order update U O in the
following section, in order to decide whether it is worth using US1Q instead of UO.

5.2. Efficiency of the update US1QUS1QUS1Q regarding UOUOUO

Here we consider the results of Table 5, where the headings are the same as those used
in previous tables. The symbol (†) means that the execution was stopped due to ill-
conditioning, and (‡) means that since it is not possible to obtain a projected Jacobian
having full rank in any major iteration, update US1Q offers the same results as update
UO. The reason that this Jacobian matrix cannot be found is that some of the active
constraints have normals that are orthogonal to the subspace spanned by the columns of
matrix ZA —see (18)— in each major iteration.

Table 5. Efficiency of US1Q with regard to UO.

UO US1Q

TEST
Mit mit cpu Mit mit cpu

ev�1Q�

D12e2 25 1184 15.6 14 790 14.4 1.08
D13e2 20 2497 36.3 13 1938 30.9 1.17
D14e2 26 5485 147.5 20 4006 117.1 1.26
D15e2 (†) 19 1909 56.87 (†)
D16e2 850 3966 85.4 16 2345 39.0 2.19
D21e2 22 48669 1155.1 17 2238 40.1 28.81
D22e2 19 5306 119.5 (‡) (‡)
D23e2 33 4948 279.0 13 3194 161.7 1.73
D31e1 10 1253 29.1 7 1085 30.9 0.94
D32e1 28 5114 136.8 9 3951 116.5 1.17
D31e2 9 947 24.9 7 535 20.0 1.25
D32e2 (†) 17 3661 110.9 (†)
D41e2 32 2842 301.5 10 2143 265.2 1.14
D51e1 12 1170 97.0 8 1116 91.7 1.06
D52e1 10 8388 1258.5 11 8511 1362.9 0.92
P4103 10 2814 165.3 12 2852 177.6 0.93
P4101 8 23687 1520.3 10 21929 1355.3 1.12
P4203 7 3071 303.0 10 3167 328.1 0.92
P4201 7 22845 2159.7 8 22901 2161.1 1.00
P4403 7 3681 547.4 9 4780 804.0 0.68
L13e2 16 537 6.4 9 508 6.1 1.05
L21e2 39 1848 24.2 10 1724 22.6 1.07
L32e2 9 868 21.5 7 856 20.1 1.07
L52e1 6 4116 219.6 6 4117 221.8 0.99
XA48 175 1465 103.8 27 1296 89.5 1.16
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Note that except for the problems «D22e2» and «P4403», the efficiency of update U S1Q

is similar to or higher than that of UO, reaching an efficiency value of 28.81 for problem
«D21e2» and a value of 2.19 for problem «D16e2». The mean value of the computed
efficiencies excluding the highest and lowest values is 1.16. This is not very much lar-
ger than one, but we must consider it together with the higher robustness of U S1Q. As an
example of this, see the problems «D15e2» and «D32e2» in Table 5, in both cases the
execution was stopped due to ill-conditioning. In fact, for «D32e2» when this stopped
the penalty parameter value was 65538, whereas using US1Q the execution normally
finished with ρ�S � 4. Therefore, in the face of the classical difficulty of the augmented
Lagrangian techniques the US updates are a good alternative, in particular it is worth
taking update US1Q (rather than the first-order update UO) seriously into account when
using augmented Lagrangian techniques with large scale problems, specially with non-
linear networks with nonlinear side constraints.

6. CONCLUSIONS

In this paper the author has put forward techniques for implementing superlinear-order
multiplier estimations using the least computational effort.

The projected Jacobian may not have full rank —although it will at the optimum—
if the prediction of the active variables at the optimizer provided in the solution of
the augmented Lagrangian subproblem is not totally correct, because of the fact that
the current point is not sufficiently close to the optimum. Therefore, caution should be
exercised when computing the multiplier estimation either to ensure proximity to the
optimum or otherwise to avoid using a Newton method, as in this case we do not have
the help of the line search.

An algorithm is designed that allows us to solve nonlinear problems with linear cons-
traints, simple bounds, and two-sided nonlinear constraints, by combining superlinear
and first-order multiplier methods together with variable reduction techniques. This
procedure is particularly interesting in case that the linear constraints are flow conserva-
tion equations, as there exist efficient techniques to solve nonlinear network problems.

An implementation of the designed algorithm is put forward, which is specialized for
network problems and offers various choices for computing a superlinear-order multi-
plier estimation. As a result the code PFNRN03 is obtained.

The computational results confirm the quasi-Newton update as a better and more ro-
bust alternative than the first-order multiplier estimation to solve large-scale nonlinear
network problems with linear or nonlinear side constraints. In addition, we must take
into account that since the pure network constraints are the only constraints that are
explicitly maintained, whether or not the subproblem solved iteratively is a pure net-
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work subproblem only has a significant effect on the total CPU time, but not on the
comparison of the efficiency of the different kinds of superlinear-order multiplier esti-
mation used. Furthermore, from the computational tests it is also clear that the update
US2 has a greater numerical stability than US1 if we do not include the quasi-Newton
case. Another important practical result caused by performing the multiplier estimation
by means of superlinear-order updates is the reduction of the difficulties associated with
ill-conditioning, as they become unnecessary to increase the penalty parameter to the
same extent as when the first-order update is used, and this makes the first more robust
than the second.
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