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STATISTICAL PROCEDURES FOR SPATIAL POINT
PATTERN RECOGNITION

J. MATEU�

Spatial structures in the form of point patterns arise in many different con-
texts, and in most of them the key goal concerns the detection and recog-
nition of the underlying spatial pattern. Particularly interesting is the ca-
se of pattern analysis with replicated data in two or more experimental
groups. This paper compares design-based and model-based approaches
to the analysis of this kind of spatial data. Basic questions about pattern
detection concern estimating the properties of the underlying spatial point
process within each experimental group, and comparing the properties bet-
ween groups. The paper discusses how either approach can be implemen-
ted in the specific context of a single-factor replicated experiment and uses
simulations to show how the model-based approach can be more efficient
when the underlying model assumptions hold, but potentially misleading
otherwise.
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1. INTRODUCTION

For the single replicate point patterns which dominate the spatial point pattern literature
(Cressie (1993), Diggle (1983) and Ripley (1981)), there has been a strong emphasis on
fitting models to detect and recognize the spatial structures.

Given the wealth of opportunities for collecting replicated spatial point pattern data,
for example in clinical neuroanatomy, or in materials science, where replicate images
can easily be obtained using standard microscopical equipment, it is surprising that few
appropriate methods of analysis have been suggested. Design-based methods have been
suggested by Diggle et al. (1991), Wilson (1998), Wilson et al. (1998) and Baddeley et
al. (1985, 1993). The first of these presents a method, motivated by analysis of variance,
for the assessment of replicated spatial point patterns, allowing for a single replicate
from each individual of interest. The authors illustrate their method with an example of
two-dimensional replicated data from clinical neuroanatomy. The second extends the
methodology developed by Diggle et al. (1991), to allow for multiple replicates per
individual, and to incorporate more complex experimental set-ups. Again, the example
data is from clinical neuro-anatomy, but the data is three-dimensional. Baddeley et al.
(1993) present an alternative method, which is again motivated by analysis of variance,
but uses a ratio regression approach, and again allows for replication within individuals
as well as between individuals. In this paper, we review in detail the methods developed
by Wilson (1998).

In many applications such as biological or neuroanatomical applications, the points of
interest are the centres of cells, and it is a key point the modelling of cell centre po-
sitions. Figure 1 represents one such example, where each one of the 12 plots shows
the spatial positions (in form of a point in the square window) of pyramidal neurons
of the Cingulate Cortex of a particular selected individual. This data set was analyzed
by Diggle et al. (1991) and further information on the data can be found there. At one
extreme, the cell centres might be thought of as a hard-core process, with the hard-
core parameter being equal to the cell diameter. A pairwise interaction process (Ripley,
1977; Diggle et al., 1994) might be a more appropriate model for cell centre data;
this class of point process is described at length in Section 2. Broadly speaking, cells
are separated by a particular distance δ with a given probability, where small distan-
ces may be assigned small probability (a hard-core process of hard-core radius ρ is a
special case of this; the separation probability is 0 for distances less than ρ and 1 for
distances greater than ρ). Through this framework, the rigid regularity of the hard-core
process can be relaxed, presenting a more realistic description of cell centre behaviour.
There are various ways in which we could choose to fit models to the replicated spa-
tial point pattern data. Appropriate single replicate methods are reviewed by Diggle et
al. (1994). Our chosen approach is an extension of the maximum pseudo-likelihood
method.
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We have thus highlighted two contrasting approaches to the assessment of replicated
spatial point patterns, the design-based ANOVA approach and the model-based ma-
ximum pseudo-likelihood approach. Both methodologies are competent and useful at
detecting pattern structure though their practical performance is little known.
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Figure 1. Digitized pyramidal neuron positions.

In this paper, we compare and contrast the two approaches under a variety of expe-
rimental conditions. As part of the study, we investigate the effect of fitting various
pairwise interaction models to different kinds of replicated spatial point pattern data.
There are two questions which we seek in particular to answer:

� When the model specification is correct, is the model-based approach more powerful
than the design-based approach for a given set of data?

� When the model specification is incorrect, does the model-based procedure break
down, to give misleading results?
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In Section 2, we introduce formally the pairwise interaction process, and highlight the
classes of this process upon which we base this study. In Section 3, we review the
design-based ANOVA approaches of Diggle et al. (1991) and Wilson (1998). In Section
4, we review the maximum pseudo-likelihood method for replicated spatial data. Sec-
tion 5 defines the concept of Expected Significance Level used throught the simulation
study. Finally, in Section 6, we give the results of a simulation study which investigates
the above two questions.

2. PAIRWISE INTERACTION POINT PROCESSES

2.1. Theory setup

Assume we have observed a pattern of points X � �x i � A : i � 1� � � � �n� in a planar
region A. The xi are called events to distinguish them from generic points in x� A. Each
point process on A can be defined by a sequence of intensity functions λ n�x1�x2� � � � �xn�
which are measurable functions that do not depend on the order of the events. Then, the
point process will contain n events with probability pn,

(2.1) pn �

�
exp��ν�A�� if n � 0
exp��ν�A��

n!

�
An λn�x1�x2� � � � �xn�dx1 � � �dxn if n� 1

where ν�A� represents the Lebesgue measure of A and ∑∞
n�0 pn � 1 (Kelly & Ripley,

1976).

The joint density function for X ,

(2.2) f ��x1�x2� � � � �xn��n� �
exp��ν�A��

n!
λn�x1�x2� � � � �xn�

can be factored uniquely for n � 1�2� � � � as (Daley & Vere-Jones, 1988)

f ��x1�x2� � � � �xn��n� �
exp��ν�A��

αn!
exp

�
n

∑
i�1

g1�xi��
n

∑
i�1

∑
j�i

g12�xi�x j��

� � ��g12���n�x1�x2� � � � �xn��(2.3)

where α is the normalising constant which usually does not have a closed-form expres-
sion.

The likelihood (Janossy density) is given by

(2.4) l�x1�x2� � � � �xn� � n! f ��x1�x2� � � � �xn��n�

The point process defined by (2.3) and (2.4) is called Gibbs process. Adding a nearest-
neighbour condition to a Gibbs process we have a Markov process. The nearest-neighbour
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condition is usually defined in terms of the Euclidean distance. Two events x i and x j are
said to be neighbours if

��xi� x j
��� r, for some r � 0. A clique is defined to be a single

event or a set of events, all of which are neighbours of each other. By the Hammersley-
Clifford Theorem, g1�2�����k�xi1 �xi2 � � � � �xik� � 0 unless the events xi1 �xi2 � � � � �xik form a
clique. Then, the point process defined by (2.3) is Markov of range r. Markov point
processes were introduced by Ripley & Kelly (1977), whereas the concept of Gibbs
distributions has been used in statistical physics for a longer time (Preston, 1977). Sin-
ce the introduction of Markov point processes in spatial statistics attention has focussed
on the special case of pairwise interaction models in which each configuration of events
interacts only via pairs of points from this configuration. These provide a large variety
of complex patterns starting from simple potential functions which are interpretable as
attractive and/or repulsive forces acting among events. Pairwise interaction models are
simple exponential families and are widely used as they are very amenable to simulation
and iterative statistical methods.

For a pairwise interaction point process, X � of n events in a bounded region A, the joint
density (2.3) is of the form

(2.5) f �X� �C�1 βn

n!
exp

�
�

n

∑
i�1

∑
j�i

Φ
���xi� x j

�� ;θ
��

where C is a normalising constant depending on β and Φ� ����� denotes the Euclidean
distance, Φ is a potential function depending on a set of parameters θ and β is a pa-
rameter which determines the intensity of the process. Note that (2.5) is (2.3) with
g1�xi� � logβ, g12�xi�x j� � �Φ���� g12���k��� � 0 for k � 3 and C � α�exp��ν�A���
The function

(2.6) Un�X� �
n

∑
i�1

∑
j�i

Φ
���xi� x j

�� ;θ
�

is usually called total potential energy. Often, an interaction function is used instead of
the potential function,

(2.7) e�t� � exp��Φ�t��

Using (2.7), then (2.5) is usually represented as (Baddeley & Møller, 1989)

(2.8) f �X� � α∏
i

b�xi�∏
i� j

e�xi�x j�

where α stands for the normalising constant and b� e (the interaction function) are non-
negative measurable functions.

Note that restrictions on the form of the potential function are needed to ensure that
the normalising constant is finite. A sufficient condition is that Φ�t� � 0 for all t and
decreases as t increases.
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The resulting processes are called inhibitory and generate patterns with varying degrees
of spatial regularity according to the specific specification of the potential/interaction
function. They do not seem to be able to produce clustered patterns in sufficient variety.
The original clustering model of Strauss (Strauss, 1975) turned out (Kelly & Ripley,
1976) to be non-integrable for those parameter values such that Φ�t� � 0 for t � h,
where h � 0 is called the hard-core distance. Gates & Westcott (1986) showed that
partly-attractive potentials may violate a stability condition, implying that they produce
extremely clustered patterns with high probability. Also, simulations by Møller (1993)
suggest that the behaviour of the Strauss model with fixed n undergoes an abrupt tran-
sition from «Poisson-like» patterns to tightly clustered patterns rather than exhibiting
intermediate, moderately clustered patterns.

It is known that the distribution given by (2.5) coincides with the stationary distribu-
tion of a spatial birth-death process on A which provides one method for simulating
realisations of the point process so defined.

2.2. Models

Attention in this paper is focussed on three different parametric families of models,
each having a specific interaction function depending on a scalar parameter.

Our first model has interaction function

(2.9) e�t� �

�
1� �1� t2�θ2�2 if t � θ
1 if t � θ�

The interaction function is continuously differentiable with respect to t and θ defines the
range of interaction. This model was used by Diggle (1986) in a comparison between
approximate maximum likelihood and maximum pseudo-likelihood estimators for θ� It
was also used by Diggle et al. (1994) to compare several parametric estimation techni-
ques. Small values of θ are indicative of weak interaction whereas larger values indicate
strong interaction. This model will be called Diggle model throughout the paper.

The second model has interaction function

(2.10) e�t� � 1� exp

�
�

t2

θ2

�
�

It is called Very-Soft-Core (VSC) model and was used in Ogata & Tanemura (1984)
and Diggle et al. (1994). The range of interaction is infinite, i.e., e�t� � 1 for all finite
t. Again, small values of θ are indicative of weak interaction whereas larger values
indicate strong interaction.
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Finally, we have used a third model which is qualitatively different from the other first
two. It has interaction function

(2.11) e�t� �

�
t
θ if t � θ
1 if t � θ

and due to its lineal form will be called linear model. As with the Diggle model, the
interaction function is continuously differentiable with respect to t and θ defines the
range of interaction. Small values of θ are indicative of weak interaction whereas larger
values indicate strong interaction.

2.3. Simulation method

The spatial birth-and-death process provides the framework under which Ripley (1977,
1981) proposes to simulate a Markov point process on the bounded Borel set A 	 ℜ d

with n fixed. The method is related to Markov processes used in statistical mecha-
nics and surveyed originally by Hastings (1970). Other techniques such as Metropolis-
Hastings algorithms (Geyer & Møller, 1994; Møller, 1992) are clearly possible.

Consider a set of particles interacting according to a certain potential function, on a
square A with periodic boundary, i.e., A is identified with a torus. The algorithm is as
follows.

First, select n events from a uniform distribution on A and call this initial point pattern
Xn�0�. At step �t � 1�, delete systematically in turn one of the n events of X n�t� �
�x1�x2� � � � �xn�, say event xi, and let Xn�t�
�xi� denote the point pattern formed by
removing xi from Xn�t�. Let

(2.12) p�u;X n�t�
�xi�� �
f �Xn�t�
�xi� �u�
f �Xn�t�
�xi��

denote the conditional intensity at u � A given X n�t�
�xi�. Define

M � sup
u�A

p�u;Xn�t�
�xi���

Finally, select an event u from a uniform distribution on A and set X n�t �1� � �Xn�t�

�xi� �u� with probability p�u;X n�t�
�xi���M; otherwise, selection is repeated until a
qualifying u is found. This method ensures that samples taken every n steps have no
points in common. Ultimately, convergence to a Markov point process with likelihood
f ��� will occur. This algorithm is analogous to the Gibbs sampler on the spatial lattice
(Geman & Geman, 1984).

In the simulation study we simulate on a larger polygon ��0�5�1�5�� ��0�5�1�5� and
use a toroidal shift to make our point process compatible with the MPL method discus-
sed in Section 4. We then extract the central unit square from the polygon, and use this
part of the data for further analysis.
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3. A DESIGN-BASED APPROACH

A descriptor which makes use of the K-function (the reduced second moment measure
(Ripley, 1977, 1988) is suggested. For a stationary, isotropic, orderly point process, the
K-function may be defined as

(3.1) K�t� � 2πλ�2
� t

0
λ2�r�dr

where λ is the point process intensity (the expected number of events per unit area in
two dimensions, volume in three dimensions and so on), and λ 2�r� is the corresponding
second order intensity function. Heuristically, the K-function describes the expected
number of cells within a distance t of an arbitrarily chosen point of the process, and, as
such, provides a good indicator of regularity or clustering in a given point pattern.

Diggle et al. (1991) develop a method for investigating whether schizophrenic patients
suffer from some structural defect of the cerebral cortex. Specifically, the authors set out
to establish whether the brain of the schizophrenic demonstrates unusual arrangements
of neurons. A single, two dimensional neuronal cell pattern is obtained from each of
several schizophrenic, schizoaffective and control individuals.

The statistic defined by Diggle et al. (1991) assumes the simplest case scenario, namely
that there is a one-way experimental set-up, with g groups of replicated spatial data, and
within each of those g groups, each individual provides a single point pattern realisation.
Their proposed statistic is given by the following expression

(3.2) Dg �
g

∑
i�1

� t0

0

�
K̄1�2

i �t�� K̄1�2�t�
	2

dt�

where

(3.3) K̄i�t� �
∑mi

j�1 ni jK̂i j�t�

∑mi
j�1 ni j

and

(3.4) K̄�t� �
1
n

g

∑
i�1

niK̄i�t��

In addition, ni j is the number of points in the sampling window from individual j in
group i, ni � ∑mi

j�1 ni j and n � ∑g
i�1 ni. We see that K̄i�t� is the weighted mean K-

function in group i, and K̄�t� is the weighted mean K-function across all groups.

The statistic Dg is similar to a between-treatment sum of squares in an ordinary one
way analysis of variance, in that it compares group mean K-functions with the overall

36



mean K-function, in an attempt to quantify between group differences. This test statis-
tic in combination with a Monte-Carlo procedure is used to assess the significance of
between-group differences in the spatial patterns.

3.1. A new test statistic

In a further step, Wilson (1998) suggested a new test statistic for comparing groups of
spatial data, which is a modification of the Diggle et al. (1991) test statistic Dg.

To motivate the new test statistic, first recall a result from the analysis of variance litera-
ture. Suppose that we have a simple, one-way experiment, with observations y i1� � � � �yimi

in g groups (so that group i contains mi observations). Then under the assumption that

Var�yi j� �
σ2

ni j
�

it can be shown that the best estimate of the between-treatment sum of squares is given
by expression (3.5)

(3.5) BTSS �



g

∑
i�1

ni �ȳi� ȳ�2

�
�

where

(3.6) ȳi �
∑mi

j�1 ni jyi j

ni

and

(3.7) ȳ �
∑g

i�1 niȳi

n
�

with n � ∑g
i�1 ni. Returning to spatial point patterns, consider now an estimated K-

function from individual j in one of the groups i, K̂i j�t�, say. Fix t at a particular dis-
tance td , say. Then K̂i j�td� represents a single realised value. Furthermore, assume that
Var(K̂i j�td�) is proportional to 1/ni j, to reflect the fact that a K-function estimated from
a large number of points has a small variance, and vice-versa. The variance structure
here is identical to that defined above, and so we use this analysis of variance result as
the basis for a new statistic.

We define

K̄i�td� �
∑mi

j�1 ni jK̂i j�td�

ni
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and extend this to cover the range of values for t d

(3.8) K̄i�t� �
∑mi

j�1 ni jK̂i j�t�

ni
�

In a similar way, we define

(3.9) K̄�t� �
∑g

i�1 niK̄i�t�

n
�

where ni and n are defined as before.

This new test statistic is defined as follows

(3.10) Dg2 �
g

∑
i�1

� t0

0
w�t�ni �K̄i�t�� K̄�t��2 dt�

Note that, in addition to the new factor ni, the statistic does not have the square root
transformation, suggested by Diggle et al. (1991) as a variance-stabilising mechanism.
This has been replaced with a weighting function w�t�, which down-weights the varian-
ce of the K-function estimates at large t. We select an appropriate weighting function
by considering a spatially random patterns; the estimated K-function for each pattern
behaves like a Poisson random variable. This follows because the K-function looks at
count data within discs (in two dimensions). As the K-function itself is Poisson, then
by the definition of a Poisson distribution, the variance of K̂ is proportional to K.

Furthermore, for a spatially random process, K�t� � πt 2, i.e. K�t� ∝ t2. We therefore
select the reciprocal of t 2 as an appropriate weighting function (for one-dimensional
data we would use w�t� � 1�t, and for three-dimensional data we would use w�t� �
1�t3, by the same argument).

3.2. A Monte-Carlo procedure

We adopt the Monte-Carlo procedure suggested by Diggle et al. (1991) as a means
of assigning significance to observed values of the new test statistic. The procedure is
reproduced from Diggle et al. (1991).

Suppose we have a set of point process data, divided into three groups. Suppose also
that there are ri individuals in group i. We maintain the definitions of n i j and ni given
earlier.

� We begin by defining the residual K-function. This may be written as

R̂i j�t� � n
1
2
i j

�
K̂i j�t�� K̄i�t�



�
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� Using this definition, we can further obtain new functions K̂��t�, which we define as

K̂�
i j�t� � K̄�t��n

� 1
2

i j R̂�
i j�t��

where the R̂�
i j�t� are obtained by permuting at random, across groups, the residual

K-functions, so that R̂�
i j�t� is one of the residual K-functions, drawn at random and

without replacement.

� Recompute K̄�
i �t� and K̄��t� from this permutation sample, and compute the statistic

D�
g2.

� Repeat this procedure ns times, and each time obtain a new value for D�
g2.

� Rank each statistic from the original data amongst the ns statistics obtained from
the permutation test, and from the rank compute a p-value for each statistic. A large
statistic corresponds to a small p-value and vice-versa.

We thus have a test statistic and a method for assigning significance to observed values
from data sets. Several simulation studies in the thesis of Wilson (1998) demonstrate
the improved performance of Dg2 in comparison with Dg. Particularly, Dg2 detects dif-
ferences between groups of replicated spatial data which are not obvious from visual
inspection alone.

4. A MODEL-BASED APPROACH

4.1. Parameter estimation

In this paper we focus on the edge-corrected pseudo-likelihood estimation method as it
can be used routinely in applications and does not place artificial restrictions on the
parametric form of the potential function. Moreover, this method can be easily im-
plemented for the case where replicated spatial point pattern data is available. Other
general methods such as approximations to maximum likelihood require numerical or
Monte Carlo approximations to the normalising constant (Ogata & Tanemura, 1981,
1984, 1989; Penttinen, 1984) or recursive approximation methods (Moyeed & Bad-
deley, 1991). The Takacs-Fiksel method (Takacs, 1986; Fiksel, 1984, 1988) has been
proposed in literature but will not be explored further in this paper. For a more detailed
review see (Diggle et al., 1994; Ripley, 1988; Geyer & Thompson, 1992).

The pseudo-likelihood for Markov processes is defined (Besag, 1977; Jensen & Møller,
1991) by

(4.1) PL�θ�β;X� � exp

�
�

�
A

λ�u;X�du

� n

∏
i�1

λ�xi;X
i�
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where Xi �X��xi� and λ�u;X� represents the conditional intensity (Papangelou condi-
tional intensity, see Daley & Vere-Jones, 1988) of an event u, given the pattern X and is
defined by λ�u;X� � f �X��u��

f �X� � Usually, (4.1) is re-cast in terms of its logarithm. Maxi-

misation of (4.1) with respect to parameters θ�β yields the maximum pseudo-likelihood
estimators. The estimating equation for parameter β is (Besag, 1977)

(4.2) n � β
�

A
λ0�u;X�du

where λ0�u;X� is derived as (Diggle et al., 1994)

(4.3) λ�u;X� � βexp

�
�

n

∑
j�1

Φ
���u� x j

�� ;θ
��

� βλ0�u;X��

Then, the estimating function for parameter θ becomes

(4.4) PL�θ� �
n

∑
i�1

log
�

λ0�xi;Xi�
�
�n log

��
A

λ0�u;X�du

�
�

For inhibitory pairwise interaction models it is known that pseudo-likelihood estima-
tion is a special case of the Takacs-Fiksel method when the interaction radius is fixed
(Ripley, 1988; Diggle et al., 1994). The pseudo-likelihood equation (4.1) can be inter-
preted as the limit case of pseudo-likelihood for lattice processes (Besag, 1977; Besag
et al., 1982). For Markov processes of finite range, maximum pseudo-likelihood esti-
mators are consistent (Jensen & Møller, 1991). Asymptotic normality is considered in
Jensen (1993).

The extension to the replicated case is straightforward. Let PLi�θ�β;Xi� denote the
pseudo-likelihood equation (4.1) for the i-th pattern, i � 1� � � � �k, k denoting the number
of replicates. Then, the pooled pseudo-likelihood function for the replicated patterns is
given by

(4.5) PLp�θ�β;X p� �
k

∏
i�1

PLi�θ�β;Xi��

where X p denotes the whole set of point patterns and Xi stands for the i-th pattern. If
we use log PLp, then we sum up the k terms instead of multiplying them.

Usually, in applications, the region A is a sampled sub-region of a much larger region
within which the phenomenon of interest operates, and some form of edge-correction is
vital. We use here an adaptation of Ripley’s edge-correction (Ripley, 1977, 1988). See
also Diggle et al. (1994). The idea is to replace those summations of the form

∑
j�i

Φ
���xi� x j

�� ;θ
�
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appearing, for example, in the density function (2.5), by

1
2 ∑

j ��i

w�1
i j Φ

���xi� x j
�� ;θ

�

where wi j is the proportion of the circumference of the circle with centre x i and ra-
dius

��xi� x j
�� which is contained within A� This edge-correction compensates for the

omission of contributions to this total potential from unobserved events outside A�

4.2. A formal test: Testing for group differences

Let θ denote the interaction parameter in a pairwise interaction model. Then to test for
group differences for replicated data via the model-based or parametric method, we use
the following procedure:

� Fit a different θ to each one of the g groups and get the maximised value of the log-
pseudo-likelihood, PL1, where PL1 �∑g

j�1 PLp
j and PLp

j equals the maximised value
of the log-pseudo-likelihood of the j-th group.

� Pool all the data, ignoring groupings, and fit a common θ � to all the data. Obtain the
maximised value of the log-pseudo-likelihood, PL 0�

� Define a test statistic T � PL1�PL0�

To assess between-group spatial differences, we use the following Monte Carlo proce-
dure:

� Condition on the number of groups g, number of replicates per group r i and the
number of events per replicate ni j. Treat this latter as the expected number of events
per replicate. Simulate a new data set using these parameters and the estimate of the
pooled θ

�

from above as the interaction parameter for all replicates.

� Compute the test statistic using the method outlined above, and get a value for this
new data set.

� Repeat this procedure 99 times.

� Rank the test statistic from original data amongst these simulated test statistics, to
get a p-value. A high rank of the test statistic from original data is evidence against
the hypothesis of a common value of θ in all the groups.
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5. ASSIGNING SIGNIFICANCE TO OBSERVED TEST STATISTICS:
EXPECTED SIGNIFICANCE LEVEL (ESL)

Rather than carrying out a conventional power study to compare the performance of
the two approaches, we assess the performance of each approach using the concept
of Expected Significance Level (ESL), which was first introduced by Dempster and
Schatzoff (1965). The theory of power is based upon decision rules, that is, in some
sense arbitrary choices of cut-offs; for a test of size α, where α represents the probability
of a type I error, we select a value of power to be �1�β�, where β is the probability of
a type II error (so that the power represents the probability of detecting an effect given
that it exists).

The idea of ESL is more flexible than this; suppose that we have a test statistic T ,
and in a set of n simulations under the alternative hypothesis HA, we observe p-values
α1�α2� � � � �αn. In a classical power framework, we would estimate the power of the
statistic for a given level α� to be

�1�β� � 1�
�number of αi : αi � α��

n
�

This requires the (somewhat arbitrary) specification of α �. Instead, we could take the
ESL approach, and estimate the ESL by

ᾱ �
∑n

i�1 αi

n
�

Immediately we are preserving information about the observed significance levels whi-
ch is lost in conventional power summaries; in addition, there is scope to look at the
range and distribution of α i, and we make use of this in this paper. Formally, the ESL
is equivalent to a uniform weighting of power over �α : 0 � α � 1�.

6. COMPARISON BETWEEN THE STATISTICAL PROCEDURES

We develop a simulation study to quantify and compare the parametric model-based
and the non-parametric design-based approaches under different experimental circums-
tances. Consider several scenarios:

� Suppose we assume a certain pairwise interaction model for the data which is correct.
Then we would expect the model-based approach to be better at detecting group dif-
ferences than the design-based approach, as a consequence of the fact that we allow
ourselves to make more assumptions about the model which generates the data. We
must verify that the model-based approach gives smaller estimated Expected Signi-
ficance Levels than the design-based approach under comparable experimental cir-
cumstances.
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� Suppose instead that we assume a certain pairwise interaction model for the data whi-
ch is incorrect. Then we might expect the model-based procedure to give misleading
results; specifically,
� significance levels obtained from the model-based procedure may or may not be

wrong; to test whether this is the case, we must check that the distribution of the
observed p-values under the null hypothesis of no difference between groups is
Uniform on the range �0�1�.

� the parametric approach may or may not be better than the non-parametric ap-
proach in this situation. Again, we assess this by looking at Expected Significan-
ce Levels.

We must address these two questions separately, as the former requires simulations
of situations where the null hypothesis is false, namely where there are differences
between the groups, and the latter requires simulation of data from the null, where no
between-group differences exist.

6.1. Description of simulation procedures

The simulation study proceeds in the following way:

� Simulate some replicated spatial data from model A, where there are r 1 replicates in
group 1, r2 replicates in group 2, and n1 is the expected number of points per replicate
in group 1, n2 is the expected number of points per replicate in group 2. When we
address the first question of the model being correct, we set θ1 �� θ2, to allow us to see
whether the parametric model-based procedure is superior when a difference exists
between groups. When we address the issue of incorrect model specification, we set
θ1 � θ2, to allow us to investigate the behaviour of the parametric procedure under the
null hypothesis. (The non-parametric design-based procedure must perform correctly
under the null, as no modelling assumptions are required by definition, and so we do
not strictly need to test this).

� Perform the spatial ANOVA on the data. Obtain a p-value for the data.

� Propose a model B to fit the data, where B may or may not be the same as A, de-
pending on the set-up of interest. When we address the question of the model being
correct, the model specification matches that which generates the data; when we ad-
dress the incorrect model specification question, the opposite is true.

� Fit the model to the data. Obtain a test statistic via the MPL approach outlined above.

� Now simulate a new data set from model B, and fit model B to the data realization.
Obtain a test statistic. Repeat this 99 times. This constitutes the Monte Carlo proce-
dure.
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� Obtain a second p-value for the data.

� Repeat all of these steps many times to obtain two sets of p-values, one from the
design-based approach, and one from the model-based approach.

6.2. Fundamentals for the simulation study

We fix the number of groups as 2, the number of replicates per group as 10, and the
expected number of events per replicate, E�n�, as 30. Each replicate is fixed on a unit
square. We then simulate the observed number of events to be

(6.1) ni j 
 Poisson�30��

We select these numbers as a compromise between an ideal simulation set-up and feasi-
bility. If it were possible, we would simulate large numbers of replicates per group, and
would look at wide varieties of combinations of r, n and g. However, computing time
imposes certain constraints, and so we focus upon the above specific case. A simulation
study carried out in Wilson (1998) demonstrated that ten replicates per group in the two
group case is adecuate for the non-parametric procedure to give reliable results.

6.3. Case 1: Model is correct

We specify here the combinations of models A and B which are used in this case, in
combination with the values of r, n and g given in the previous Section:

Table 1. (a) Data model and (b) fitted model combinations when model is correct.

(a) (b)

Diggle Diggle

VSC VSC

Linear Linear

The parameter combinations for the three models we look at are given in Table 2. Note
at this stage that a parameter θ equal to 0.03, say, for the Diggle interaction process does
not have the same effect as a parameter θ equal to 0.03 for the very soft core interaction
process. We consider the same range of parameters principally for consistency across
models.
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We seek here to answer the following questions:

� When the discrepancy between θ1 and θ2 is large, in some sense, do both the model-
based and design-based procedure perform well?

� When the discrepancy between θ1 and θ2 is more subtle, is the model-based proce-
dure better at detecting the group difference?

Table 2. Data model and fitted model parameter combinations. * indicates that combination is
considered, - indicates that combination is not considered.

θ2

0.03 0.05 0.07 0.08 0.09
0.03 - - - - -
0.05 * - - - -

θ1 0.07 * * - - -
0.08 * * * - -
0.09 * * * * -

6.3.1. Results: Data = Diggle, Model = Diggle

We simulate the set-up described in Sections 6.1 and 6.2, for each pair �θ 1�θ2� in
turn. For each set-up, we estimate (a) the expected significance level for the parame-
tric model-based procedure, (b) the expected significance level for the non-parametric
design-based procedure, (c) the difference in expected significance levels for the two
procedures, (d) the standard error of this difference and (e) upper and lower 95% confi-
dence limits for the difference. The results for the Diggle data, Diggle model set-up are
summarised in Table 7.

There are several cases where the parametric procedure outperforms the non-parametric
(starred in the table). Moreover, in each of these cases, the absolute ESL for the parame-
tric procedure is much smaller than that for the non-parametric. Examining these cases
more closely, we see that four out of the five estimated ESLs for the parametric proce-
dure achieve significance at the 10% level, whereas only one in the non-parametric case
crosses the 10% boundary.

The initial suggestion from this, therefore, is two-fold:

� the model-based procedure is able to detect differences which are too subtle for the
design-based procedure to pick up;

� when the Diggle interaction model is correctly specified, the model-based procedure
performs appreciably better than the equivalent design-based procedure.
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Table 7. Data model (Diggle) and fitted model (Diggle) parameter combinations. L and U in-
dicate lower and upper 95% confidence limits respectively, on the difference in p-values from
the model-based and design-based procedures. � indicates a significant result in favour of the
model-based procedure. Each mean is obtained from 12 simulations.

θ1 θ2 E�p� E�np� E�p�np� SE�p�np� L U

0.03 0.05 0.1292 0.3633 �0.2342 0.0911 �0.4126 �0.0557�

0.03 0.07 0.0967 0.2425 �0.1458 0.0498 �0.2434 �0.0483�

0.03 0.08 0.0925 0.2150 �0.1225 0.0591 �0.2384 �0.0066�

0.03 0.09 0.0100 0.0892 �0.0792 0.0278 �0.1336 �0.0247�

0.05 0.07 0.3892 0.2641 0.1250 0.1147 �0.0998 0.3498

0.05 0.08 0.2350 0.3112 �0.0767 0.0865 �0.2462 0.0929

0.05 0.09 0.0667 0.1550 �0.0883 0.0398 �0.1664 �0.0102�

0.07 0.08 0.3675 0.5383 �0.1708 0.1173 �0.4008 0.0591

0.07 0.09 0.2500 0.2833 �0.0333 0.0569 �0.1448 0.0782

0.08 0.09 0.4533 0.5067 �0.0533 0.0863 �0.2224 0.1158

6.3.2. Results: Data = very soft core, Model = very soft core

We look to other pairwise interaction process models, to confirm that the results ob-
served in Section 6.3.1 are not an artefact of the Diggle process. First, we consider the
very soft core model described in Section 2.2. Equivalent simulations are performed,
and the results displayed in Table 8.

Table 8. Data model (VSC) and fitted model (VSC) parameter combinations. L and U indicate
lower and upper 95% confidence limits respectively, on the difference in p-values from the model-
based and design-based procedures. � indicates a significant result in favour of the model-based
procedure. Each mean is obtained from 12 simulations.

θ1 θ2 E�p� E�np� E�p�np� S�E��p�np� L U

0.03 0.05 0.1208 0.1942 �0.0733 0.0536 �0.1783 0.0317

0.03 0.07 0.0117 0.0200 �0.0083 0.0055 �0.0191 0.0024

0.03 0.08 0.0100 0.0117 �0.0017 0.0017 �0.0049 0.0016

0.03 0.09 0.0100 0.0100 0.0000 0.0000 0.0000 0.0000

0.05 0.07 0.1700 0.2342 �0.0642 0.0675 �0.1966 0.0682

0.05 0.08 0.1442 0.2633 �0.1192 0.0492 �0.2155 �0.0228�

0.05 0.09 0.0217 0.0533 �0.0316 0.0168 �0.0646 0.0012

0.07 0.08 0.3325 0.4575 �0.1250 0.0795 �0.2808 0.0308

0.07 0.09 0.2475 0.3650 �0.1175 0.0706 �0.2558 0.0208

0.08 0.09 0.3150 0.3292 �0.0147 0.0722 �0.1561 0.1268
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The absolute ESLs estimated for the design-based procedure are in general smaller than
they were for the Diggle model in the previous section. We suggest that this is because
the very soft core process has infinite range, whereas the Diggle interaction function is
1 beyond θ for any given θ.

6.3.3. Results: Data = Linear, Model = Linear

Again, we repeat the simulations, this time setting the data generating model and the fit-
ted model to have the linear interaction function defined in Section 2.2. Broadly similar
results are observed (see Table 9), namely that the parametric model-based procedure
gives lower ESLs than the non-parametric design-based, and the parametric procedure
detects differences at a reasonable level of significance when the non-parametric fails
to do so.

Table 9. Data model (Linear) and fitted model (Linear) parameter combinations. L and U indicate
lower and upper 95% confidence limits respectively, on the difference in p-values from the model-
based and design-based procedures. � indicates a significant result in favour of the model-based
procedure. Each mean is obtained from 12 simulations.

θ1 θ2 E�p� E�np� E�p�np� S�E��p�np� L U

0.03 0.05 0.3625 0.4208 �0.0583 0.1477 �0.3479 0.2312

0.03 0.07 0.1192 0.3225 �0.2033 0.0668 �0.3344 �0.0723�

0.03 0.08 0.0350 0.1067 �0.0717 0.0354 �0.1411 �0.0022�

0.03 0.09 0.0450 0.0700 �0.0250 0.0126 �0.0498 �0.0002�

0.05 0.07 0.2108 0.3892 �0.1783 0.0640 �0.3038 �0.0528�

0.05 0.08 0.0992 0.2083 �0.1092 0.0332 �0.1742 �0.0441�

0.05 0.09 0.1783 0.1983 �0.0200 0.0599 �0.1375 0.0975

0.07 0.08 0.4950 0.5342 �0.0392 0.0713 �0.1789 0.1006

0.07 0.09 0.5600 0.4800 0.0800 0.0873 �0.0911 0.2512

0.08 0.09 0.4120 0.4120 0.0000 0.0781 �0.1531 0.1531

6.3.4. Conclusions

We have thus shown that, under correct model specification, the parametric model-
based procedure outperforms the non-parametric ANOVA, for a variety of classes of
pairwise interaction process. There are situations where both procedures do equivalen-
tly well; however, when this is the case, the difference between the θ parameters in both
groups tends to be non-trivial. Similarly, as we might expect, there are also situations
where neither procedure detects a difference which exists; this is generally in cases
where the difference between θs is very small.

47



6.4. Case 2: Model is incorrect

The alternative question of interest concerns the relative performance of the two proce-
dures when the underlying model is mis-specified; specifically, does the model-based
procedure give misleading results under this case scenario?

We specify again the combinations of models A and B which are used in this case in
Table 3.

Table 3. (a) Data model and (b) fitted model combinations when model is incorrect.

(a) (b)

Diggle VSC

Linear VSC

VSC Linear

The parameter combinations we look at are given in Tables 4, 5 and 6.

6.4.1. Data Diggle, fitted model very soft core

We begin by looking at the results from the case where the data is simulated from a
Diggle model, and the very soft core model is fitted. The examined parameter values
are given in Table 4.

Table 4. Data model (Diggle) and fitted model (VSC) parameter combinations.

θ1 0.03 0.05 0.07 0.09 0.11

θ2 0.03 0.05 0.07 0.09 0.11

The plots in Figures 2.1 to 2.5 demonstrate no departure from Uniformity over the requi-
red �0�1� range, for either the parametric or non-parametric procedure. This indicates
that the correct result holds under the null hypothesis, when a very soft core model is
fitted to data with the Diggle potential function, with parameter 0.03, 0.05 or 0.07. We
suggest that the very soft core approximation is good as a consequence of the fact that
the interaction functions are somehow similar, in that they are both smooth, and one
can follow the shape of the other quite closely (viz. Figures 3.1 to 3.5).

We note, however, that for the case of θ � 0�09, the parametric model-based procedure
yields a marginally significant departure from Uniformity over the required range. Ho-
wever, the expected uniformity is once again observed for the case where θ � 0�11, and
so the departure in the θ � 0�09 may be spurious.
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Figure (2.1) θ1 � θ2 � 0�03. For parametric,

K-S = 0.135 (p � 0�4223); for non-parametric,

K-S = 0.165 (p� 0�2024).

Figure (2.2) θ1 � θ2 � 0�05. For parametric,

K-S = 0.100 (p � 0�6623); for non-parametric,

K-S = 0.140 (p� 0�5614).
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Figure (2.3) θ1 � θ2 � 0�07. For parametric,

K-S = 0.090 (p � 0�7793); for non-parametric,

K-S = 0.120 (p� 0�4338).

Figure (2.4) θ1 � θ2 � 0�09. For parametric,

K-S = 0.180 (p � 0�0688); for non-parametric,

K-S = 0.140 (p� 0�2561).
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Figure (2.5) θ1 � θ2 � 0�11. For parametric,

K-S = 0.100 (p � 0�6623); for non-parametric,

K-S = 0.180 (p� 0�0688).
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Figure 2. Observed versus Expected p-values under Ho, in the case where the data are simula-
ted from the Diggle model, and a very soft core model is fitted, with the parameters
indicated. In each case, «K-S» indicates the Kolmogorov-Smirnov test statistic (as-
sociated p-value in parentheses). (a) is the value in the model-based case, (b) in the
design-based.
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Figure (3.1) θ � 0�03. Figure (3.2) θ � 0�05.
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Figure (3.3) θ � 0�07. Figure (3.4) θ � 0�09.
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Figure (3.5) θ � 0�11.
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Figure 3. Interaction functions for true underlying process (Diggle potential with indicated pa-
rameter) and mean and range of fitted very soft core parameters, in each case from
repeated simulations.
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We conclude from this part of the study that the very soft core process provides a good
model for data which has an underlying Diggle potential function.

6.4.2. Data Linear, fitted model very soft core

To provide a contrast, we now look at how well the very soft core process can model
data for which the underlying interaction function is linear. We hypothesise that the
model-based procedure is more likely to break down here than in the Diggle/very soft
core case, as a consequence of the fact that the interaction functions are more dissimilar.

The parameter values we examine are given in Table 5.

Table 5. Data model (Linear) and fitted model (VSC) parameter combinations.

θ1 0.03 0.05 0.06 0.08 0.10 0.11 0.12 0.13 0.14

θ2 0.03 0.05 0.06 0.08 0.10 0.11 0.12 0.13 0.14

Again, we fix the ni j and ri. From repeated simulations of the experimental set-ups
described above, we obtain the sets of p-values and associated Kolmogorov-Smirnov
statistics illustrated in Figures 4.1 to 4.9.

The situation here is different in that, as suspected, the model-based procedure breaks
down for certain parameter values. For the smaller parameters, clear departures from
uniformity are demonstrated. As the parameters become larger, the p-values tend to-
wards uniformity, however; we suggest that this is because as the parameter gets larger,
the linear potential function becomes smoother in some sense, and so the very soft core
model is better equipped to approximate the linear in this case (viz. Figures 5.1 to 5.9).

6.4.3. Data Very Soft Core, fitted model Linear

We look at the opposite situation, namely where the data is from a very soft core model
and we attempt to fit a linear interaction function to it. The parameter values examined
are displayed in Table 6.

Table 6. Data model (VSC) and fitted model (Linear) parameter combinations.

θ1 0.10 0.11 0.12 0.13 0.14

θ2 0.10 0.11 0.12 0.13 0.14

We repeat the procedure, and obtain the p-values and associated Kolmogorov-Smirnov
statistics shown in Figures 6.1 to 6.5.
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Figure (4.1) θ1 � θ2 �

0�03. (a) K-S = 0.303
(p � 0�0024); (b) K-S =
0.094 (p� 0�8860).

Figure (4.2) θ1 � θ2 �

0�05. (a) K-S = 0.370
(p � 0�0238); (b) K-S =
0.223 (p� 0�3854).

Figure (4.3) θ1 � θ2 �

0�06. (a) K-S = 0.480
(p � 0�0122); (b) K-S =
0.290 (p� 0�3067).
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Figure (4.4) θ1 � θ2 �

0�08. (a) K-S = 0.273
(p � 0�0248); (b) K-S =
0.204 (p� 0�1678).

Figure (4.5) θ1 � θ2 �

0�10. (a) K-S = 0.270
(p � 0�0129); (b) K-S =
0.1964 (p� 0�1369).

Figure (4.6) θ1 � θ2 �

0�11. (a) K-S = 0.260
(p � 0�0281); (b) K-S =
0.090 (p� 0�9502).
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Figure (4.7) θ1 � θ2 �

0�12. (a) K-S = 0.120
(p � 0�4895); (b) K-S =
0.0948 (p� 0�7676).

Figure (4.8) θ1 � θ2 �

0�13. (a) K-S = 0.125
(p � 0�3394); (b) K-S =
0.147 (p� 0�1721).

Figure (4.9) θ1 � θ2 �

0�14. (a) K-S = 0.170
(p � 0�1262); (b) K-S =
0.092 (p� 0�7955).
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Figure 4. Observed versus Expected p-values under Ho, in the case where the data are simula-
ted from the Linear model, and a very soft core model is fitted, with the parameters
indicated. In each case, «K-S» indicates the Kolmogorov-Smirnov test statistic (as-
sociated p-value in parentheses). (a) is the value in the model-based case, (b) in the
design-based.
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Figure(5.1) θ� 0�03. Figure (5.2) θ� 0�05. Figure (5.3) θ� 0�06.
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Figure (5.4) θ� 0�08. Figure (5.5) θ� 0�10. Figure (5.6) θ� 0�11.
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Figure (5.7) θ� 0�12. Figure (5.8) θ� 0�13. Figure (5.9) θ� 0�14.
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Figure 5. Interaction functions for true underlying process (Linear potential with indicated pa-
rameter) and mean and range of fitted very soft core parameters, in each case from
repeated simulations.
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Figure (6.1) θ1 � θ2 � 0�10. (a) K-S = 0.333
(p� 0�1087); (b) K-S = 0.343 (p� 0�0912).

Figure (6.2) θ1 � θ2 � 0�11. (a) K-S = 0.1900
(p� 0�1741); (b) K-S = 0.141 (p� 0�5013).
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Figure (6.3) θ1 � θ2 � 0�12. (a) K-S = 0.340
(p� 0�0145); (b) K-S = 0.150 (p� 0�7045).

Figure (6.4) θ1 � θ2 � 0�13. (a) K-S = 0.237
(p� 0�0294); (b) K-S = 0.090 (p� 0�9073).
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Figure (6.5) θ1 � θ2 � 0�14. (a) K-S = 0.302
(p� 0�0366); (b) K-S = 0.1995 (p� 0�3284).
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Figure 6. Observed versus Expected p-values under Ho, in the case where the data are simula-
ted from the very soft core model, and a linear model is fitted, with the parameters
indicated. In each case, «K-S» indicates the Kolmogorov-Smirnov test statistic (as-
sociated p-value in parentheses). (a) is the value in the model-based case, (b) in the
design-based.
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Figure (7.1) θ � 0�10. Figure (7.2) θ � 0�11.
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Figure (7.3) θ � 0�12. Figure (7.4) θ � 0�13.

t

e(
t)

0.0 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True vsc int. fun
Estimated linear int. fun
min. linear estimate
max. linear estimate

t

e(
t)

0.0 0.05 0.10 0.15 0.20 0.25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

True vsc int. fun
Estimated linear int. fun
min. linear estimate
max. linear estimate

Figure (7.5) θ � 0�14.
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Figure 7. Interaction functions for true underlying process (Very soft core potential with indi-
cated parameter) and mean and range of fitted linear parameters, in each case from
repeated simulations.
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The results can be explained once again by the relationship between the interaction
functions in the two types of process. Now the parametric model-based procedure breaks
down for the larger parameters, for which clear departures from uniformity are again
demonstrated. Note again that as the parameter gets larger, the linear potential function
is no longer equipped to fit the very soft core model (viz. Figures 7.1 to 7.5).

6.4.4. Conclusions

When both the true and the assumed model were either VSC or Diggle model, the pa-
rametric test led to empirical distributions of p-values which were well fitted by the
uniform distribution on �0�1�; note that both models have differentiable interaction
functions. Significant departures from uniformity arose when the non-differentiable li-
near model was used to simulate the data but VSC model was assumed, and vice versa.
Note that the number of simulations contributing to Case 2 situation varied between 20
and 50 because of limitations on the available computing time; in general, simulations
of pairwise interaction point processes become time-consuming as the strength of the
interaction between points increases.

7. DISCUSSION

Pairwise interaction point processes are widely used as descriptive models for spatial
pattern recognition. Approximate likelihood-based methods of inference are available
for these models, but rely on computer-intensive Monte Carlo methods of inference.
Whether this matters in practice depends on practical constraints which vary between
applications, but it is a potentially limiting factor for data consisting of large numbers
of replicate patterns. There are many interesting areas, such as medicine, biology or
neuroanatomy, in which replicated point pattern data frequently arise. In this context,
individual patterns often consist of spatial point coordinates, where it is straightfor-
ward to obtain large numbers of such patterns by repeated sectioning, either within or
between experimental subjects.

In this study, we have confirmed our suspicion that the parametric model-based ap-
proach is more efficient at recognizing the spatial structure than an equivalent non-
parametric design-based approach under correct model specification. In addition, we
have ascertained that the performance of the parametric procedure under model mis-
specification depends upon the type of model being considered. Specifically, we have
determined that the pairwise interaction process with Diggle potential and that with
very soft core potential can generally model each other quite well. In contrast, neither
of these two models can be applied successfully to data with linear potential function,
and the reverse applies. In summary, when the model driving the data is unable to be
approximated, in some sense, by the model being fitted, the procedure appears to break
down.
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Diggle, P. J., Lange, N. & Beněs, F. (1991). «Analysis of variance for replicated spatial
point patterns in clinical neuroanatomy». Journal of the American Statistical Asso-
ciation, 86, 415, 618-625.

Diggle, P. J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. & Tanemura, M. (1994).
«On parameter estimation for pairwise interaction point processes». International
Statistical Review, 62, 99-117.

57



Fiksel, T. (1984). «Estimation of parametrized pair potentials of marked and non-marked
Gibbsian point processes». Elektron. Inform. Kybernet., 20, 270-278.

Fiksel, T. (1988). obrir Estimation of interaction potentials of Gibbsian point proces-
ses». Math. Operationsf. Statist. Ser. Statist., 19, 77-86.

Gates, D. J. & Westcott, M. (1986). «Clustering estimates for spatial point distributions
with unstable potentials». Ann. Inst. Statist. Math., 38, 123-135.

Geman, S. & Geman, D. (1984). «Stochastic relaxation, Gibbs distributions and the ba-
yesian restoration of images». IEEE Transactions on Pattern Analysis and Machine
Intelligence, 6, 721-741.

Geyer, C. J. & Thompson, E. A. (1992). «Constrained Monte Carlo maximum likeli-
hood for dependent data (with discussion)». Journal of the Royal Statistical Society,
B 54, 657-699.

Geyer, C. J. & Møller, J. (1994). «Simulation and likelihood inference for spatial point
processes». Scandinavian Journal of Statistics, 21, 359-373.

Hastings, W. K. (1970). «Monte Carlo sampling methods using Markov chains and their
applications». Biometrika, 57, 97-109.

Jensen, J. L. (1993). «Asymptotic normality of estimates in spatial point processes».
Scandinavian Journal of Statistics, 20, 97-109.

Jensen, J. L. & Møller, J. (1991). «Pseudolikelihood for exponential family models of
spatial point processes». Annals of Applied Probability, 1, 445-461.

Kelly, F. P. & Ripley, B. D. (1976). «On Strauss’ model for clustering». Biometrika, 63,
357-60.

Møller, J. (1992). «Discussion contribution». Journal of the Royal Statistical Society,
B 54, 692-693.

Møller, J. (1993). «Spatial point processes and Markov chain Monte Carlo methods».
Lecture at Conference on Stochastic Processes and their Applications, Amsterdam.

Moyeed, R. A. & Baddeley, A. J. (1991). «Stochastic approximation for the MLE of a
spatial point process». Scandinavian Journal of Statistics, 18, 39-50.

Ogata, Y. & Tanemura, M. (1981). «Estimation of interaction potentials of spatial point
patterns through the maximum likelihood procedure». Annals of the Institute of Sta-
tistical Mathematics, 33 B, 315-338.

Ogata, Y. & Tanemura, M. (1984). «Likelihood analysis of spatial point patterns». Jour-
nal of the Royal Statistical Society, B 46, 496-518.

Ogata, Y. & Tanemura, M. (1989). «Likelihood estimation of soft-core interaction po-
tentials for Gibbsian point patterns». Annals of the Institute of Statistical Mathema-
tics, 41 B, 583-600.

58



Penttinen, A. (1984). «Modelling interaction in spatial point patterns: parameter esti-
mation by the maximum likelihood method». Number 7 in Jyvaskyla Studies in
Computer Science, Economics and Statistics.

Preston, C. J. (1977). «Spatial birth-and-death processes». Bull. Inst. Intern. Statist., 46,
371-391.

Ripley, B. D. (1977). «Modelling spatial patterns (with Discussion)». Journal of Royal
Statistical Society, B 39, 172-212.

Ripley, B. D. (1981). Spatial Statistics. Wiley, New York.

Ripley, B. D. (1988). Statistical inference for spatial processes. Cambridge, Cambrid-
ge University Press.

Ripley, B. D. & Kelly, F. P. (1977). «Markov point processes». J. London Math. Soc.,
15, 188-192.

Strauss, D. J. (1975). «A model for clustering». Biometrika, 63, 467-475.

Takacs, R. (1986). «Estimator for the pair-potential of a Gibbsian point process». Math.
Operationsf. Statist. Ser. Statist., 17, 429-433.

Wilson, H. E. (1998). «Statistical analysis of replicated spatial point patterns». Unpu-
blished PhD. thesis, University of Lancaster, U.K.

Wilson, H. E., Diggle, P. J. and Howard, C. V. (1998). «Methods for the analysis of re-
plicated spatial point patterns in clinical neuroanatomy». Advances in Applied Pro-
bability, 30(2). Abstract in proceedings of 9th International Workshop in Stereo-
logy, Stochastic Geometry and Image Analysis, Comillas, October 1997.

59


