BOLSHEV'S METHOD OF CONFIDENCE LIMIT CONSTRUCTION

V. BAGDONAVIČIUS*
V. NIKOULINA**
M. NIKULIN ${ }^{\star}$

Confidence intervals and regions for the parameters of a distribution are constructed, following the method due to L.N. Bolshev. This construction method is illustrated with Poisson, exponential, Bernouilli, geometric, normal and other distributions depending on parameters.

Keywords: Confidence limits, interval estimates.

[^0]
1. REGIONS, INTERVALS, CONFIDENCE LIMITS

Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}}$ be a sample with realizations $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}, x \in X \subseteq R^{n}$. Suppose that X_{i} has a density $f(x ; \theta), \quad \theta=\left(\theta_{1}, \ldots, \theta_{k}\right)^{T} \in \Theta \subseteq R^{k}$, with respect to the Lebesgue measure,

$$
H_{0}: X_{i} \sim f(x ; \theta), \quad \theta=\left(\theta_{1}, \ldots, \theta_{k}\right)^{T} \in \Theta \subseteq R^{k}
$$

Let $b=b(\theta)$ be a function $b(\cdot): \Theta \Rightarrow B \subseteq R^{m}, B^{0}$ is the interior of B

Definition $1 A$ random set $C(\mathbb{X}), C(\mathbb{X}) \subseteq B \subseteq R^{m}$ is called the confidence region for $b=b(\theta)$ with the confidence level $\gamma(0.5<\gamma<1)$ if

$$
\inf _{\theta \in \Theta} P_{\theta}\{C(\mathbb{X}) \ni b(\theta)\}=\gamma
$$

This definition implies for all $\theta \in \Theta$

$$
P_{\theta}\{C(\mathbb{X}) \ni b(\theta)\} \geq \gamma
$$

In the case $b(\theta) \in B \subseteq R^{1}$ the confidence region is often an interval in R^{1},

$$
C(\mathbb{X})=] b_{i}(\mathbb{X}), b_{s}(\mathbb{X})\left[\subseteq B \subseteq R^{1}\right.
$$

and it is called the confidence interval with the confidence level γ for b. The statistics $b_{i}(\mathbb{X})$ and $b_{s}(\mathbb{X})$ are called the confidence limits of the confidence interval $C(\mathbb{X})$.

Definition 2 A statistic $b_{i}(\mathbb{X})\left(b_{s}(\mathbb{X})\right)$ is called the inferior (superior) confidence limit with the confidence level $\gamma_{1}\left(\gamma_{2}\right)$ (or inferior (superior) $\gamma_{1}\left(\gamma_{2}\right)$ - confidence limit briefly), if

$$
\inf _{\theta \in \Theta} P_{\theta}\left\{b_{i}(\mathbb{X})<b\right\}=\gamma_{1}\left(\inf _{\theta \in \Theta} P_{\theta}\left\{b_{s}(\mathbb{X})>b\right\}=\gamma_{2}\right), \quad 0.5<\gamma_{j}<1
$$

The $\gamma=1-\alpha$ confidence interval has the form $] b_{i}(\mathbb{X}), b_{s}(\mathbb{X})\left[\right.$, where $b_{i}(\mathbb{X})$ and $b_{s}(\mathbb{X})$ are the $\gamma_{1}=1-\alpha_{1}$ inferior and $\gamma_{2}=1-\alpha_{2}$ superior confidence limits, respectively, such that $\alpha_{1}+\alpha_{2}=\alpha,\left(0<\alpha_{i}<0.5\right)$. If $\alpha_{1}=\alpha_{2}$, then take $\gamma_{1}=\gamma_{2}=1-\alpha / 2$.

Definition 3 The intervals

$$
\left\{b_{i}(\mathbb{X}),+\infty\right\} \quad \text { and } \quad\left\{-\infty, b_{s}(\mathbb{X})\right\}
$$

are called the superior and inferior confidence intervals for b. Both intervals are unilateral.

2. THEOREM OF BOLSHEV

Lemma (Bolshev) Let $G(t)$ be the distribution function of the random variable T. Then for all $z \in[0,1]$

$$
\begin{equation*}
P\{G(T) \leq z\} \leq z \leq P\{G(T-0)<z\} . \tag{1}
\end{equation*}
$$

If T is continuous, then

$$
P\{G(T) \leq z\}=z, \quad 0 \leq z \leq 1
$$

Proof: First, we prove the inequality

$$
\begin{equation*}
P\{G(T) \leq z\} \leq z, \quad 0 \leq z \leq 1 \tag{2}
\end{equation*}
$$

If $z=1$, then $P\{G(T) \leq 1\} \leq 1$. Fix $z \in[0,1)$ and for this value of z consider the different cases.

1) There exists a solution y of the equation $G(y)=z$. Note

$$
y_{0}=\sup \{y: G(y)=z\}
$$

It can be:
a) $G\left(y_{0}\right)=z$. In this case

$$
P\{G(T) \leq z\} \leq P\left\{T \leq y_{0}\right\}=G\left(y_{0}\right)=z
$$

b) $G\left(y_{0}\right)>z$. Then

$$
P\{G(T) \leq z\} \leq P\left\{T<y_{0}\right\}=G\left(y_{0}-0\right) \leq z
$$

2) A solution of the equation $G(y)=z$ does not exist. In this case there exists y such that

$$
G(y)>z \quad \text { et } \quad G(y-0)<z
$$

so

$$
P\{G(T) \leq z\} \leq P\{T<y\}=G(y-0)<z
$$

The inequality (2) is proved.

We prove now the second inequality in (1) :

$$
\begin{equation*}
z \leq P\{G(T-0)<z\}, \quad 0 \leq z \leq 1 \tag{3}
\end{equation*}
$$

Consider the statistic $-T$. Its distribution function is

$$
G^{-}(y)=P\{-T \leq y\}=P\{T \geq-y\}=1-G(-y-0\} .
$$

Replacing

$$
T, z, G \quad \text { by } \quad-T, 1-z \quad \text { and } \quad G^{-}
$$

in the inequality (2) we have:

$$
P\left\{G^{-}(-T) \leq 1-z\right\} \leq 1-z, \quad 0 \leq z \leq 1
$$

This implies

$$
\begin{gathered}
P\{1-G(T-0) \leq 1-z\} \leq 1-z \\
P\{G(T-0) \geq z\} \leq 1-z \\
P\{G(T-0)<z\} \geq z, \quad 0 \leq z \leq 1
\end{gathered}
$$

If T is continuous, then $G(t-0)=G(t)$, and (2) and (3) imply $P\{G(T) \leq z\}=z$ for all $z \in[0,1]$.

The lemma is proved.

Theorem (Bolshev) Suppose that the random variable $T=T(\mathbb{X}, b), b \in B$, is such that its distribution function

$$
G(t ; b)=P_{\theta}\{T \leq t\}
$$

depends only on b for all $t \in R$ and the functions

$$
I(b ; x)=G(T(x, b)-0 ; b) \quad \text { and } \quad S(b ; x)=G(T(x, b) ; b)
$$

are decreasing and continuous in b for all fixed $x \in \mathcal{X}$. In this case $:$

1) the statistic $b_{i}(\mathbb{X})$ such that
(4) $\quad b_{i}=b_{i}(\mathbb{X})=\sup \{b: I(b ; \mathbb{X}) \geq \gamma, b \in B\}$, if this supremum exists,
or

$$
\begin{equation*}
b_{i}=b_{i}(\mathbb{X})=\inf B, \text { otherwise } \tag{5}
\end{equation*}
$$

is the inferior confidence limit for $b \in B^{0}$ with confidence level larger or equal to γ;
2) the statistic $b_{s}(\mathbb{X})$ such that
(6) $\quad b_{s}=b_{s}(\mathbb{X})=\inf \{b: S(b ; \mathbb{X}) \leq 1-\gamma, \quad b \in B\}, \quad$ if this infimum exists,
or

$$
\begin{equation*}
b_{s}=b_{s}(\mathbb{X})=\sup B, \text { otherwise } \tag{7}
\end{equation*}
$$

is the superior confidence limit for $b \in B^{0}$ with the confidence level larger or equal to γ;
3) if $x \in X$, is such that the functions $I(b ; x)$ and $S(b ; x)$ are strongly decreasing with respect to b, then $b_{i}(x)$ and $b_{s}(x)$ are the roots of the equations

$$
\begin{equation*}
I\left(b_{i}(x) ; x\right)=\gamma \quad \text { and } \quad S\left(b_{s}(x) ; x\right)=1-\gamma \tag{8}
\end{equation*}
$$

Proof: Denote $D=D(\mathbb{X})$ the event

$$
D=\{\text { there exists } \quad b \text { such that } \quad I(b ; \mathbb{X}) \geq \gamma\}
$$

Then for the true value $b \in B^{0}$ we have (using Bolshev's lemma)

$$
\begin{gathered}
P\left\{b_{i}<b\right\}=P\left\{\left(b_{i}<b\right) \bigcap D\right\}+P\left\{\left(b_{i}<b\right) \bigcap \bar{D}\right\}= \\
P\left\{\left(\left(s u p b^{*}: I\left(b^{*} ; \mathbb{X}\right) \geq \gamma, b^{*} \in B\right)<b\right) \bigcap D\right\}+P\{(\text { inf } B<b) \bigcap \bar{D}\}= \\
=P\{(I(b ; \mathbb{X})<\gamma) \bigcap D\}+P\{\bar{D}\} \geq P\{(I(b ; \mathbb{X})<\gamma) \bigcap D\}+P\{(I(b ; \mathbb{X})<\gamma) \bigcap \bar{D}\}= \\
=P\{I(b ; \mathbb{X})<\gamma\} \geq \gamma
\end{gathered}
$$

The theorem is proved.

Remark: Often, instead of the statistic T a sufficient statistic or some function of a sufficient statistic for a parameter b can be taken.

3. EXAMPLES

1. Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}}$ be a sample and suppose that X_{i} has a Poisson distribution with a parameter θ :

$$
\left.X_{i} \sim f(x ; \theta)=\frac{\theta^{x}}{x} e^{-\theta}, x \in X=\{0,1, \ldots\}, \theta \in \Theta=\right] 0, \infty[.
$$

Denote

$$
T=X_{1}+\ldots+X_{n}
$$

a) Show that the statistics

$$
\theta_{i}=\frac{1}{2 n} \chi_{1-\gamma_{1}}^{2}(2 T) \text { and } \theta_{s}=\frac{1}{2 n} \chi_{\gamma_{2}}^{2}(2 T+2)
$$

are the inferior and superior confidence limits for θ with confidence levels larger or equal to γ_{1} and γ_{2} respectively; $\chi_{\alpha}^{2}(n)$ denotes the α-quantile of a chi-square distribution with n degrees of freedom.
b) Find a confidence interval for θ with confidence level larger or equal to γ.

Solution. The sufficient statistic T follows the Poisson distribution with parameter $n \theta$. Then
$G(k ; \theta)=P_{\theta}\{T \leq k\}=\sum_{i=0}^{k} \frac{(n \theta)^{i}}{i!} e^{-n \theta}=P\left\{\chi_{2 k+1}^{2} \geq 2 n \theta\right\}=\mathcal{P}(2 n \theta, 2 k+2), k=0,1, \ldots$
and

$$
\begin{gathered}
G(k-0 ; \theta)=P_{\theta}\{T<k\}=\sum_{i=0}^{k-1} \frac{(n \theta)^{i}}{i!} e^{-n \theta}=\mathcal{P}(2 n \theta, 2 k), k=1,2, \ldots, \\
G(k-0 ; \theta)=0, k=0
\end{gathered}
$$

The functions I and S are

$$
\begin{gathered}
I(\theta ; \mathbb{X})= \begin{cases}\mathcal{P}(2 n \theta, 2 T), & \text { if } \mathbb{X} \neq 0 \\
0, & \text { if } \mathbb{X}=0\end{cases} \\
S(\theta ; \mathbb{X})=\mathcal{P}(2 n \theta, 2 T+2)
\end{gathered}
$$

The function S is strictly decreasing for all $T, T \geq 0$, and I is strictly decreasing for all $T \neq 0$. In these cases the theorem of Bolshev implies (see (8)):

$$
\mathcal{P}\left(2 n \theta_{i}, 2 T\right)=\gamma_{1} \quad \mathcal{P}\left(2 n \theta_{s}, 2 T+2\right)=1-\gamma_{2},
$$

from which it follows

$$
\begin{equation*}
\theta_{i}=\frac{1}{2 n} \chi_{1-\gamma_{1}}^{2}(2 T), \quad \theta_{s}=\frac{1}{2 n} \chi_{\gamma_{2}}^{2}(2 T+2) . \tag{9}
\end{equation*}
$$

If $T=0$ then $I(\theta ; \mathbb{X})=0$. There is no such θ that

$$
I(\theta ; \mathbb{X})=\gamma_{1}>\frac{1}{2}
$$

The formula (5) implies

$$
\left.\theta_{i}=\inf _{\theta>0} \theta=\inf \right] 0,+\infty[=0
$$

b) The interval $] \theta_{i}, \theta_{s}$ [is the confidence interval for θ with a confidence level larger or equal to $\gamma=1-\alpha$, if $\gamma_{1}=1-\alpha_{1}, \gamma_{2}=1-\alpha_{2}, \alpha_{1}+\alpha_{2}=\alpha$. If $\alpha_{1}=\alpha_{2}$, take $\gamma_{1}=\gamma_{2}=1-\alpha / 2$.
2. Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}}$ be a sample and suppose that X_{i} has an exponential distribution with mean $\theta, \theta>0$:

$$
\begin{equation*}
X_{i} \sim f(x ; \theta)=\frac{1}{\theta} \exp \left\{-\frac{x}{\theta}\right\} 1_{(x>0)} \tag{10}
\end{equation*}
$$

a) Find γ-confidence limits for θ.
b) Let $\mathbb{X}_{n}^{(r)}=\left(X_{(1)}, \ldots, X_{(r)}\right)^{\mathrm{T}}$ be a type II censored sample from the distribution (10).

Find a γ-confidence interval for θ and the survival function

$$
S(x ; \theta)=P_{\theta}\left\{X_{1}>x\right\}
$$

Solution. a). Denote

$$
T=X_{1}+\ldots+X_{n}
$$

The sufficient statistic T follows a gamma distribution $G\left(n ; \frac{1}{\theta}\right)$ with parameters n and $1 / \theta$:

$$
P\{T \leq t\}=\frac{1}{(n-1)!\theta^{n}} \int_{0}^{t} u^{n-1} e^{-u / \theta} d u, t \geq 0
$$

and hence T / θ follows the gamma distribution $G(n ; 1)$, and

$$
\frac{2 T}{\theta}=\chi_{2 n}^{2}
$$

In this example the functions I and S can be taken as

$$
I(\theta ; \mathbb{X})=S(\theta ; \mathbb{X})=1-\mathcal{P}\left(\frac{2 T}{\theta}, 2 n\right)
$$

These functions are decreasing in θ and the formula (8) implies

$$
1-\mathcal{P}\left(\frac{2 T}{\theta_{i}}, 2 n\right)=\gamma \quad \text { and } \quad 1-\mathcal{P}\left(\frac{2 T}{\theta_{s}}, 2 n\right)=1-\gamma
$$

from where we obtain

$$
\frac{2 T}{\theta_{i}}=\chi_{\gamma}^{2}(2 n) \quad \text { and } \quad \frac{2 T}{\theta_{s}}=\chi_{1-\gamma}^{2}(2 n)
$$

and hence

$$
\theta_{i}=\frac{2 T}{\chi_{\gamma}^{2}(2 n)} \quad \text { and } \quad \theta_{s}=\frac{2 T}{\chi_{1-\gamma}^{2}(2 n)}
$$

b) As it is well known the statistic

$$
T_{r}=\sum_{k-1}^{r} X_{(k)}+(n-r) X_{(r)}
$$

follows a gamma distribution $G\left(r ; \frac{1}{\theta}\right)$, and hence the $\gamma=1-\alpha$-confidence interval for θ is $] \theta_{i}, \theta_{s}[$, where

$$
\theta_{i}=\frac{2 T_{r}}{\chi_{1-\alpha / 2}^{2}(2 r)} \quad \text { and } \quad \theta_{s}=\frac{2 T_{r}}{\chi_{1-\alpha / 2}^{2}(2 r)}
$$

Since the survival function $S(x ; b)=e^{-x / \theta}, x>0$, is increasing in θ, we have the γ-confidence interval $] S_{i}, S_{S}[$ for $S(x ; \theta)$, where

$$
S_{i}=e^{-x / \theta_{i}} \quad \text { and } \quad S_{s}=e^{-x / \theta_{s}}
$$

3. Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{\mathrm{T}}$ be a sample from Bernoulli distribution with parameter θ :

$$
\left.X_{i} \sim f(x ; \theta)=\theta^{x}(1-\theta)^{1-x}, x \in X=\{0,1\}, \theta \in \Theta=\right] 0,1[.
$$

Find the limits of confidence for θ with the confidence levels larger or equal to γ_{1}.

Solution. It is clear that the sufficient statistic

$$
T=\sum_{i=1}^{n} X_{i}
$$

follows the binomial distribution $B(n, \theta)$ with parameters n and θ. Then

$$
\begin{gathered}
G(k ; \theta)=P_{\theta}\{T \leq k\}=\sum_{i=0}^{k}\binom{n}{i} \theta^{i}(1-\theta)^{n-i}= \\
I_{1-\theta}(n-k, k+1)=1-I_{\theta}(k+1, n-k), k=0,1, \ldots, n-1, \\
G(k ; \theta)=1, \text { if } k=n,
\end{gathered}
$$

where $I_{x}(a, b)$ is the beta distribution function with parameters a and b, and

$$
\begin{gathered}
G(k-0 ; \theta)=\sum_{i=0}^{k-1}\binom{n}{i} \theta^{i}(1-\theta)^{n-i}= \\
1-I_{\theta}(k, n-k+1), k=1,2, \ldots, n \\
G(k-0 ; \theta)=0, \text { if } k=0
\end{gathered}
$$

The functions I and S are

$$
\begin{aligned}
& I(\theta ; \mathbb{X})= \begin{cases}I_{1-\theta}(n-T+1, T), & \text { if } T \neq 0 \\
0, & \text { otherwise }\end{cases} \\
& S(\theta ; \mathbb{X})= \begin{cases}I_{1-\theta}(n-T, T+1), & \text { if } T \neq n \\
1, & \text { if } T=n\end{cases}
\end{aligned}
$$

We remark that $S(\theta ; \mathbb{X})$ is strictly decreasing in θ for $T \neq n$, and $I(\theta ; \mathbb{X})$ is strictly decreasing in θ for $T \neq 0$, and hence from the formula (8) it follows that

$$
I_{1-\theta_{i}}(n-T+1, T)=\gamma_{1} \quad \text { for } \quad T \neq 0
$$

and

$$
\begin{gathered}
\theta_{i}=0, \quad \text { if } \quad T=0 \\
I_{1-\theta_{s}}(n-T, T+1)=1-\gamma_{1} \quad \text { for } \quad T \neq n
\end{gathered}
$$

and

$$
\theta_{s}=1, \quad \text { if } \quad T=n
$$

Hence,

$$
\begin{gathered}
\theta_{i}= \begin{cases}1-x\left(\gamma_{1} ; n-T+1, T\right), & \text { if } T \neq 0 \\
0, & \text { if } T=0,\end{cases} \\
\theta_{s}= \begin{cases}1-x\left(1-\gamma_{1} ; n-T, T+1\right), & \text { if } T \neq n \\
1, & \text { if } T=n\end{cases}
\end{gathered}
$$

where $x\left(\gamma_{1} ; a, b\right)$ is the γ_{1}-quantile of the beta distribution with parameters a and b.
4. Let X be a discret random variable with the cumulative distribution function

$$
\left.F(x ; \theta)=P_{\theta}\{X \leq x\}=\left(1-\theta^{[x]}\right) 1_{] 0,+\infty[}(x), \quad x \in R^{1}, \quad \theta \in \Theta=\right] 0,1[.
$$

Find a γ-confidence interval for θ, if $X=1$.

Solution. In this case

$$
I(X ; \theta)=F(X-0 ; \theta) \quad \text { and } \quad S(X ; \theta)=F(X ; \theta)
$$

If $X=1$ then

$$
I(1 ; \theta)=F(1-0 ; \theta)=F(0 ; \theta)=0
$$

and according to the formula (5) we have that the inferior confidence limit θ_{i} for θ with confidence level larger or equal to γ_{1} is

$$
\left.\theta_{i}=\inf \theta=\inf \right] 0,1[=0
$$

If $\gamma_{1}=1$ then $P\left\{\theta_{i} \leq \theta\right\}=\gamma_{1}$, so $\theta_{i}=0$ is 1 -confidence inferior limit for θ. On the other hand the function

$$
S(1 ; \theta)=F(1 ; \theta)=1-\theta
$$

is decreasing in θ, and hence according to the formula (8) we have

$$
S\left(1 ; \theta_{s}\right)=1-\gamma_{2},
$$

from where $\theta_{s}=\gamma_{2}$, so the $\gamma_{1}=1$ and γ_{2} confidence limits for θ are 0 and γ_{2}, and a gamma-confidence interval for θ is $] 0, \gamma\left[\right.$, since for $\gamma_{1}=1$ the equality $\gamma=\gamma_{1}+\gamma_{2}-1$ is true when $\gamma_{2}=\gamma$.
5. Let X_{1} and X_{2} be two independent random variables,

$$
X_{i} \sim f(x ; \theta)=e^{-(x-\theta)} 1_{[\theta, \infty[}(x), \theta \in \Theta=R^{1} .
$$

Find the smallest γ-confidence interval for θ.

Solution. The likelihood function $L(\theta)$ for X_{1} and X_{2} is

$$
L(\theta)=\exp \left\{-\left(X_{1}+X_{2}-2 \theta\right)\right\} 1_{[\theta, \infty[}\left(X_{(1)}\right),
$$

from where it follows that $X_{(1)}=\min \left(X_{1}, X_{2}\right)$ is the minimal sufficient statistic for θ and $\hat{\theta}=X_{(1)}$ is the maximum of the function

$$
l(\theta)=\ln L(\theta)=\left(2 \theta-X_{1}-X_{2}\right) 1_{[\theta, \infty[}\left(X_{(1)}\right),
$$

which is increasing in θ on the interval] $-\infty, X_{(1)}$]. Since for any $x \geq 0$

$$
P_{\theta}\left\{X_{(1)}>x\right\}=P_{\theta}\left\{X_{1}>x, X_{2}>x\right\}=\left(\int_{x}^{\infty} e^{-(t-\theta)} d t\right)^{2}=e^{-2(x-\theta)}
$$

we have

$$
P_{\theta}\left\{X_{(1)} \leq x\right\}=G(x ; \theta)=\left(1-e^{-2(x-\theta)}\right) 1_{[\theta, \infty[}(x), \quad x \in R^{1} .
$$

In this example the functions $I\left(\theta ; X_{(1)}\right)$ and $S\left(\theta ; X_{(1)}\right)$ are

$$
I\left(\theta ; X_{(1)}\right)=S\left(\theta ; X_{(1)}\right)=G\left(X_{(1)} ; \theta\right)=1-e^{-2\left(X_{(1)}-\theta\right)}
$$

They are decreasing in θ and hence from the theorem of Bolshev we have

$$
1-e^{-2\left(X_{(1)}-\theta_{i}\right)}=\gamma_{1}, \quad \text { and } \quad 1-e^{-2\left(X_{(1)}-\theta_{s}\right)}=1-\gamma_{2}
$$

thus

$$
\theta_{i}=X_{(1)}+\frac{1}{2} \ln \left(1-\gamma_{1}\right), \quad \text { and } \quad \theta_{s}=X_{(1)}+\frac{1}{2} \ln \gamma_{2} .
$$

The interval $] \theta_{i}, \theta_{s}\left[\right.$ is the γ-confidence interval for θ if $\gamma=\gamma_{1}+\gamma_{2}-1$.
The length of this interval is

$$
\theta_{s}-\theta_{i}=\frac{1}{2}\left[\ln \gamma_{2}-\ln \left(1-\gamma_{1}\right)\right] .
$$

We have to find γ_{1} and γ_{2} such that $\gamma_{1}+\gamma_{2}=1+\gamma, 0.5<\gamma_{i} \leq 1(i=1,2)$ and the interval $] \theta_{i}, \theta_{s}$ [is the shortest. We consider $\theta_{s}-\theta_{i}$ as the function of γ_{2}. In this case

$$
\begin{gathered}
\left(\theta_{s}-\theta_{i}\right)^{\prime}=\frac{1}{2}\left[\ln \gamma_{2}-\ln \gamma_{2}-\gamma\right]^{\prime}= \\
\frac{1}{2}\left(\frac{1}{\gamma_{2}}-\frac{1}{\gamma_{2}-\gamma}\right)<0
\end{gathered}
$$

and hence $\theta_{s}-\theta_{i}$ is decreading in $\gamma_{2}\left(0.5<\gamma_{2} \leq 1\right)$ and the minimal value of $\theta_{s}-\theta_{i}$ occurs when $\gamma_{2}=1$ and $\gamma_{1}=1+\gamma-\gamma_{2}=\gamma$. Since in this case

$$
\theta_{i}=X_{(1)}+\frac{1}{2} \ln (1-\gamma) \quad \text { and } \quad \theta_{s}=X_{(1)}
$$

$$
\min \left(\theta_{s}-\theta_{i}\right)=-\frac{1}{2} \ln (1-\gamma)-\ln \sqrt{1-\gamma}
$$

6. Let X_{1} and X_{2} be two independent random variables uniformly distributed on $[\theta-1, \theta+1], \theta \in R^{1}$. Find the shortest γ-confidence interval for θ.
Solution. It is clear that $Y_{i}-\theta$ is uniformly distributed on [-1,1], from where it follows that the distribution of the random variable

$$
T=X_{1}+X_{2}-2 \theta=Y_{1}+Y_{2}
$$

does not depend on θ. It is easy to show that

$$
G(y)=P\{T \leq y\}= \begin{cases}0, & y \leq-2 \\ \frac{1}{8}(y+2)^{2}, & -2 \leq y \leq 0 \\ 1-\frac{(y-2)^{2}}{8}, & 0 \leq y \leq 2 \\ 1, & y \geq 2\end{cases}
$$

The function

$$
G(T)=G\left(X_{1}+X_{2}-2 \theta\right), \theta \in R^{1}
$$

is decreasing in θ. From (8) it follows that the inferior and the superior confidence limits with the confidence levels γ_{1} and γ_{2} correspondingly $\left(0.5<\gamma_{i} \leq 1\right)$ satisfy the equations

$$
G\left(X_{1}+X_{2}-2 \theta_{i}\right)=\gamma_{1} \quad \text { and } \quad G\left(X_{1}+X_{2}-2 \theta_{s}\right)=1-\gamma_{2},
$$

from where we find

$$
\theta_{i}=\frac{X_{1}+X_{2}}{2}-1+\sqrt{2\left(1-\gamma_{1}\right)} \quad \text { and } \quad \theta_{s}=\frac{X_{1}+X_{2}}{2}+1-\sqrt{2\left(1-\gamma_{2}\right)}
$$

It is easy to show that for given $\gamma=\gamma_{1}+\gamma_{2}-1$ the function

$$
\theta_{s}-\theta_{i}=2-\sqrt{2\left(1-\gamma_{1}\right)}-\sqrt{2\left(1-\gamma_{2}\right)}
$$

has its minimal value (considered as function of $\gamma_{1}, 0.5<\gamma_{1} \leq 1$) when

$$
\gamma_{1}=\frac{1+\gamma}{2}
$$

In this case $\gamma_{2}=\frac{1-\gamma}{2}$, so the shortest γ-confidence interval for θ is $] \theta_{i}, \theta_{s}$ [where

$$
\theta_{i}=\frac{X_{1}+X_{2}}{2}-1+\sqrt{1-\gamma} \quad \text { and } \quad \theta_{s}=\frac{X_{1}+X_{2}}{2}+1-\sqrt{1-\gamma}
$$

7. Suppose that T is the number of shots until the first success. Find the $\gamma=0.9$ confidence intervals for the probability p of success, if a). $T=1$; b). $T=4$; c). $T=10$.

Solution. The distribution of T is geometric :

$$
P\{T=k\}=p(1-p)^{k-1}, k=1,2, \ldots
$$

The values of the distribution function of T in the points k are

$$
G(k ; p)=\sum_{i=1}^{k} p(1-p)^{i-1}=1-(1-p)^{k-1}, k=1,2, \ldots
$$

The functions I ans S are

$$
I(p ; T)=1-(1-p)^{T-1}, \quad S(p ; T)=1-(1-p)^{T}
$$

The functions $I(p ; T)$ and $S(p ; T)$ are increasing in p if $T>1$ and $T \geq 1$, respectively. So they are decreasing in $q=1-p$.

It follows from the formula (8) that γ_{1} lower and upper confidence limits satisfy the equations

$$
\begin{gathered}
1-q_{i}^{T-1}=\gamma_{1} \quad \text { for } \quad T>1 \\
1-q_{s}^{T}=1-\gamma_{1} \quad \text { for } \quad T \geq 1
\end{gathered}
$$

So

$$
q_{i}=\left(1-\gamma_{1}\right)^{\frac{1}{T-T}} \quad \text { for } \quad T>1, q_{s}=\gamma_{1}^{\frac{1}{T}} \quad \text { for } \quad T \geq 1
$$

and

$$
p_{i}=1-q_{s}=1-\gamma_{1}^{\frac{1}{T}} \quad \text { for } \quad T \geq 1, p_{s}=1-q_{i}=1-\left(1-\gamma_{1}\right)^{\frac{1}{T-1}} \quad \text { for } \quad T>1 .
$$

If $T=1$, then $\left.q_{i}=\inf \right] 0,1\left[=0, p_{s}=1\right.$.
To find the $\gamma=1-\alpha=0.9$ confidence interval we take $\gamma_{1}=1-\alpha / 2=\frac{1+\gamma}{2}=0.95$.
So the $\gamma=0.9$ confidence interval for p is $\left(p_{i}, p_{s}\right)$, where

$$
\begin{gathered}
p_{i}=0.05, p_{s}=1 \quad \text { for } T=1, \\
p_{i}=1-0.95^{\frac{1}{4}}=0.01274, \quad p_{s}=1-0.05^{1 / 3}=0.6316 \text { for } T=4, \\
p_{i}=1-0.95^{\frac{1}{10}}=0.005116, \quad p_{s}=1-0.05^{1 / 9}=0.2831 \quad \text { for } T=10 .
\end{gathered}
$$

8. Let $\mathbb{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ be a sample and suppose that X_{i} has the normal distribution: $X_{i} \sim N\left(\mu, \sigma^{2}\right)$. Find a γ confidence interval for μ.

Solution. The sufficient statistic is $\left(\bar{X}, S^{2}\right)$

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Consider the statistic

$$
T(\mathbb{X}, \mu)=\frac{\sqrt{n}(\bar{X}-\mu)}{S}
$$

The random variable $T(\mathbb{X}, \mu)$ has the Student distribution with $n-1$ degrees of freedom and distribution function $F_{t_{n-1}}$. So

$$
I(\mu, \mathbb{X})=S(\mu, \mathbb{X})=F_{t_{n-1}}(T(\mathbb{X}, \mu))
$$

The functions I and S are decreasing with respect to μ, so by the theorem of Bolshev

$$
\begin{gathered}
F_{t_{n-1}}\left(T\left(\mathbb{X}, \mu_{i}\right)\right)=\gamma_{1}=\frac{1+\gamma}{2} \\
F_{t_{n-1}}\left(T\left(\mathbb{X}, \mu_{s}\right)\right)=1-\gamma_{1}=\frac{1-\gamma}{2}
\end{gathered}
$$

and

$$
\begin{aligned}
& \mu_{i}=\bar{X}-\frac{S}{\sqrt{n}} t_{n-1}\left(\frac{1+\gamma}{2}\right), \\
& \mu_{s}=\bar{X}+\frac{S}{\sqrt{n}} t_{n-1}\left(\frac{1+\gamma}{2}\right),
\end{aligned}
$$

where $t_{n-1}(\alpha)$ is the α-quantile of the Student distribution with $n-1$ degrees of freedom.

Confidence intervals for the variance, for the difference of two means, for the ratio of two variances, etc., can be obtained in a similar way.

REFERENCES

[1] Bolshev L.N. (1965) «On the construction of confidence limits». Theory of Prob. and its Applications, 10, 173-177.
[2] Bolshev L.N. (1987) Selected papers. Theory of probability and mathematical statistics. Moscow, Nauka. p. 286.
[3] Bolshev L.N., Smirnov N.V. (1983) Tables of mathematical statistics. Moscow, Nauka.

[^0]: * V. Bagdonavičius. University of Vilnius, Lithuania.
 **V. Nikoulina. University of Bordeaux-2, France.
 \star M. Nikulin. Steklov Mathematical Institute, St.Petersburg, Russia.
 - Article rebut el maig de 1997.
 - Acceptat l'octubre de 1997.

