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1. INTRODUCTION

It is well known that since the days of Sir Francis Galton (1886) theessjon
analysis has been used as an efficient tool of modelling the data. In the paptat em
yed mostly the least squares (Legendre (1805), Gauss (1809)) altttmuigtethod of
the least absolute deviations has been proposed much earlier ( Galilei,(B632p-
visch (1757), Laplace (1793)). During the past quarter of this cergudot of other
methods have appeared. Some of them produce in fact not a single estinnatioe b
whole family of model estimators, in which every estimator correspomdsine va-
lue of the (tuning) parameter(s). Everything will be clear from tHeftng example
considering the family of thél-estimators of regression model corresponding to the
family of Huber’s Y-functions,{Yk(2) }ke(o,) Where

z for |z] <Kk,
6y Uk(2) = {

k-signz) otherwise.

The family of estimators{[AB(“*)}ke(Qw) is then given by

Bk — Brgg; {ipk(Yi_XiTB)}

where pk(z) is a criterial function with the derivative equal t(z) (for Y’s and
X’s see (4) below). The value of the tuning constlm$ in applications selected on
the basis of experiences. We shall recall later (after introducing necessarnpmsjtat
Huber’s result which connects the optimal value of the tuning condtamith the
mixture parametee in the Huber model of contamination. We shall also see that
the «minimal» mixture parameteg corresponds (in one-to-one way) to the contami-
nation levelegF of data. It means that the optimal valkeof the tuning constant
depends on the contamination leeglr. Now, if we select the value df so that it
«underestimates the contamination lewele may obtain wrong model of data. On the
other handcoverestimating contamination lewdeads to a needless loss of efficiency.
Of course, a loss of efficiency is (typically) small and hence it is not i@y see
Visek (1993).

There is however another problem. It is known that some robust metbods
themselves on a (too) restricted part of data considerably weighting domde-
pressing completely) the influence of other part. Such behaviour may leevebs
especially for the methods with large breakdown point, i.e. for the ousttassu-
ming (extremely) high contamination level. So using methods desigretthdohigh
contamination level —as the least median of squares, the least trimmed squares o
minimal biased estimators— we may obtain somewhat (or completely) mistpadi
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estimate of model. Let us give (at least) one numerical example. First détalls
recall definitions of the estimators which will be used. Let us put

P _ n p+1
(2) r(B):Yi >(IB, |:1727"'7n h: P +|:—:|
®=¥ 5 xp 31+ [%
and Ietrﬁ:n)(ﬁ) be thei-th order statistics amongf(B),i = 1,2,...,n. Further, let us
recall that (withh given by (2))

n

argmianiz(B% pMS = argmirf, . (B),
BeRP S BeRP

QLS

®)

h

pLTS — argminZ

BERP j

i (B), B — argming pu(ri(R)

BERP

with p1 — Huber’s function (withpy(t) =t for |t| < ¢, Y1(t) = c-signt otherwise) and
p2 — Hampel’s function (withpa(t) = Py (t) for |t| < 1.2c, Yo(t) =[c— g(t —1.2c)]-
signt for 1.2c < |t| < 3c and zero otherwise; both with the tuning constanrt 1.2).
Finally, let

Bt = argminiri([&) and pTts = argmin’y’ rE(B)

BERP | BERP icTy

where Iy is the index-set of points obtained by the symmetric trimming acogrth
a-regression quantiles of Koenker and Bassett (1978) (valwewés 01).

Example. Demographic Data (49 cases, Chatterjee and Hadi (1988)). Dependence
of the gross national product per capita on: the infant death per tholisarurths,

the number of inhabitants per physician, the population pet, khe population per

10° ha of agricultural land, the percentage of literate population over 15 péaige,

the number of students enrolled in higher education pepbpulation. (The software
which was used for evaluation was either prepared by the experienced statisgians
Jaromir Antoch (1991, 1992), Roger Koenker (1978) or Alvio Maraz@pg), and

we are grateful of possibility to utilize it, or by our colleagues andas tested in an
extensive numerical studies, see e.g. Visek (1996 a,1997).)

(Value of a for TLSwas 0.1.) It is not even difficult to find artificial (one-
dimensional) data for whichhMS and LT S estimates are orthogonal each to other
and S-estimate divides the angel between them on two halves, see Visek (1994 a).
(An objection may appear that perhaps in the example with Demographic da&a so
regressors are insignificant. However, in the case of contaminated datagtisisnple
task to say which regressors are significant and which not —for more ardgsisem
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Visek (1996 ¢).) Similarly, rather diverse results may be obtainezhwising different
constantk when evaluatingvi-estimates.

Table 1. Demographic Data

Method LS LMS LTS TLS 1L Huber Hampel
intercept  112.885 331.095 103.563 480.509 148.732 33:4%96.586
Infant —3.621 —-2.774 —-1.526 —-6.764 —-3.964 —3.025 —2.029

Inhabitants ~ 0.009-0.017 0.005 —-0.013 0.032 0.015 0.032
Population ~ 0.186-1.024 0.009 —1.265 0.088—-0.052 0.242
Agriculture  0.003 0.072-0.001  0.085 —0.005 0.000 -—0.008
Literate 5566 2501 3.929 3.793 2.985 5.280 4.339
Higher 0.693 0.249 0.295 0.373 0.860 0.734 1.072

Table 2. Demographic Data - Huber’s estimator

Tuning constant 0.6 0.8 1.0 1.2 1.5 2.0
intercept 110.136 69.369 42.526 33.459 67.058 113.059
Infant —3.2564 -3.191 -3.144 -3.025 —-3.226 —-3.545
Inhabitants 0.013 0.016 0.017 0.015 0.013 0.009
Population 0.018 0.013 -0.015 -0.052 -0.106 -—0.165
Agriculture —0.002 -0.001 -0.001 0.000 0.001 0.003
Literate 4.002 4.422 4917 5.280 5.308 5.319
Higher 0.777 0.782 0.753 0.734 0.722 0.705

For other examples of such situations see Rutial. (1992) or Visek (1994 a),
(1994 b)).

So, one possible way how to begin any processing of data may be to estimat
the contamination level of them and then to apply that method (from thdyfami
question) which corresponds to the estimated contamination level. O$aotire
problem with the selection of an adequate robust method is a complicatbimpro
and we shall return to it briefly at the end of paper.

As we shall see later we will need for the estimation of the contaminagiosl |
to estimate the density of data. It is simple to do it directly when weehatvhand
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a sample of i.i.d. rwv.’s, e.g. in the location problem, but natyréllcannot be
applied directly on the response variable in the regression scheme. Ndesstlas
we shall see below some preliminary considerations will open a stfaigf#rd way
to a proposal of an estimator of contamination level in regression mautel, t

One may learn from the text given below that the estimation of the conédimim
level is analogous to the estimation of the mixture parameter (see RuRBi#)). The
difference is that in the case of the estimation of the contamination lesedavnot
specify the«contaminating distribution but only the<centrab model. Of course, it
implies that when we estimate the contamination level we may meet someoadditi
(technical) difficulties in comparison with the estimation of the migtparameter.
So, taking into account that when looking for an estimator of the méxparameter
we are rarely able to prove more than the consistency, we cannot expectrttiz fo
estimator of the contamination level we will be able to give more than gmpi®tic
results about its behavior.

The results are accompanied by a simulation study. The reasons fomthl@tsdn
study will be also discussed.

2. ESTIMATING CONTAMINATION LEVEL

LetN denote the set of all positive integeRsthe real line andRP the p—dimensional
Euclidian space. We shall consider the linear model

@) Y=X-p+e

where for everyn € N and some (fixjp € N we haveY = (Y1,Yz,... ,Y))T (aresponse
variable) X = (x;){Z1%" P (a design matrix)p® = (B%,pJ.... .BY)T (regression coef-
ficients) ande= (e, e, ... ,&,)" (random disturbances). We assume that the random
variables in the sequende };* ; are i.i.d. and they are defined on a probability space
(Q,B,P), and the carriers;j's are fix and known while® (the «true» value of the
vector of regression coefficients) is unknown but also fix. (Let us remar theit

in what follows all probabilistic assertions aa. s», «in probability» etc. will be
understood with respect t8.) Assume moreover that there iKa< o such that

5 su ma Xi| < K
®) ieij:l,Z,---,p| il
and
- 1 T
(6) lim =X'X=Q
n—o N

13



whereQ is a regular matrix. Sometimes we will use also an alternative notatien
(Xi1,X2,- - ,Xip) ", SO that the expressioq' B will stay instead of the sur[f’zlx;jﬁj.
Finally, letv be ac-finite measure defined dR, ‘B(R)) ( whereB(R) is the Borelo-
algebra) such that distribution functiénof e; is absolutely continuous with respect
to v, and then let us denote b¥, the set of all distribution functions which are
absolutely continuous with respectvo

In Huber (1964) the convex combination model
@) G(z2=(1-¢)F(2+€H(2

(e €1]0,1],F,H € #,) was used to describe the contamination of data. So, the first
idea how to define the contamination level may start with this model. Qs fi
immediately that for giveis the decomposition (7) is given uniquely only in the case

when
/ dF(2) >0
{z9(2~0}

whereg is density of the distribution functio® (with respect tov). Thene =1 and
H(z) = G(2). If however (7) holds for somee [0,1) then also for ang* € [,1] we
may write

G(z=(1-€)F(2+€"H" (2

where H*(z) = (¢*)"1{(¢* —€)F(2) +€H(2)} and we evidently havéi* € #,. It
hints that the following definition of the contamination level, fbetversion using
the densities, has to consider an essential minimum of possible valass @dsential
with respect to the measure(notice that for our case the result is same if we take
«ess ink with respect toF becausef is involved in the characterization e§ ).

Definition 1 For G and Fe %, we shall define the contamination level as a value
egr =inf{e:G(2) = (1-¢)F(2) +eH(2),H € }
or equivalently
egr=inf{e:v{z : g2 #(1-¢)f(2+eh(2} =0,He %}
where gf and h are again the densities of Eand of H with respect to, respectively.
Remark 1 The mixture
G(z2=(1-¢)F(20+€H(2
expresses the fact that the bulk of data, ¢peoper data, are distributed according

to F and some portion of data (this portion being considered as contanmipagio
distributed accordng tbl. The distributionH is not usually fully specified while the
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distribution functionF is selected (at least as a type of distribution) by the statistician
when processing data. So in other words, having at hand data, we assunteyhat t
were generated by some unkno@nnevertheless, we would like to describe them (or
explain them) byF. The reason for selecting the distributiBninstead of thectrue»
distributionG may be, e.g., the fact that the distribution functi®ns expected to be
too «wild» while the distribution functiorF is easy (or at least easier) to work with,
and at the same time being a reasonable approximation of the digiritiHowever

we are aware that it need not be precisely the distribution which has genérated
data, i.e. thaG # F, and hence we admit that there is a distributibrande > 0 so
thatG= (1-¢)F +¢€H. It means that we seleEtand hope that thetrue» distribution

of data lies in a neighborhood &f. -

Remark 2 In the last twenty years a lot of others contamination models have appeared
being based on different types of distances in the space of probability megsug.

on the Kolmogorov-Smirnov or Prokhorov metrics (see Huber ()9&h the combi-
nation of convex combinations and total variation (see Rieder (19772xalternating
capacities (see Huber, Strassen (1973)), or on divergences (see Vajda).(18@9)
believe that a straightforward generalization of the notion of containméagvel is
possible in any of these contamination models. We also believe thatébr gene-
ralization the modifications of the theory which will be presented belailbe also
straightforward (something has been already done for the locationgonokke Visek

(1989)). _

Lemma 1l (characterization of the contamination lev&r) Let G(z) and F(z) € 4.

Then
120w,
EGF = f2) {zf(2)>9(2)}

0

f(z) and gz) being again the densities of the distibution&Fand Gz) with respect
tov.

Proof: At first notice that

|10 s -

Z
T zf@>ga)

0

and the lower bound is attained only whefiz: f(z) #g(z)} = 0. Let us denote
by Ecr the set ofe’s for which (7) holds, and let € Egr. It implies that for some
densityh(z) we haveg(z) = (1—¢) f(2) +eh(z), and hencd (z) —g(z) <ef(z), i.e. >
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% for anyz € Rfor which f(z) > 0. Then of course > ||%I{zf(z)>g(z)}llm,

and hence alsegF > || f(zz(z?(z)I{Z;f(z)>g(z)}||oo.

On the other hand for ang > ||%I{Z:f(z)>g(z)}”oo, he(2) = 1[g(2) — (1
€)f(2)] is a density, and

9(z2) = (1—¢€)f(2) +ehe(2).

It means that € Zgr andegr < || f(zlz(;?(z)|{Z;f(z)>g(z)}||oo.

Remark 3 It follows from the proof of Lemma 1 that the infimum in Definitionid
attained so that we may write

G(2) = (1-ecF)F(2) +ecF Hegr (2)

for someHg . (z). It may be of interest that for a convex mixture of two normal
distribution, say

(8) (17€H)(2T[)7%8X[2(*§) +sH(2n)*%0*1exp(—2%2),
we obtain

(9) EGF =EH for o<1

and

(10) tor=(1-0Yey for o>1

Let us recall that Huber’s result (proved in 1964, under condition thatdbarithm

of the density of central model is concave) says that the optimal selectidmeof t
Wk-function (see (1)) in the case that the data were generated by the mibensey
(7) is given byk = k(en) wherek(en) satisfies

Ly [llER) 9(to(en)) +9(ta(en))
(11) (1—en) L/to(sm gt)dt+ o

whereti(en)’s are given by

Jlien) i
(12) mf( 1) -k(en), 1=0,1.

So an alternative notation for Huber’s family ¢ffunctions may be

(13) {Wk(e) bee(0.1)-
We shall need it in the discussion later.
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Now we need to estimaﬂe‘%I{Z:f(z)>g(z)}||m. Since the density(z) is known
(see Remark 1) it is necessary to estimate the degéily To be more precise, let
{Z(w)}_; be a sequence of i.i.d. random variables (defined on the probability space
(Q,B,P)). Assume that the corresponding distribution funct@(z) belongs to7,
and denote bygz(z) its density. We shall assume thgt(z) vanishes outside an
interval (c,d), —o < c < d < . Moreover, following Csdrgd and Révész (1981) and
Rosenblatt (1971), let us assume:

Conditions A The bounded integrable kernel:"/R — R vanishes outside an inter-
val (—a,a) with —co < —a< c< d < a< o for some a> 0. Moreover, it is twice con-
tinuously differentiable with bounded first derivativE @y, saysup,.g|W (z)] < L < o
and with(1+4 Z*)|w’(2)| also bounded. Finally, the kernel has a Fourier transfagtt)
with (1+t2) - @(t) integrable and is symmetric, i. e.(8y = w(—2).

Please notice that Conditions A imply that

(14) /j’ w(2)dz=0 (due to symmetry
and
(15) \/j’ 2.W(2)dz] < oo.

Let us writeZ' (w,n) = (Z1(w),Z2(w),. .. ,Zn(w)). Then define for ange R, we
Q the kernel estimator of density by

(16) (2. 2(01) = Lo 3 Wiy e ()

and in what follows we shall assume that the sequence of the bandvigitis ; \, 0.

For the simplicity we shall assume that in the rest of papés the Lebesgue
measure.

Lemma?2 (Csorgd, Révész). Let us denote
Th(9) = squlE@n(z,Z(w, n) —gz(2)|.
ze

Then

sup [n(Gn(z.Z(wN) — 02(2) ~Tn(2)| = O(c; log?n+nMa(g))  as.

ze(—a,a)
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wherel(2) is the following Gaussian process:

1 rt
an Mo(d = <= [ Kwmdw(cy (2 G71)

with K (v,n) being a suitable Kiefer process.

The proof is a specification of the proof of the Theorem 6.1.1 of @soRévéesz
(1981), page 223.

Lemma3 Let G(z) and F(z) belong to%,. Further, let{S,},_; be a family of sets,
Sh € B(R), such that

(18) Sz 1(2 >0}
and
(19) [;Q; f(z)]*lmax{rrn(g),nflcgllogzn, n~%c.}(log Iom)%} =o(1).
Then R
sup‘g”(z’z(w’ )o@l _ ol as.  an— o,
S f(2)

Proof: Let us denote b, = [infzs, f(2)]~1. Now from the Lemma 2 we have
for someA <

G(zZ(@n) 9@ (@
f(2) nf(z)

—AMn(Th(g) + ¢, ' Hog?n) <

< AMn(Th(9) + ¢, ' Hog®n).
Since the lower as well as the upper bound tends to zero it suffice to skadw th
IMn(2)]
20 su =0(1).
(20) S s? i) (1)

However, due to (17) we have

1
ClMn(2)] Sggg\?((z-, n)\/o dw(c,*(z— G H(v))) < A-sup K (z )|

zeR

where X (z,n) is again an appropriate Kiefer process. Now, due to (19) foreany
we may findng € N so that for anyn > ng

(log log n)%
up————<¢
S cpnzf(z)
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and we have

sup‘r () < Asupm(z’n)‘ < n*%sAsup\K(z,n)\(Iog Iogﬁ)*%.

€S nf(z) —cinzxr f(2 z€R

The proof of (20) then follows due to the law of iterated logarithm tiee Kiefer
process (see Corollary 1.15.1 of Csdrgd, Révész (1981)).

As we have mentioned above we need to estirt (’Z?(Z) lixf(2)>9(2)} |0 @nd let
us recall that

||%|{Zf(z)>g(z)}||w:inf{a : "({ f(2) @>a} }

A routine arguments yields that there di@) ang(z) such thav({f(2) # f(2)}) =
andv({g(2) # §(2)}) = 0, and

f(z) —9(2) ) —
l—7 iz o= sup ——F——
f(2) {zf(2>0(2)} e {e:7(0>0} f(2)

and so we may assume thiz) andg(z) are such versions of densities Bfz) and
of G(z) that

@ - :
— = 0 = Su _
=g tetesele= S0 T

Let us assue that we shall work in the rest of paper with such versionsnsitis.
Then from the previous lemma it follows that we may estin (’Z‘f’(z) Lzt (2)>g(2)} o
by

f(Z) B gn(znz(wv n))
21
(4 b N {7
due to the fact that
(2 -9(2) (2) = Gn(z,Z(w,n))
B SR 17 B @
(22) < supgn(z7z((’o= n)) — g(Z) _ 0(1) as. asn — o
€S f(Z)
(realize that we have assum&g " {z: f(z) > 0} ) and similarly
f(2) —Gn(zZ(0,n)) f(2 —9(2
by i@ cititpo @
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9(2) ~ Gn(z Z(wn)) (1) as  asn— oo,

23 < su =0
@) =Ty

But let us consider the case whg(z) = f(2), i.e. when there is no contamination.
Then, due to the random fluctuations @f(Z Z(w,n)), we obtain positive value at
(21) for everyw € Q. That is the reason why we shall not propose in the following
theorem the estimator @ ¢ as SUR.s, w but in a little modified form.
Theorem 1 Let G and F belong tgf,. Further Iet{ﬁn}oo ) be a sequence af/n-
n

consistent estimators @ and {Vh},_; sequence of sets,,\¢ B(R), fulfiling the
assumptions (18) and (19), and moreover let

(24) Linf £(2] " e Ba— Bl = 0p(1).

Finally, let { fa(z )}, be a sequence of random processes such that

(25) sup| fa(z w) — f(2)| = op(inf f(2))
z€Vh z€Vn
and put A
N . fa(z @) = Gn(zr(Bn)))
EGF = max{ 0,min {ZSEL\,I/E} @ ,1} }

where we have denoted for aflye RP by r(B) the vector of residualgY; — X[ B
Yo X3 B,...,Yn— XIB)T . Then

(26) EGF — €GF = op(1).

Proof: If we had known the true valuB® of the regression coefficients we may
evaluate theitheoreticad residualsy; — X %, Y2 — XJB0,... .Y, — XTB° and to plug
them into the kernel estimator of density and the (26) would havevieltbdirectly
from Lemma 1 and 3, and (22),(23) and (25). Nevertheless, due to thehtadior
anyze V, and anyw € Q (see (16) and (24))

Gn(2 1 (Bn) ~ Gz (B)] _ SURR W (D) -P?-K - [|B— B
f(2) - cn- f(2)

the (26) holds (foiK see (5)).

(27)

In the next theorems we shall give an example of ¢heantile processfy(z),
and some inequalities describing the asymptotic behavior of the estiroatthe
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contamination level. It will be clear from the proof of the inequalitibattthere is
a hope that they are reasonably tight, of course, asymptotically. It mbhahshe
difference between the limit value and the lower bound is small. To betalgeove
the assertions which were just mentioned, we shall need a result of Rats¢h871).
For the convenience of reader we are going to give it as a lemma.

Lemma4 (Rosenblatt (1971), p. 1828). Let Assumptions A be fulfilled lahé
density dz) be continuously differentiable and bounded away from zerdOofy.

Then if m# = O(cn) as n— oo, it follows that

Ch-Nn % N A
P{ max |22 gz 2(@n) - EgnzZ(0m)

1
<{2logc,'}? + Atv - ¢ — exp{—exp{-V}}
(2logcht)z
for n— o where G is the distribution function which corresponds to the dgnsi
9(z) and
y= / WA(9)ds

and

—IoB—% = 2. /w w(u+ s)du)

— 0%y T yoe

s=0

Remark 4 The basic idea of the proof of Rosenblatt's lemma is as follows. At,fir

the process
1

22 e zon) - Epezen)

yg(z) gn 9 s gn 9 s

is approximated by an appropriate Wiener process. Then an assertion about the
distribution of the supremum of Wiener process (Rosenblatt (19%&¥ ([Crameér,
Leadbetter (1967)) is applied. It implies that due to symm etry of Wienacgss we

have also

Ch-N % ~ ~
P{ Or;lzag)i |:yg(z):| {Egn(Z,Z((JO,n)—gn(Z,Z((JO,n))}

A+v

(28) < {2log cgl}% + } — exp{—exp{—V}}

(2log cat)?

for n— oo,
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Remark 5 Rosenblat’s result (28) is given in a somewhat unusual form. Moralusu
form would be such which describes convergences of distribution furstioe.
1
Ch-nj2
0<z<1

{(2I0901)2 max yg(z)} {EGn(z,Z(w,n) — Gn(z.Z(w,n))}

(29) ~2logcyt-A<vy — exp{—exp{-V}}

for n— oo,
O

There are two things which we have to cope with to be able to use Ragsnbl
result for our purposes. First of all, if we apply directly Rosenblagsult, there
would be an inconvenient presencegéﬂz) in the denominator of the above formula.
Another difficulty is that the normalized difference contalg,(z, Z(w,n)) and does
not give so adistance from g(z). Moreover, the difference betwe&tjn(z Z(w,n))
andg(z) is proportional to a power af, (unfortunately not to power af). A remedy
for the all difficulties is a transformation of data (in our case thedf@mation of
residuals). Let us assume that we have data,...,z, which are realization of a
sequence of i.i.d. random variables, distributed according to a distibfunction
(d.f.) G(z) and that we have selected some anotherkl(£) to explain them. The first
step will be to estimate the asymptotic distributiorégfe under the null hypothesis,
i.e. under the hypothesis thagr = O (realize that therG(z) = F(2)). Consider
instead 0fz1,2,...,z, the dataus, up,... ,u, such thaty; = F(z) fori=1,2,....n.
Then the densityf“(u) of the transformed data is equal to 1 over the intefQal]
(and zero elsewhere). Moreover, in what follows let us assume that we havedelect
Vj (for V,, see Theorem 1) so th&t(Vy,)i(h,,1—hy),hy = ¢y -a (for a see Conditions
A) where F (V) = {u:u=F(2),z€ Vy} and let us compute the mean value of the
kernel estimator for the transformed observatiois We obtain foru € F(Vy)

Eg;(u,U (w,n)) /{ ZWCn u—y))f(y)dy

(30) / w(s)f*(u—cps)ds=1

It means that the kernel estimator of thieansformed density for anyu € F(Vy) is
unbiased. Let us assume that we have transformed the residualsFygjngnd let
us apply (28) on the transformed values. We obtain:
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Theorem 2 Let Conditions A and the assumptions of Theorem 1 and of Lemma 4 be
fulfilled. For any pe (0,1) put V' = —log(—logp) and let

1
A 1,3 A+V*
(31) bn = <—> 2loge, "} P+ ————
" \cn { ") (2logent)2

Finally, let the density (z) be bounded and let,{z) = f(2)(1— bn-n*%). Then under
the assumption thadg r = 0 we have
(32) limsupP{€&cr =0} > p for n— o

n—>o

and
1 Ccnhn :2[
(33) IimsupP{ (2loge;t) 2 <%> EcF < vv*} > exp{—exp{—v}}
n — oo

for (v—v*)(2log cgl)*%[a"n]%] € (0,1).

Proof: First of all, let us say that in the proof some constants &a, ..., will be

used. Their definition will be assumed to hold only within the praae shall show
that the proof follows immediately from (29). Let us consider the gfarmation
u=F(z) and let us denote the density of the transformed random variab¢g (oy

and for anyB € RP put ry(B) = (ruz(B),ruw2(B),-- . ,run(B))", with

(34) rai(B) = F(Yi — X' B).

Further, notice that the level of contamination is invariant with respetttd transfor-
mation. It is clear either from the heuristic background or from thenfdrexpression.
Really, the contamination level represents the percentage of the obsesvatioong

the data) which are not distributed according to the central model. Softla i
transform data, theearlier central model is transformed into someews central
model (in our case uniform distribution ovig, 1]), and similarly, theccontaminating
distribution is transformed to som@&ew contaminating distribution. So the percen-
tage of «wrong» data is the same. On the other hand using the formal way, we
see that the values of the fractié@(’zﬁ are precisely the same as the values of

f(i”"Ff((‘fZ])V;%ﬂ;"F(”)) at the corresponding point= F(z). Multiplying by the Jacobian

of the transformation both the numerator and the denominator, we@tdochange the
value of the ratio. But then the density of the central model will becdmedensity
of the uniform distribution ovef0, 1] and the densityg(z) is transformed org*(u).
So we obtain for the contamination level an equivalent expression

sup {1-g'(u)}.

ue[0,1]
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Taking into account the specification &f(z) given in the theorem which reads for
the transformed residuals as

(35) fou(U) = 1—by-n2

we have for the estimator

(36) éGF—max{o,min{ sup {1—bnn%—g;(u,ru(ﬁn))},l}}

ueF(Vn)

where we have denoted the kernel density estimator based on the transfoesined
duals bygp(u,ru(Bn)). Let us recall that for the a generfake RP we have

Gn(u,ry(B Zw ey Hu—rui(B))).
Now we may write

limsupP(€gr = 0) = limsupP( sup {1 bnn~ 2 — Gn(u, ru( n))} <0)

n—>c n—>0  ueF(Vn)

= limsupP( sup {1 G;(u.ru(Bn)} < ban2)

n—>cw  yeF(Vn)

1
. can| 2 . ~ ! A+ V
= limsupP( [L} sup [1—gn(u,ru(Bn))] < (2log c, 1)% t 7
n—>e UeF (Vn) (2logcn )2
. -1 % Chn % Ak 0 Ak 0
= limsupP((2logc;*)? [=|  sup {EGy(u,ru(B”)) — Gn(u.ru(B)}
n—o Y 1 ueFw)

1 (2log ;1) [C—y”} i Sup 650 1uf) Gl < (209 &,1) +A+v)

1

> imsupP((2iog o) |2 manx (Egi(uru(B) - Gr(un(E®)

n—ow y UG[Ol]

+ (2log cgl)% [Ciyn} u?[(% 65 (u,ru(Bn)) — Gi(u,ru(B°)] < 2log ¢, t+ A+ V.

So we shall need to estimate the difference

Ch-N )
Y ue[O 1]

@7 (2oge { 65U ru(Bn) — 65(u.ru(B)
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Taking into account (34), we may write

G5 1 (Bo) — G0 ulB)) = i[ w(ca (U ra(Bn)) —wicy *(u—ru(B%))]
(38)
nchW ) [FY=XTB%) — F (Y- mn]—nq%Zw X" (Ba— )

whereg; € (Calmin{uf rui(Bn),u— rui(BO)} ,CalmaX{uf Fui(fn). u - fui(Bo)}) and
ni € (min{¥ = XT(Ba). i = X7 (8%}, max{¥ = XT (B). ¥ = XT(B%) } ). Now, the

expression (38) can be rewritten as

(39) 9%21 Hu=F(@)] fn)X" (Ba— )

@) =y Wie u—F (@) ()~ f(e)XT (B °
G 2

(@1) o (e u - F@) @)X (B 0°).

Taking into account that

W (¢ &) — W (e (u—F(&))] < ggg\w(zncale%nfsn— B,

and also the fact that we have assumed t/afi3, — B°|| = Op(1), we have

1
Ilepn]2 1
sup{ (2log ¢t Z[L} =
uelg{( J n) Y ncﬁ

5 3 N
<Ci-cn?n 2 (logc,t)?

n

> [W(&) Wiy u—F(@))] fn)X" (B )

}

whereC; is a positive (and finite) constant and hence the expression (39) converges
to zero amn — . Similarly

sup{(2logc 12 [c;n}

uer

12 _ -
ne W (e U= F@) 1)~ f(@)]XT (B )
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_5 1 1 1
<Cy-cn?n 2 (logc,*)?

where agairC; is a positive (and finite) constant and hence the expression (40) con-
verges also to zero as— . It remains to cope with supremum of the expression
(41) which may be bounded by

Sup{ i[V\/(Cnl(ZF(a)))f(a)

nzc uerR i=

(42) ~E{W(cy (u=F(@))f(@)}] X" (B—8°) }

(43)

1 1 0 -
+ surJ{E{W G (u—F(en) f(el)}{ﬂ2 ZNT} (Bnﬁo)}-
nch uer =
Taking into account once again th@(ﬁ||f3n —B%| = Op(1) and following Csodrgd and
Révész (1981), theorem 6.1.1, we find that the expression (42)dedefc,?n~t in

probability, and hence after multiplication by the facf@tog cgl)% [CLV”] ® we obtain

order of this expression equal qq3n*%logn- (log cgl)% . Now we may calculate
E{w (6 (U= Fle)) flen)} = [ (e (u=F(v) P(t)at

= /V\/ 2(invF (U—cps) )cnds = /V\/ 2(invF (u))chds— 2/\/\/ (Q)f'(Q)c2sds

where { is again an appropriately selected point. Taking into account (6), (14)
and (15), we come to the conclusion that the term in (43) (after mickipbn by

(log c,1)2 [C””] ) converges also to zero. So denoting

o= (2og ) [ 20" sup { gl - )] )

ueF(Vn)
using (29) and taking into account that = —log(—logp) we have

limsupP(€gr =0) =

n—>o

1

= limsupP((2log c;l)% [Clyn} ’ sup {EGi(u,ru(B%) — Gn(u,ru(B%))} + Kn

n—>o ueF (Vn)
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< 2log crt+ A+ V) — exp{—exp{—(V' +Kn)}} — p.

It concludes the proof of (32). Repeating the same steps we arrive at

n—o

1
2
IimsupP{(ZIog 1)z {Ciyn} €cF < VW}

> n"ﬂmP{(Zlog ) [ 2] max {Egn(wruBo) - GourucBo}

+Kn < 2log ¢, + A+ v} — exp{—exp{-Vv}}
which concludes the proof.
|
Remark 6 It follows from the proof of the previous theorem that the lower fibin

33) is tight.
(33) is tig .

Similarly for a sequence of local alternatives we may obtain:
Theorem 3 Let the assumptions of Theorem 2 be fulfilled. Put for agy@ 1) again
v* = —log(—log p) and let ky be given by (31). Finally, let,fz) = f(2)(1— bn-n*%)
and H(x) any distribution such thaty g # 0 and m[g:l)f] h(invF (u) < . Then for
ue(o,

any € € (0,1) and the sequence of the local alternati{@n(x)};_1,Gn(X) = (1—
sn*%)F(x) +sn*%H(x) we have

n—>co

1 3
limsupP { (2loge, 1) ? (Ciyn> (EGnF —€GnF) SV— \/*} < exp{—exp{—v}}

1

for (v—v*)(2loge; 1)~ 2 [C—y“] ’ € (0,0).

Proof: mimics the proof of Theorem 2. First of all, we shall make an idea about
€, F. Letagainf*(u), h*(u) andg*(u) denote the transformed densities. Taking into
account thatf*(u) = 1 andh*(u) > 0, we have

NI

€g,F= SUP 1-g'(u)<1-— 1+en2=en
ue[0,1]
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We will need also to estimatég;;(u, ru(ﬁn)). Similarly as in (30) we utilize the fact
that f*(u) = 1 but now we need also to employ the assumptionthat) is bounded.
Then we obtain

EGi(u,ru(Bn) — 1] < /

whereC; is a finte constant. Now we may write

Gn(u.ru(Br) — 1 (1= en2) +en 2h*(u)) du < Can 2

) 1
P{ (2loge, t)? (Clyn) ’ (EcnF — G, F) < V—W}

1
1 2
> P{ (2loge, t) 2 (Clyn> (E€gyF — EaoF) — 2l0g Cyt — A< v—Con 2 }

where agairC; is a finite constant and the assertion of the theorem follows.
[ |

3. SIMULATION STUDY

All results derived in the previous section are of the asymptotic tjyereover,
the results were obtained in the asymptotic framework in which severatreders
changed simultaneously. Except of the number of observations which indréas
infinity also the width of window, quantile process and the set oveichvkhe su-
premum had been taken, converged to the corresponding limits. Anybooyhadh
sometimes tried to use such results to approximate the correspondibgbiities
for the finite samples, has find out th&in adjustmentof the parameters (the width
of window, quantile process, etc.) needs some simulation studies.etboes we
may even meet with the standpoint that such asymptotic results shoultebgreted
only as a guarantee of the consistency (or coherence, if you want) of ouragppro
with the generakstructure of mathematies That is the reason why the behavior of
the statistics which was proposed above should be studied for the $snples by
simulations. In this section we shall offer a very first experience ircse when the
data are contaminated, i.e. fagr # 0.

For the numerical study we have simulated data in the following wayis@@ering
the regression model

Yi=2-X1+3-Xo2+4-X3z+8, i=12,...,30

we have generated 30 three-dimensional vectors uniformly distributed [0)10]
(used as the carried§ = (Xi1, X2, X3)", i =1,2,...,30) and 30 random numbers dis-
tributed according to the standard normal distribution (used as thisefre;, . .. ,e30).
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The normality was checked by chi-square and Kolmogorov-Smirnov testsngeco
nied by the test of skewness and of kurtosis (see Shapiro, Wilk (1.98B&n we have
randomly selected fronfig }3°; four numbers, sag,,e,,€,,e,, multiplied them by
4 (they have represented the contamination). According to the Remark 3 we hav
then

4 1

(44) sG,F = %(1_ Z) =0.1.

Then the least trimmed square (LTS) algorithm was used to estimate the coef
cients of the regression model, i.e.

h

BLTS — i 2

-1 = agg;npmi;r[m] (B)
wherer[zi:n]’s represent ordered squared residui8) = [Yi — y°_; x; B;]?, i.e. r[zl:n] <
r[zz:n] << r[zm], andh = 17 was selected to reach the maximal possible break-down
point of the estimator (see Rousseeuw,Leroy (1987)). Finally thairdd residuals
H(RLTS) =Y — Z?:J_ijﬁELTS, i =1,2,...,30 were transformed (see Theorem 2).
The whole procedure was 30 times repeated. In what follow&let ) denote the
estimate of the contamination level for tkegh sample.

In such a way set of 30 samples of transformed residuals with the contami-
nation level equal to .Q (see (44)) was obtained (each sample contained 30 resi-
duals). This collection of samples was used as a training set. As folloors f
(36) the value ofégr for any fix sample of data is a nonincreasing function of
bn, €c,(bn) : [0,00) — [0,1—minuep(vn)gn(u,ru(ﬁn))]. Since in our case we had
Minyer (v, Gn (U, ru(ﬁn)) < 0.9, it was possible to finths, so that

1 30
== Y (EeF(b3)k) =0.1
30 kzl

(see (44) once again). We have obtaifggl= 1.80049 (or in other words, we have
learnt that the quantile procedsoy (u) (see (35)) for this type of data, this kernel

etc. should be (approximately) equal to-bin~2 = 1— 1'?/%%47: 0.67128). The

results of estimating regression coefficients and of the values of theagssigg
(after assigning the value80049 tob,) have been collected in the Table 3.

130

% z (éG,F)k =01 v%\r(égvp) =0.02961
k=1
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Table 3. Results of estimation of regression coefficients and level of conttiorina
for the training set of samples

case B B2 Bs € F

1 1.878 3.116 4.027 0.0000

2 2.113 3.139 3.731 0.0000

3 1.898 3.028 4.100 0.1048

4 2.022 2.688 4.282 0.0073

5 2.172 2.837 4.046 0.1679

6 1.887 2.975 4.120 0.2185

7 2.086 3.154 3.796 0.0590

8 2.059 2.857 4.063 0.1817

9 1.924 3.090 4.009 0.0000
10 2.161 2.964 3.898 0.0000
11 2.003 3.129 3.896 0.0894
12 1.834 2.983 4.201 0.0000
13 1.936 2.893 4,150 0.2644
14 1.948 3.104 3.949 0.0000
15 2.297 3.016 3.766 0.1416
16 1.911 3.072 4.006 0.0967
17 1.836 3.087 4,110 0.0734
18 1.978 2.994 3.997 0.1159
19 2.007 2.871 4.174 0.1060
20 2.079 3.082 3.857 0.0000
21 2.075 2.856 4.039 0.3431
22 1.959 3.030 3.995 0.0555
23 1.945 3.082 4.017 0.1684
24 2.470 2.686 3.813 0.0835
25 1.969 3.091 3.973 0.0000
26 1.782 3.167 3.983 0.3292
27 1.910 3.134 3.980 0.0000
28 1.905 3.121 3.959 0.1230
29 1.871 2.941 4.183 0.0975
30 1.979 2.943 4.093 0.1882
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Table 4. Results of estimation of regression coefficients and level of conttiorina
for the testing set of samples

case B B2 Bs € F
1 2.092 3.012 3.972 0.1610
2 2.003 2.992 4.029 0.2534
23 2.054 2.972 3.982 0.0000
4 1.969 3.134 3.914 0.0000
45 1.959 3.008 3.999 0.1306
6 2.014 3.037 3.917 0.0000
67 2.013 2.919 4,043 0.0138
8 2.198 2.943 3.803 0.1033
9 1.858 2.916 4.207 0.1440
10 1.862 3.035 4.071 0.1477
11 1.851 3.177 4.007 0.0000
12 2.086 2.889 4.024 0.2434
13 1.959 2.993 4.062 0.1582
14 1.979 3.024 4.032 0.2457
15 2.042 2.728 4,200 0.0000
16 1.802 2.986 4,192 0.0791
17 2.240 2.815 3.937 0.0412
18 2.063 3.040 3.888 0.3725
19 1.915 2.921 4.241 0.0977
20 1.928 2.981 4.073 0.1879
21 1.719 3.103 4.174 0.0000
22 2.237 2.913 3.844 0.0000
23 1.914 3.034 4.033 0.1315
24 1.975 2.969 4.081 0.2305
25 1.976 3.049 3.951 0.0000
26 1.845 2.963 4,172 0.1968
27 2.114 3.005 3.888 0.0000
28 1.987 2.882 4,173 0.0742
29 1.952 3.162 3.863 0.0000
30 1.979 3.120 3.918 0.0000
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In the same way as the training set was prepared we have generated a testing set
consisting again 30 samples, each of them containing 30 observations. Again
were applied and the corresponding results of the estimation of regmessefficients
together with the results of estimation of contamination level of thieluets are given
in the Table 4.

130

35> (Bar)=0.10042  vafiar) = 0.03047
k=1

4. CONCLUSIONS

The paper brings a (theoretical) background for the selection of somgdiree
meters of the robust methods (of the linear regression analysis) vinatisg the
contamination level. As it was already discussed the asymptotic resudtg, be
except of the consistency of the estimator, have mainly a theoretical iampertof
some coherence of our approach with the general principles of mathematiaheFor
practical applications we should rely (mainly) on the results of a sitian studies.

In more details, we may procede as follows.
At first we estimate contamination level.

Of course, to be able to do it we need to adjust some value to the quanatiless,
to the width of window, to select appropriately the Sgtetc. It may be done on the
base of experiences with the data of the same or similar character, or usiresthts
of «reasonably organized simulation study. It is clear that the type of distributibn
the random errors is relevant, and so we have to employ our ideas abougtheteh
of these disturbances.

Secondly, we select théuning» parameter(s) of the corresponding family of robust
methods.

(As an example of such family may serve the family of Hubep<unctions
{Wke) tee(0,1), see (13).) Such selection may be performed either according to a
known formula, connecting the contamination level with ¢hening» parameter(s), or
by means of some theoretical tool of the type of efficiency rate or the locaiatefy.

Let us give an example.

After evaluating the estimatg; ¢ of the contamination levels ¢ we may calculate
the estimate&y of the appropriate Huber mixture parametgrby means of (9) or of
(10). Then using the relation (11) and (12) we assign the value dlitiieg constant
k(gn) for the Huber'sy-function .
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In the case of another type of robust procedure we may use e.g. the efficiency
rate and/or the local deficiency to select #taning» constant corresponding to the
estimated contamination level. An example of using the efficiency rate fosalee-
tion of propera for a-estimators is given in Rubio, Visek (1992). Let us be again
more explicit.

Let {Ta}ac(o,) be a family ofa-estimators of a parametér (For the simplicity
let us assume thdt is scalar.) Let us recall that thee-estimators are defined as the
minimal distance estimators minimizing tledivergence between the empirical d. f.
and a d.f. from a projection family of d.f.’s (see Vajda (1989)). higvevaluated the
efficiency rate ofTy in the corresponding model of contamination, we find the optimal
selection ofa for the estimated contamination lev&i r, saya(égr). (Let us recall
that the efficiency rate was defined in Rubio, Visek (1992) as the demvafithe
supremum of the (asymptotic) variances of the estimators; supremakeis over the
given model of contamination, usually over some neighborhood of aatentvdel;
derivative is evaluated with respect to the parameter of the family of estishato
our example derivative with respectdo Of course if an objective function would be
other than supremum of the variances, we should evaluate derivatives ditiation
in the model of contamination.) Then we use for the estimatiofi dfe estimator
Ta(zr) Which then minimizes the supremum of the asymptotic variances for given
contamination level.

We are aware that the selection of tuning constant on the basis of an estimate
contamination level is the selection within the limits of one type dinestors (e. g.
Huber’'s ones). Selection among different types of estimators shoulcadedbon
some general principles (e.g. homogeneity of residuals over factor spaceylsiee R
et al. (1993) or Rubio and Visek (1994), or subsample stability of ékBmates,
Visek (1996 b)), and/or on some model oriented rules (explicidyintulated by the
expert who has collected data (see ViSek (1995)).

The results of simulation study presented in Table 4 showed that theagss
of the contamination level are scattered quite near aroundttiie» value (see the
estimate of the variance of the estimator). It supports a hope thaprtosed
estimator of the contamination level may work well. On the other hand, dear
that the method belongs among computationally intensive ones.
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