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1. INTRODUCTION

It is well known that since the days of Sir Francis Galton (1886) the regression
analysis has been used as an efficient tool of modelling the data. In the past it emplo-
yed mostly the least squares (Legendre (1805), Gauss (1809)) althoughthe method of
the least absolute deviations has been proposed much earlier ( Galilei (1632), Bosco-
visch (1757), Laplace (1793)). During the past quarter of this centurya lot of other
methods have appeared. Some of them produce in fact not a single estimator but the
whole family of model estimators, in which every estimator corresponds to some va-
lue of the (tuning) parameter(s). Everything will be clear from the following example
considering the family of theM-estimators of regression model corresponding to the
family of Huber’sψ-functions,fψk(z)gk2(0;∞) where

ψk(z) =8<: z for jzj � k;
k �sign(z) otherwise.

(1)

The family of estimatorsfβ̂(n;k)gk2(0;∞) is then given by

β̂(n;k) = min
β2Rp

(
n

∑
i=1

ρk(Yi �XT
i β))

where ρk(z) is a criterial function with the derivative equal toψk(z) (for Y’s and
X’s see (4) below). The value of the tuning constantk is in applications selected on
the basis of experiences. We shall recall later (after introducing necessary notations)
Huber’s result which connects the optimal value of the tuning constantk with the
mixture parameterε in the Huber model of contamination. We shall also see that
the «minimal» mixture parameterε corresponds (in one-to-one way) to the contami-
nation levelεG;F of data. It means that the optimal valuek of the tuning constant
depends on the contamination levelεG;F . Now, if we select the value ofk so that it
«underestimates the contamination level» we may obtain wrong model of data. On the
other hand«overestimating contamination level» leads to a needless loss of efficiency.
Of course, a loss of efficiency is (typically) small and hence it is not important, see
Vı́šek (1993).

There is however another problem. It is known that some robust methodsfocus
themselves on a (too) restricted part of data considerably weighting down(or de-
pressing completely) the influence of other part. Such behaviour may be observed
especially for the methods with large breakdown point, i. e. for the methods assu-
ming (extremely) high contamination level. So using methods designed for the high
contamination level —as the least median of squares, the least trimmed squares or
minimal biased estimators— we may obtain somewhat (or completely) misleading
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estimate of model. Let us give (at least) one numerical example. First of all,let us
recall definitions of the estimators which will be used. Let us put

r i(β) =Yi � p

∑
j=1

Xi j β j ; i = 1;2; : : : ;n h= hn
2

i+� p+1
2

�
(2)

and letr2(i:n)(β) be thei-th order statistics amongr2
i (β); i = 1;2; : : : ;n. Further, let us

recall that (withh given by (2))

β̂LS = argmin
β2Rp

n

∑
i=1

r2
i (β); β̂LMS = argmin

β2Rp
r2(h:n)(β);

β̂LTS = argmin
β2Rp

h

∑
i=1

r2(i:n)(β); β̂(ρk) = argmin
β2Rp

n

∑
i=1

ρk(r i(β))(3)

with ρ1 – Huber’s function (withψ1(t) = t for jtj< c, ψ1(t) = c�signt otherwise) and
ρ2 – Hampel’s function (withψ2(t) = ψ1(t) for jtj< 1:2c, ψ2(t) = [c� 5

9(t�1:2c)] �
sign t for 1:2c< jtj< 3c and zero otherwise; both with the tuning constantc= 1:2).
Finally, let

β̂L1 = argmin
β2Rp

n

∑
i=1
jr i(β)j and β̂TLS = argmin

β2Rp
∑
i2Iα

r2
i (β)

whereIα is the index-set of points obtained by the symmetric trimming according to
α-regression quantiles of Koenker and Bassett (1978) (value ofα was 0:1).

Example. Demographic Data (49 cases, Chatterjee and Hadi (1988)). Dependence
of the gross national product per capita on: the infant death per thousandlive births,
the number of inhabitants per physician, the population per km2, the population per
103 ha of agricultural land, the percentage of literate population over 15 yearsof age,
the number of students enrolled in higher education per 105 population. (The software
which was used for evaluation was either prepared by the experienced statisticiansas
Jaromı́r Antoch (1991, 1992), Roger Koenker (1978) or Alvio Marazzi (1992), and
we are grateful of possibility to utilize it, or by our colleagues and itwas tested in an
extensive numerical studies, see e. g. Vı́šek (1996 a,1997).)

(Value of α for TLS was 0.1.) It is not even difficult to find artificial (one-
dimensional) data for whichLMS and LTS estimates are orthogonal each to other
and S-estimate divides the angel between them on two halves, see Vı́šek (1994a).
(An objection may appear that perhaps in the example with Demographic data some
regressors are insignificant. However, in the case of contaminated data, it isnot simple
task to say which regressors are significant and which not —for more arguments see
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Vı́šek (1996 c).) Similarly, rather diverse results may be obtained when using different
constantsk when evaluatingM-estimates.

Table 1. Demographic Data

Method LS LMS LTS TLS L1 Huber Hampel

intercept 112.885 331.095 103.563 480.509 148.732 33.459�146.586

Infant �3.621 �2.774 �1.526 �6.764 �3.964 �3.025 �2.029

Inhabitants 0.009�0.017 0.005 �0.013 0.032 0.015 0.032

Population 0.186�1.024 0.009 �1.265 0.088�0.052 0.242

Agriculture 0.003 0.072�0.001 0.085 �0.005 0.000 �0.008

Literate 5.566 2.501 3.929 3.793 2.985 5.280 4.339

Higher 0.693 0.249 0.295 0.373 0.860 0.734 1.072

Table 2. Demographic Data - Huber’s estimator

Tuning constant 0.6 0.8 1.0 1.2 1.5 2.0

intercept 110.136 69.369 42.526 33.459 67.058 113.059

Infant �3.254 �3.191 �3.144 �3.025 �3.226 �3.545

Inhabitants 0.013 0.016 0.017 0.015 0.013 0.009

Population 0.018 0.013 �0.015 �0.052 �0.106 �0.165

Agriculture �0.002 �0.001 �0.001 0.000 0.001 0.003

Literate 4.002 4.422 4.917 5.280 5.308 5.319

Higher 0.777 0.782 0.753 0.734 0.722 0.705

For other examples of such situations see Rubioet al. (1992) or Vı́šek (1994a),
(1994b)).

So, one possible way how to begin any processing of data may be to estimate
the contamination level of them and then to apply that method (from the family in
question) which corresponds to the estimated contamination level. Of course, the
problem with the selection of an adequate robust method is a complicated problem
and we shall return to it briefly at the end of paper.

As we shall see later we will need for the estimation of the contamination level
to estimate the density of data. It is simple to do it directly when we have at hand
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a sample of i.i.d. r.v.’s, e.g. in the location problem, but naturally it cannot be
applied directly on the response variable in the regression scheme. Nevertheless as
we shall see below some preliminary considerations will open a straightforward way
to a proposal of an estimator of contamination level in regression model, too.

One may learn from the text given below that the estimation of the contamination
level is analogous to the estimation of the mixture parameter (see Rukhin(1994)). The
difference is that in the case of the estimation of the contamination level we do not
specify the«contaminating» distribution but only the«central» model. Of course, it
implies that when we estimate the contamination level we may meet some additional
(technical) difficulties in comparison with the estimation of the mixture parameter.
So, taking into account that when looking for an estimator of the mixture parameter
we are rarely able to prove more than the consistency, we cannot expect that for the
estimator of the contamination level we will be able to give more than an asymptotic
results about its behavior.

The results are accompanied by a simulation study. The reasons for the simulation
study will be also discussed.

2. ESTIMATING CONTAMINATION LEVEL

Let N denote the set of all positive integers,R the real line andRp the p�dimensional
Euclidian space. We shall consider the linear model

Y = X �β0+e(4)

where for everyn2N and some (fix)p2N we haveY = (Y1;Y2; : : : ;Yn)T (a response
variable),X = (xi j ) j=1;2;::: ;p

i=1;2;::: ;n (a design matrix),β0 = (β0
1;β0

2; : : : ;β0
p)T (regression coef-

ficients) ande= (e1;e2; : : : ;en)T (random disturbances). We assume that the random
variables in the sequencefeig∞

i=1 are i.i.d. and they are defined on a probability space(Ω;B;P), and the carriersxi j ’s are fix and known whileβ0 (the «true» value of the
vector of regression coefficients) is unknown but also fix. (Let us remark here that
in what follows all probabilistic assertions as«a. s.», «in probability» etc. will be
understood with respect toP.) Assume moreover that there is aK < ∞ such that

sup
i2N

max
j=1;2;::: ;p jxi j j< K(5)

and

lim
n ∞

1
n

XTX = Q(6)
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whereQ is a regular matrix. Sometimes we will use also an alternative notationXi =(xi1;xi2; : : : ;xip)T , so that the expressionXT
i β will stay instead of the sum∑p

j=1xi j β j .
Finally, let ν be aσ-finite measure defined on(R;B(R)) ( whereB(R) is the Borelσ-
algebra) such that distribution functionF of e1 is absolutely continuous with respect
to ν, and then let us denote byFν the set of all distribution functions which are
absolutely continuous with respect toν.

In Huber (1964) the convex combination model

G(z) = (1� ε)F(z)+ εH(z)(7)(ε 2 [0;1];F;H 2 Fν) was used to describe the contamination of data. So, the first
idea how to define the contamination level may start with this model. One finds
immediately that for givenG the decomposition (7) is given uniquely only in the case
when Zfz:g(z)=0gdF(z)> 0

whereg is density of the distribution functionG (with respect toν). Thenε = 1 and
H(z) = G(z). If however (7) holds for someε 2 [0;1) then also for anyε� 2 [ε;1] we
may write

G(z) = (1� ε�)F(z)+ ε�H�(z)
where H�(z) = (ε�)�1f(ε�� ε)F(z)+ εH(z)g and we evidently haveH� 2 Fν. It
hints that the following definition of the contamination level, for the version using
the densities, has to consider an essential minimum of possible values ofε’s, essential
with respect to the measureν (notice that for our case the result is same if we take
«ess inf» with respect toF becausef is involved in the characterization ofεG;F ).

Definition 1 For G and F2 Fν we shall define the contamination level as a value

εG;F = inf fε : G(z) = (1� ε)F(z)+ εH(z);H 2 Fνg
or equivalently

εG;F = inf fε : νfz : g(z) 6= (1� ε) f (z)+ εh(z)g= 0;H 2 Fνg
where g; f and h are again the densities of G;F and of H with respect toν, respectively.

Remark 1 The mixture

G(z) = (1� ε)F(z)+ εH(z)
expresses the fact that the bulk of data, the«proper data», are distributed according
to F and some portion of data (this portion being considered as contamination) is
distributed accordng toH. The distributionH is not usually fully specified while the
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distribution functionF is selected (at least as a type of distribution) by the statistician
when processing data. So in other words, having at hand data, we assume that they
were generated by some unknownG, nevertheless, we would like to describe them (or
explain them) byF . The reason for selecting the distributionF instead of the«true»
distributionG may be, e.g., the fact that the distribution functionG is expected to be
too «wild» while the distribution functionF is easy (or at least easier) to work with,
and at the same time being a reasonable approximation of the distributionG. However
we are aware that it need not be precisely the distribution which has generatedthe
data, i.e. thatG 6= F, and hence we admit that there is a distributionH andε > 0 so
thatG=(1�ε)F+εH. It means that we selectF and hope that the«true» distribution
of data lies in a neighborhood ofF . �
Remark 2 In the last twenty years a lot of others contamination models have appeared
being based on different types of distances in the space of probability measures (e.g.
on the Kolmogorov-Smirnov or Prokhorov metrics (see Huber (1981)), on the combi-
nation of convex combinations and total variation (see Rieder (1977)), on2-alternating
capacities (see Huber, Strassen (1973)), or on divergences (see Vajda (1989)). We
believe that a straightforward generalization of the notion of contamination level is
possible in any of these contamination models. We also believe that for such gene-
ralization the modifications of the theory which will be presented below,will be also
straightforward (something has been already done for the location problem, see Vı́šek
(1989)). �
Lemma 1 (characterization of the contamination levelεG;F ) Let G(z) and F(z) 2 Fν.
Then

εG;F = 



 f (z)�g(z)
f (z) Ifz: f (z)>g(z)g





∞

f (z) and g(z) being again the densities of the distibutions F(z) and G(z) with respect
to ν.

Proof: At first notice that



 f (z)�g(z)
f (z) Ifz: f (z)>g(z)g





∞
� 0

and the lower bound is attained only whenνfz : f (z) 6= g(z)g= 0. Let us denote
by EG;F the set ofε’s for which (7) holds, and letε 2 EG;F . It implies that for some
densityh(z) we haveg(z)= (1�ε) f (z)+εh(z), and hencef (z)�g(z)� ε f (z), i.e. ε�
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f (z)�g(z)
f (z) for anyz2R for which f (z)> 0. Then of courseε�k f (z)�g(z)

f (z) Ifz: f (z)>g(z)gk∞,

and hence alsoεG;F � k f (z)�g(z)
f (z) Ifz: f (z)>g(z)gk∞.

On the other hand for anyε � k f (z)�g(z)
f (z) Ifz: f (z)>g(z)gk∞, hε(z) = 1

ε [g(z)� (1�
ε) f (z)] is a density, and

g(z) = (1� ε) f (z)+ εhε(z):
It means thatε 2 EG;F andεG;F � k f (z)�g(z)

f (z) Ifz: f (z)>g(z)gk∞. �
Remark 3 It follows from the proof of Lemma 1 that the infimum in Definition 1is
attained so that we may write

G(z) = (1� εG;F)F(z)+ εG;F HεG;F (z)
for someHεG;F (z). It may be of interest that for a convex mixture of two normal
distribution, say(1� εH)(2π)� 1

2 exp(�z2

2
)+ εH(2π)� 1

2 σ�1exp(� z2

2σ2 );(8)

we obtain

εG;F = εH for σ < 1(9)

and

εG;F = (1�σ�1)εH for σ > 1:(10)

Let us recall that Huber’s result (proved in 1964, under condition that the logarithm
of the density of central model is concave) says that the optimal selection of the
ψk-function (see (1)) in the case that the data were generated by the mixturedensity
(7) is given byk= k(εH) wherek(εH) satisfies(1� εH)�1 = Z t1(εH )

t0(εH ) g(t)dt + g(t0(εH))+g(t1(εH))
k(εH)(11)

whereti(εH)’s are given by

g0(ti(εH))
g(ti(εH)) = (�1)i �k(εH); i = 0;1:(12)

So an alternative notation for Huber’s family ofψ-functions may befψk(ε)gε2(0;1):(13)

We shall need it in the discussion later. �
16



Now we need to estimatek f (z)�g(z)
f (z) Ifz: f (z)>g(z)gk∞. Since the densityf (z) is known

(see Remark 1) it is necessary to estimate the densityg(z). To be more precise, letfZk(ω)g∞
k=1 be a sequence of i.i.d. random variables (defined on the probability space(Ω;B;P)). Assume that the corresponding distribution functionGZ(z) belongs toFν

and denote bygZ(z) its density. We shall assume thatgZ(z) vanishes outside an
interval (c;d);�∞� c< d�∞. Moreover, following Csörgö and Révész (1981) and
Rosenblatt (1971), let us assume:

Conditions A The bounded integrable kernel w: R R vanishes outside an inter-
val (�a;a) with�∞��a� c< d� a� ∞ for some a> 0. Moreover, it is twice con-
tinuously differentiable with bounded first derivative w0(z), saysupz2Rjw0(z)j < L < ∞
and with(1+z4)jw00(z)j also bounded. Finally, the kernel has a Fourier transformφ(t)
with (1+ t2) �φ(t) integrable and is symmetric, i. e. w(z) = w(�z).

Please notice that Conditions A imply thatZ ∞�∞
w0(z)dz= 0 (due to symmetry)(14)

and jZ ∞�∞
z�w0(z)dzj< ∞:(15)

Let us writeZT(ω;n) = (Z1(ω);Z2(ω); : : : ;Zn(ω)). Then define for anyz2R; ω2
Ω the kernel estimator of density by

ĝn(z;Z(ω;n)) = 1
ncn

n

∑
i=1

w(c�1
n (z�Zi(ω)))(16)

and in what follows we shall assume that the sequence of the bandwidthsfcng∞
n=1& 0.

For the simplicity we shall assume that in the rest of paperν is the Lebesgue
measure.

Lemma 2 (Csörgö, Révész). Let us denote

πn(g) = sup
z2R

jEĝn(z;Z(ω;n))�gZ(z)j:
Then

sup
z2(�a;a) jn(ĝn(z;Z(ω;n))�gZ(z))�Γn(z)j= O(c�1

n log2n+nπn(g)) a:s:
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whereΓn(z) is the following Gaussian process:

Γn(z) = 1
cn

Z 1

0
K (v;n)dw(c�1

n (z�G�1(v)))(17)

with K (v;n) being a suitable Kiefer process.

The proof is a specification of the proof of the Theorem 6.1.1 of Csörgö, Révész
(1981), page 223.

Lemma 3 Let G(z) and F(z) belong toFν. Further, letfSng∞
n=1 be a family of sets,

Sn 2 B(R), such that

Sn% fz : f (z) > 0g(18)

and [ inf
z2Sn

f (z)]�1max
n

πn(g);n�1c�1
n log2n;n� 1

2 c�1
n (log logn) 1

2

o= o(1):(19)

Then

sup
z2Sn

jĝn(z;Z(ω;n))�g(z)j
f (z) = o(1) a. s. asn ∞:

Proof: Let us denote byMn = [infz2Sn f (z)]�1. Now from the Lemma 2 we have
for some∆ < ∞�∆Mn(πn(g)+c�1

n n�1log2n)� ĝn(z;Z(ω;n))�g(z)
f (z) � Γn(z)

n f(z)� ∆Mn(πn(g)+c�1
n n�1log2n):

Since the lower as well as the upper bound tends to zero it suffice to show that

sup
z2Sn

jΓn(z)j
n f(z) = o(1):(20)

However, due to (17) we have

cnjΓn(z)j � sup
z2R

jK (z;n)jZ 1

0
dw(c�1

n (z�G�1(v)))� ∆ �sup
z2R

jK (z;n)j
whereK (z;n) is again an appropriate Kiefer process. Now, due to (19) for anyε > 0
we may findnε 2 N so that for anyn> nε

sup
z2Sn

(log logn) 1
2

cnn
1
2 f (z) � ε;
18



and we have

sup
z2Sn

jΓn(z)j
n f(z) � ∆

cnn
sup
z2R

jK (z;n)j
f (z) � n� 1

2 ε∆sup
z2R

jK (z;n)j(log logn)� 1
2 :

The proof of (20) then follows due to the law of iterated logarithm for the Kiefer
process (see Corollary 1.15.1 of Csörgö, Révész (1981)). �

As we have mentioned above we need to estimatek f (z)�g(z)
f (z) Ifx: f (z)>g(z)gk∞ and let

us recall thatk f (z)�g(z)
f (z) Ifz: f (z)>g(z)gk∞ = inf

�
a : ν(� z :

f (z)@> a

�) = 0

� :
A routine arguments yields that there aref̃ (z) an g̃(z) such thatν(f f (z) 6= f̃ (z)g) = 0
andν(fg(z) 6= g̃(z)g) = 0, andk f (z)�g(z)

f (z) Ifz: f (z)>g(z)gk∞ = sup
z2ft: f̃ (t)>0g f̃ (z)� g̃(z)

f̃ (z)
and so we may assume thatf (z) andg(z) are such versions of densities ofF(z) and
of G(z) that k f (z)�g(z)

f (z) Ifz: f (z)>g(z)gk∞ = sup
z2ft: f (t)>0g f (z)�g(z)

f (z) :
Let us assue that we shall work in the rest of paper with such versions of densities.
Then from the previous lemma it follows that we may estimatek f (z)�g(z)

f (z) Ifz: f (z)>g(z)gk∞
by

sup
z2Sn

f (z)� ĝn(z;Z(ω;n))
f (z)(21)

due to the fact that

sup
z2ft: f (t)>0g f (z)�g(z)

f (z) � sup
z2Sn

f (z)� ĝn(z;Z(ω;n))
f (z)� sup

z2Sn

ĝn(z;Z(ω;n))�g(z)
f (z) = o(1) a:s: asn ∞(22)

(realize that we have assumedSn %fz : f (z) > 0g ) and similarly

sup
z2Sn

f (z)� ĝn(z;Z(ω;n))
f (z) � sup

z2ft: f (t)>0g f (z)�g(z)
f (z)
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� sup
z2Sn

g(z)� ĝn(z;Z(ω;n))
f (z) = o(1) a:s: asn ∞:(23)

But let us consider the case wheng(z) = f (z), i.e. when there is no contamination.
Then, due to the random fluctuations of ˆgn(z;Z(ω;n)), we obtain positive value at
(21) for everyω 2 Ω. That is the reason why we shall not propose in the following
theorem the estimator ofε̂G;F as supz2Sn

f (z)�ĝn(z;Z(ω;n))
f (z) but in a little modified form.

Theorem 1 Let G and F belong toFν. Further let
n

β̂n

o∞

n=1
be a sequence of

p
n-

consistent estimators ofβ0 and fVng∞
n=1 sequence of sets, Vn 2 B(R), fulfilling the

assumptions (18) and (19), and moreover let[ inf
z2Vn

f (z)]�1c�1
n kβ̂n�β0k= op(1):(24)

Finally, let f fn(z;ω)g∞
n=1 be a sequence of random processes such that

sup
z2Vn

j fn(z;ω)� f (z)j = op( inf
z2Vn

f (z))(25)

and put

ε̂G;F = max

(
0;min

(
sup
z2Vn

fn(z;ω)� ĝn(z; r(β̂n)))
f (z) ;1))

where we have denoted for anyβ 2 Rp by r(β) the vector of residuals(Y1�XT
1 β;

Y2�XT
2 β; : : : ;Yn�XT

n β)T . Then

ε̂G;F � εG;F = op(1):(26)

Proof: If we had known the true valueβ0 of the regression coefficients we may
evaluate the«theoretical» residualsY1�XT

1 β0;Y2�XT
2 β0; : : : ;Yn�XT

n β0 and to plug
them into the kernel estimator of density and the (26) would have followed directly
from Lemma 1 and 3, and (22),(23) and (25). Nevertheless, due to the fact that for
any z2Vn and anyω 2 Ω (see (16) and (24))jĝn(z; r(β̂n))� ĝn(z; r(β0))j

f (z) � supt2Rjw0(t)j � p1
2 �K � kβ̂�β0k

cn � f (z)(27)

the (26) holds (forK see (5)). �
In the next theorems we shall give an example of the«quantile» processfn(z),

and some inequalities describing the asymptotic behavior of the estimator of the
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contamination level. It will be clear from the proof of the inequalities that there is
a hope that they are reasonably tight, of course, asymptotically. It means that the
difference between the limit value and the lower bound is small. To be ableto prove
the assertions which were just mentioned, we shall need a result of Rosenblatt (1971).
For the convenience of reader we are going to give it as a lemma.

Lemma 4 (Rosenblatt (1971), p. 1828). Let Assumptions A be fulfilled andlet a
density g(z) be continuously differentiable and bounded away from zero on[0;1].
Then if n� 1

24 = O(cn) as n ∞, it follows that

P

(
max

0�z�1

�
cn �n
γg(z)� 1

2 fĝn(z;Z(ω;n))�Eĝn(z;Z(ω;n))g� �
2log c�1

n

	 1
2 + A+v(2log c�1

n ) 1
2

)
expf�expf�vgg

for n ∞ where G is the distribution function which corresponds to the density
g(z) and

γ = Z
w2(s)ds

and

A= log
B

1
2

2π
; B=�2

γ
d2

ds2 (Z w(u)w(u+s)du) �������
s=0

:
Remark 4 The basic idea of the proof of Rosenblatt’s lemma is as follows. At first,
the process �

cn �n
γg(z)� 1

2 fĝn(z;Z(ω;n))�Eĝn(z;Z(ω;n))g
is approximated by an appropriate Wiener process. Then an assertion about the
distribution of the supremum of Wiener process (Rosenblatt (1971) uses Cramér,
Leadbetter (1967)) is applied. It implies that due to symm etry of Wiener process we
have also

P

(
max

0�z�1

�
cn �n
γg(z)� 1

2 fEĝn(z;Z(ω;n)� ĝn(z;Z(ω;n))g� �
2log c�1

n

	 1
2 + A+v(2log c�1

n ) 1
2

)
expf�expf�vgg(28)

for n ∞. �
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Remark 5 Rosenblat’s result (28) is given in a somewhat unusual form. More usual
form would be such which describes convergences of distribution functions, i. e.

P

((2log c�1
n ) 1

2 max
0�z�1

�
cn �n
γg(z)� 1

2 fEĝn(z;Z(ω;n)� ĝn(z;Z(ω;n))g�2log c�1
n �A� v

9>=>; expf�expf�vgg(29)

for n ∞. �
There are two things which we have to cope with to be able to use Rosenblat’s

result for our purposes. First of all, if we apply directly Rosenblat’s result, there
would be an inconvenient presence ofg

1
2 (z) in the denominator of the above formula.

Another difficulty is that the normalized difference containsEĝn(z;Z(ω;n)) and does
not give so a«distance» from g(z). Moreover, the difference betweenEĝn(z;Z(ω;n))
andg(z) is proportional to a power ofcn (unfortunately not to power ofn). A remedy
for the all difficulties is a transformation of data (in our case the transformation of
residuals). Let us assume that we have dataz1;z2; : : : ;zn which are realization of a
sequence of i.i.d. random variables, distributed according to a distribution function
(d.f.) G(z) and that we have selected some another d.f.F(z) to explain them. The first
step will be to estimate the asymptotic distribution ofε̂G;F under the null hypothesis,
i.e. under the hypothesis thatεG;F = 0 (realize that thenG(z) = F(z)). Consider
instead ofz1;z2; : : : ;zn the datau1;u2; : : : ;un such thatui = F(zi) for i = 1;2; : : : ;n.
Then the densityf �(u) of the transformed data is equal to 1 over the interval[0;1]
(and zero elsewhere). Moreover, in what follows let us assume that we have selected
Vn (for Vn see Theorem 1) so thatF(Vn)ı(hn;1�hn);hn = cn �a (for a see Conditions
A) where F(Vn) = fu : u= F(z);z2Vng and let us compute the mean value of the
kernel estimator for the transformed observationsui ’s. We obtain foru2 F(Vn)

Eĝ�n(u;U(ω;n)) = Z f 1
ncn

n

∑
i=1

w(c�1
n (u�y)) f �(y)gdy= 1

n

n

∑
i=1

aZ�a

w(s) f �(u�cns)ds= 1:(30)

It means that the kernel estimator of the«transformed» density for anyu2 F(Vn) is
unbiased. Let us assume that we have transformed the residuals usingF(z) and let
us apply (28) on the transformed values. We obtain:
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Theorem 2 Let Conditions A and the assumptions of Theorem 1 and of Lemma 4 be
fulfilled. For any p2 (0;1) put v� =�log(�logp) and let

bn =�
γ
cn

� 1
2
"�

2logc�1
n

	 1
2 + A+v�(2logc�1

n ) 1
2

# :(31)

Finally, let the density f(z) be bounded and let fn(z) = f (z)(1�bn �n� 1
2 ). Then under

the assumption thatεG;F = 0 we have

limsup
n ∞

Pfε̂G;F = 0g � p for n ∞(32)

and

limsup
n ∞

P

(�
2logc�1

n

� 1
2

�
cnn
γ

� 1
2

ε̂G;F � v�v�)� expf�expf�vgg(33)

for (v�v�)(2log c�1
n )� 1

2 [ γ
cnn] 1

2 ] 2 (0;1).
Proof: First of all, let us say that in the proof some constants, sayC1;C2; : : : , will be
used. Their definition will be assumed to hold only within the proof. We shall show
that the proof follows immediately from (29). Let us consider the transformation
u= F(z) and let us denote the density of the transformed random variable byg�(u)
and for anyβ 2 Rp put ru(β) = (ru1(β); ru2(β); : : : ; run(β))T , with

rui(β) = F(Yi �XT
i β):(34)

Further, notice that the level of contamination is invariant with respect to the transfor-
mation. It is clear either from the heuristic background or from the formal expression.
Really, the contamination level represents the percentage of the observations (among
the data) which are not distributed according to the central model. So that if we
transform data, the«earlier» central model is transformed into some«new» central
model (in our case uniform distribution over[0;1]), and similarly, the«contaminating»
distribution is transformed to some«new contaminating» distribution. So the percen-
tage of «wrong» data is the same. On the other hand using the formal way, we
see that the values of the fractionf (z)�g(z)

f (z) are precisely the same as the values of
f (invF(u))�g(invF(u))

f (invF(u)) at the corresponding pointu= F(z). Multiplying by the Jacobian
of the transformation both the numerator and the denominator, we do not change the
value of the ratio. But then the density of the central model will become the density
of the uniform distribution over[0;1] and the densityg(z) is transformed ong�(u).
So we obtain for the contamination level an equivalent expression

sup
u2[0;1]f1�g�(u)g :
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Taking into account the specification offn(z) given in the theorem which reads for
the transformed residuals as

fn;U(u) = 1�bn �n� 1
2(35)

we have for the estimator

ε̂G;F = max

(
0;min

(
sup

u2F(Vn)n1�bnn
� 1

2 � ĝ�n(u; ru(β̂n))o ;1))(36)

where we have denoted the kernel density estimator based on the transforemedresi-
duals by ˆg�n(u; ru(β̂n)). Let us recall that for the a generalβ 2 Rp we have

ĝ�n(u; ru(β)) = 1
ncn

n

∑
i=1

w(c�1
n (u� rui(β))):

Now we may write

limsup
n ∞

P(ε̂G;F = 0) = limsup
n ∞

P( sup
u2F(Vn)f1�bnn

� 1
2 � ĝ�n(u; ru(β̂n))g � 0)= limsup

n ∞
P( sup

u2F(Vn)f1� ĝ�n(u; ru(β̂n))g � bnn� 1
2 )= limsup

n ∞
P(�cnn

γ

� 1
2

sup
u2F(Vn)[1� ĝ�n(u; ru(β̂n))]� (2log c�1

n ) 1
2 + A+v�(2log c�1

n ) 1
2

)= limsup
n ∞

P(�2log c�1
n

� 1
2

�
cnn
γ

� 1
2

sup
u2F(Vn)fEĝ�n(u; ru(β0))� ĝ�n(u; ru(β0))g+�2log c�1

n

� 1
2

�
cnn
γ

� 1
2

sup
u2F(Vn)[ĝ�n(u; ru(β̂n))� ĝ�n(u; ru(β0))]� (2log c�1

n )+A+v�)� limsup
n ∞

P(�2log c�1
n

� 1
2

�
cnn
γ

� 1
2

max
u2[0;1] fEĝ�n(u; ru(β0))� ĝ�n(u; ru(β0))g+�2log c�1

n

� 1
2

�
cnn
γ

� 1
2

max
u2[0;1] [ĝ�n(u; ru(β̂n))� ĝ�n(u; ru(β0))]� 2log c�1

n +A+v�:
So we shall need to estimate the difference(2log c�1

n ) 1
2

�
cn �n

γ

� 1
2 � max

u2[0;1] ���ĝ�n(u; ru(β̂n))� ĝ�n(u; ru(β0))��� :(37)
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Taking into account (34), we may write

ĝ�n(u; ru(β̂n))� ĝ�n(u; ru(β0)) = 1
ncn

n

∑
i=1

h
w(c�1

n (u� rui(β̂n)))�w(c�1
n (u� rui(β0)))i

= 1
nc2

n

n

∑
i=1

w0(ξi)hF(Yi �XT
i β0)�F(Yi �XT

i β̂n)i= 1
nc2

n

n

∑
i=1

w0(ξi) f (ηi)XT
i

�
β̂n�β0

�(38)

whereξi 2�c�1
n min

n
u� rui(β̂n);u� rui(β0)o ;c�1

n max
n

u� rui(β̂n);u� rui(β0)o� and

ηi 2 �min
n

Yi �XT
i (β̂n);Yi �XT

i (β0)o ;max
n

Yi �XT
i (β̂n);Yi �XT

i (β0)o�. Now, the

expression (38) can be rewritten as

1
nc2

n

n

∑
i=1

�
w0(ξi)�w0(c�1

n (u�F(ei)))� f (ηi)XT
i

�
β̂n�β0

�
(39) + 1

nc2
n

n

∑
i=1

w0(c�1
n (u�F(ei))) [ f (ηi)� f (ei)]XT

i

�
β̂n�β0

�
(40) + 1

nc2
n

n

∑
i=1

w0(c�1
n (u�F(ei))) f (ei)XT

i

�
β̂n�β0

� :(41)

Taking into account thatjw0(c�1
n ξi)�w0(c�1

n (u�F(ei))j � sup
z2R

jw00(z)jc�1
n Kp

1
2kβ̂n�β0k;

and also the fact that we have assumed that
p

nkβ̂n�β0k= Op(1), we have

sup
u2R

(�
2log c�1

n

� 1
2

�
cnn
γ

� 1
2 1

nc2
n

����� n

∑
i=1

�
w0(ξi)�w0(c�1

n (u�F(ei)))� f (ηi)XT
i

�
β̂n�β0

������)�C1 �c� 5
2

n n� 1
2
�
log c�1

n

� 1
2

whereC1 is a positive (and finite) constant and hence the expression (39) converges
to zero asn ∞. Similarly

sup
u2R

(�
2log c�1

n

� 1
2

�
cnn
γ

� 1
2

����� 1
nc2

n

n

∑
i=1

w0(c�1
n (u�F(ei))) [ f (ηi)� f (ei)]XT

i

�
β̂n�β0

������)
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�C2 �c� 5
2

n n� 1
2
�
log c�1

n

� 1
2

where againC2 is a positive (and finite) constant and hence the expression (40) con-
verges also to zero asn ∞. It remains to cope with supremum of the expression
(41) which may be bounded by

1

n
1
2 c2

n

sup
u2R

(
n� 1

2

n

∑
i=1

�
w0(c�1

n (z�F(ei))) f (ei)�E
�

w0(c�1
n (u�F(ei))) f (ei)	�XT

i

�
β̂n�β0

�o
(42) + 1

n
1
2 c2

n

sup
u2R

(
E
�

w0(c�1
n (u�F(e1))) f (e1)	(n� 1

2

n

∑
i=1

XT
i

)�
β̂n�β0

�) :(43)

Taking into account once again that
p

nkβ̂n�β0k= Op(1) and following Csörgö and
Révész (1981), theorem 6.1.1, we find that the expression (42) is oforderc�2

n n�1 in

probability, and hence after multiplication by the factor
�
2log c�1

n

� 1
2
h

cnn
γ

i 1
2

we obtain

order of this expression equal toc�3
n n� 1

2 logn � �log c�1
n

� 1
2 : Now we may calculate

E
�

w0(c�1
n (u�F(e1))) f (e1)	= Z

w0(c�1
n (u�F(t))) f 2(t)dt= Z

w0(s) f 2(invF(u�cns))cnds= Z
w0(s) f 2(invF(u))cnds�2

Z
w0(s) f (ζ) f 0(ζ)c2

nsds

where ζ is again an appropriately selected point. Taking into account (6), (14)
and (15), we come to the conclusion that the term in (43) (after multiplication by�
log c�1

n

� 1
2
h

cnn
γ

i 1
2
) converges also to zero. So denoting

κn = �
2log c�1

n

� 1
2

�
cnn
γ

� 1
2

sup
u2F(Vn)nhĝ�n(u; ru(β̂n))� ĝ�n(u; ru(β0))io

using (29) and taking into account thatv� =�log(�logp) we have

limsup
n ∞

P(ε̂G;F = 0) == limsup
n ∞

P(�2log c�1
n

� 1
2

�
cnn
γ

� 1
2

sup
u2F(Vn)fEĝ�n(u; ru(β0))� ĝ�n(u; ru(β0))g+κn
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� 2log c�1
n +A+v�) expf�expf�(v�+κn)gg p:

It concludes the proof of (32). Repeating the same steps we arrive at

limsup
n ∞

P

((2log c�1
n ) 1

2

�
cnn
γ

� 1
2

ε̂G;F � v�v�)� lim
n ∞

P

((2log c�1
n ) 1

2

�
cnn
γ

� 1
2

max
u2[0;1] nEĝn(u; ru(β̂n))� ĝn(u; ru(β̂n))o+κn� 2log c�1

n +A+v
	

expf�expf�vgg
which concludes the proof. �
Remark 6 It follows from the proof of the previous theorem that the lower bound in
(33) is tight. �

Similarly for a sequence of local alternatives we may obtain:

Theorem 3 Let the assumptions of Theorem 2 be fulfilled. Put for any p2 (0;1) again

v� =�log(�log p) and let bn be given by (31). Finally, let fn(z) = f (z)(1�bn �n� 1
2 )

and H(x) any distribution such thatεH;F 6= 0 and max
u2[0;1] h(invF(u) < ∞. Then for

any ε 2 (0;1) and the sequence of the local alternativefGn(x)g∞
n=1 ;Gn(x) = (1�

εn� 1
2 )F(x)+ εn� 1

2 H(x) we have

limsup
n ∞

P

(�
2logc�1

n

� 1
2

�
cnn
γ

� 1
2 (ε̂Gn;F � εGn;F)� v�v�)� expf�expf�vgg

for (v�v�)(2logc�1
n )� 1

2

h
cnn

γ

i 1
2 2 (0;1).

Proof: mimics the proof of Theorem 2. First of all, we shall make an idea about
εGn;F . Let againf �(u), h�(u) andg�(u) denote the transformed densities. Taking into
account thatf �(u) = 1 andh�(u)� 0, we have

εGn;F = sup
u2[0;1] 1�g�(u)� 1�1+ εn� 1

2 = εn� 1
2 :
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We will need also to estimateEĝ�n(u; ru(β̂n)). Similarly as in (30) we utilize the fact
that f �(u) = 1 but now we need also to employ the assumption thath�(u) is bounded.
Then we obtainjEĝ�n(u; ru(β̂n))�1j � Z ���ĝ�n(u; ru(β̂n))�1

����(1� εn� 1
2 )+ εn� 1

2 h�(u)�du�C1n� 1
2

whereC1 is a finte constant. Now we may write

P

(�
2logc�1

n

� 1
2

�
cnn
γ

� 1
2 (ε̂Gn;F � εGn;F)� v�v�)� P

(�
2logc�1

n

� 1
2

�
cnn
γ

� 1
2 (Eε̂Gn;F � ε̂Gn;F)�2log c�1

n �A� v�C2n
� 1

2

)
where againC2 is a finite constant and the assertion of the theorem follows. �
3. SIMULATION STUDY

All results derived in the previous section are of the asymptotic type.Moreover,
the results were obtained in the asymptotic framework in which several parameters
changed simultaneously. Except of the number of observations which increased to
infinity also the width of window, quantile process and the set over which the su-
premum had been taken, converged to the corresponding limits. Anybody who had
sometimes tried to use such results to approximate the corresponding probabilities
for the finite samples, has find out that«an adjustment» of the parameters (the width
of window, quantile process, etc.) needs some simulation studies. Sometimes we
may even meet with the standpoint that such asymptotic results should beinterpreted
only as a guarantee of the consistency (or coherence, if you want) of our approach
with the general«structure of mathematics». That is the reason why the behavior of
the statistics which was proposed above should be studied for the finite samples by
simulations. In this section we shall offer a very first experience in thecase when the
data are contaminated, i.e. forεG;F 6= 0.

For the numerical study we have simulated data in the following way: Considering
the regression model

Yi = 2 �Xi1+3 �Xi2+4 �Xi3+ei; i = 1;2; : : : ;30

we have generated 30 three-dimensional vectors uniformly distributed over [0;10]
(used as the carriersXi = (Xi1;Xi2;Xi3)T ; i = 1;2; : : : ;30) and 30 random numbers dis-
tributed according to the standard normal distribution (used as the errorse1;e2; : : : ;e30).
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The normality was checked by chi-square and Kolmogorov-Smirnov tests accompa-
nied by the test of skewness and of kurtosis (see Shapiro, Wilk (1965)). Then we have
randomly selected fromfeig30

i=1 four numbers, sayei1;ei2;ei3;ei4, multiplied them by
4 (they have represented the contamination). According to the Remark 3 we have
then

εG;F = 4
30

(1� 1
4
) = 0:1:(44)

Then the least trimmed square (LTS) algorithm was used to estimate the coeffi-
cients of the regression model, i.e.

β̂(LTS) = argmin
β2Rp

h

∑
i=1

r2[i:n](β)
wherer2[i:n]’s represent ordered squared residualsr2

i (β) = [Yi�∑3
j=1xi j β j ]2, i.e. r2[1:n]�

r2[2:n] � �� � � r2[n:n], andh= 17 was selected to reach the maximal possible break-down
point of the estimator (see Rousseeuw,Leroy (1987)). Finally the obtained residuals
r i(β̂(LTS)) = Yi �∑3

j=1xi j β̂
(LTS)
j ; i = 1;2; : : : ;30 were transformed (see Theorem 2).

The whole procedure was 30 times repeated. In what follows let(ε̂G;F )k denote the
estimate of the contamination level for thek-th sample.

In such a way set of 30 samples of transformed residuals with the contami-
nation level equal to 0:1 (see (44)) was obtained (each sample contained 30 resi-
duals). This collection of samples was used as a training set. As follows from
(36) the value ofε̂G;F for any fix sample of data is a nonincreasing function of
bn, ε̂G;F(bn) : [0;∞) [0;1�minu2F(Vn)ĝn(u; ru(β̂n))]. Since in our case we had

minu2F(Vn)ĝn(u; ru(β̂n))< 0:9, it was possible to findb�30 so that

1
30

30

∑
k=1

(ε̂G;F (b�30)k) = 0:1
(see (44) once again). We have obtainedb�30 = 1:80049 (or in other words, we have
learnt that the quantile processf30;U(u) (see (35)) for this type of data, this kernel

etc. should be (approximately) equal to 1� b�nn� 1
2 = 1� 1:80047p

30
= 0:67128). The

results of estimating regression coefficients and of the values of the estimatesε̂G;F
(after assigning the value 1:80049 tob�30) have been collected in the Table 3.

1
30

30

∑
k=1

(ε̂G;F )k = 0:1 ˆvar(ε̂G;F ) = 0:02961
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Table 3. Results of estimation of regression coefficients and level of contamination
for the training set of samples

case β̂1 β̂2 β̂3 ε̂G;F
1 1.878 3.116 4.027 0.0000

2 2.113 3.139 3.731 0.0000

3 1.898 3.028 4.100 0.1048

4 2.022 2.688 4.282 0.0073

5 2.172 2.837 4.046 0.1679

6 1.887 2.975 4.120 0.2185

7 2.086 3.154 3.796 0.0590

8 2.059 2.857 4.063 0.1817

9 1.924 3.090 4.009 0.0000

10 2.161 2.964 3.898 0.0000

11 2.003 3.129 3.896 0.0894

12 1.834 2.983 4.201 0.0000

13 1.936 2.893 4.150 0.2644

14 1.948 3.104 3.949 0.0000

15 2.297 3.016 3.766 0.1416

16 1.911 3.072 4.006 0.0967

17 1.836 3.087 4.110 0.0734

18 1.978 2.994 3.997 0.1159

19 2.007 2.871 4.174 0.1060

20 2.079 3.082 3.857 0.0000

21 2.075 2.856 4.039 0.3431

22 1.959 3.030 3.995 0.0555

23 1.945 3.082 4.017 0.1684

24 2.470 2.686 3.813 0.0835

25 1.969 3.091 3.973 0.0000

26 1.782 3.167 3.983 0.3292

27 1.910 3.134 3.980 0.0000

28 1.905 3.121 3.959 0.1230

29 1.871 2.941 4.183 0.0975

30 1.979 2.943 4.093 0.1882
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Table 4. Results of estimation of regression coefficients and level of contamination
for the testing set of samples

case β̂1 β̂2 β̂3 ε̂G;F
1 2.092 3.012 3.972 0.1610

2 2.003 2.992 4.029 0.2534

2 3 2.054 2.972 3.982 0.0000

4 1.969 3.134 3.914 0.0000

4 5 1.959 3.008 3.999 0.1306

6 2.014 3.037 3.917 0.0000

6 7 2.013 2.919 4.043 0.0138

8 2.198 2.943 3.803 0.1033

9 1.858 2.916 4.207 0.1440

10 1.862 3.035 4.071 0.1477

11 1.851 3.177 4.007 0.0000

12 2.086 2.889 4.024 0.2434

13 1.959 2.993 4.062 0.1582

14 1.979 3.024 4.032 0.2457

15 2.042 2.728 4.200 0.0000

16 1.802 2.986 4.192 0.0791

17 2.240 2.815 3.937 0.0412

18 2.063 3.040 3.888 0.3725

19 1.915 2.921 4.241 0.0977

20 1.928 2.981 4.073 0.1879

21 1.719 3.103 4.174 0.0000

22 2.237 2.913 3.844 0.0000

23 1.914 3.034 4.033 0.1315

24 1.975 2.969 4.081 0.2305

25 1.976 3.049 3.951 0.0000

26 1.845 2.963 4.172 0.1968

27 2.114 3.005 3.888 0.0000

28 1.987 2.882 4.173 0.0742

29 1.952 3.162 3.863 0.0000

30 1.979 3.120 3.918 0.0000
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In the same way as the training set was prepared we have generated a testing set
consisting again 30 samples, each of them containing 30 observations. AgainLTS
were applied and the corresponding results of the estimation of regression coefficients
together with the results of estimation of contamination level of the residuals are given
in the Table 4.

1
30

30

∑
k=1

(ε̂G;F )k = 0:10042 ˆvar(ε̂G;F ) = 0:03047

4. CONCLUSIONS

The paper brings a (theoretical) background for the selection of some freepara-
meters of the robust methods (of the linear regression analysis) via estimating the
contamination level. As it was already discussed the asymptotic results, may be
except of the consistency of the estimator, have mainly a theoretical importance of
some coherence of our approach with the general principles of mathematics. Forthe
practical applications we should rely (mainly) on the results of a simulation studies.

In more details, we may procede as follows.

At first we estimate contamination level.

Of course, to be able to do it we need to adjust some value to the quantileprocess,
to the width of window, to select appropriately the setVn etc. It may be done on the
base of experiences with the data of the same or similar character, or using the results
of «reasonably» organized simulation study. It is clear that the type of distributionof
the random errors is relevant, and so we have to employ our ideas about the character
of these disturbances.

Secondly, we select the«tuning» parameter(s) of the corresponding family of robust
methods.

(As an example of such family may serve the family of Huber’sψ-functionsfψk(ε)gε2(0;1), see (13).) Such selection may be performed either according to a
known formula, connecting the contamination level with the«tuning» parameter(s), or
by means of some theoretical tool of the type of efficiency rate or the local deficiency.
Let us give an example.

After evaluating the estimatêεG;F of the contamination levelεG;F we may calculate
the estimatêεH of the appropriate Huber mixture parameterεH by means of (9) or of
(10). Then using the relation (11) and (12) we assign the value of thetuning constant
k(ε̂H) for the Huber’sψ-function .
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In the case of another type of robust procedure we may use e. g. the efficiency
rate and/or the local deficiency to select the«tuning» constant corresponding to the
estimated contamination level. An example of using the efficiency rate for theselec-
tion of properα for α-estimators is given in Rubio, Vı́šek (1992). Let us be again
more explicit.

Let fTαgα2(0;1) be a family ofα-estimators of a parameterθ. (For the simplicity
let us assume thatθ is scalar.) Let us recall that theα-estimators are defined as the
minimal distance estimators minimizing theα-divergence between the empirical d. f.
and a d. f. from a projection family of d. f.’s (see Vajda (1989)). Having evaluated the
efficiency rate ofTα in the corresponding model of contamination, we find the optimal
selection ofα for the estimated contamination levelε̂G;F , sayα(ε̂G;F ). (Let us recall
that the efficiency rate was defined in Rubio, Vı́šek (1992) as the derivative of the
supremum of the (asymptotic) variances of the estimators; supremum is taken over the
given model of contamination, usually over some neighborhood of a central model;
derivative is evaluated with respect to the parameter of the family of estimators, in
our example derivative with respect toα. Of course if an objective function would be
other than supremum of the variances, we should evaluate derivative of this function
in the model of contamination.) Then we use for the estimation ofθ the estimator
Tα(ε̂G;F ) which then minimizes the supremum of the asymptotic variances for given
contamination level.

We are aware that the selection of tuning constant on the basis of an estimateof
contamination level is the selection within the limits of one type of estimators (e. g.
Huber’s ones). Selection among different types of estimators should be based on
some general principles (e. g. homogeneity of residuals over factor space, see Rubio
et al. (1993) or Rubio and Vı́šek (1994), or subsample stability of theestimates,
Vı́šek (1996b)), and/or on some model oriented rules (explicitly) formulated by the
expert who has collected data (see Vı́šek (1995)).

The results of simulation study presented in Table 4 showed that the estimates
of the contamination level are scattered quite near around the«true» value (see the
estimate of the variance of the estimator). It supports a hope that theproposed
estimator of the contamination level may work well. On the other hand, it is clear
that the method belongs among computationally intensive ones.

5. ACKNOWLEDGEMENT

We would like to thank the anonymous referee for a very detailed suggestions of
corrections of all omisions. His/her proposals led to the considerableimprovement of
the text.

33



6. REFERENCES
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[23] Rubio, A. M. and Vı́šek, J.Á. (1994). «Diagnostics of regression model: Test
of goodness of fit». Proceedings of the Fifth Prague Symposium on Asymptotic
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[32] Vı́šek, J.Á. (1996a). «n high breakdown point estimation». Computational
Statistics, 11, 137–146, Berlin.

35
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