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A STABILITY THEOREM IN NONLINEAR
BILEVEL PROGRAMMING™

SHOU-YANG WANG"*, QIAN WANG" and LUIS COLADAS URIA*

In this short paper, we are concerned with the stability of nonlinear bile-
vel programs. A stability theorem is proven and an example is given to
illustrate this theorem.
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Bilevel programming, a nested optimization problem, emerged as the appropriate
model to formulate a hierarchical decision making situation where the higher level
in the hierarchy can only influence rather than dictate the choices of the lower level
(Bard. 1984; Bialas and Karwan, 1984; Wang and Lootsma, 1994). Most of the
investigations in this field are focused on optimality conditions and algorithms (see
comments made in Chen and Florian, 1995; Wang, Wang and Romano-Rodriguez.
1994). Since a parametric solution or error bounds on a solution with perturbed
data are typically of great interest both in practical applications and in theoretical
characterizations (Fiacco, 1983), to study stability of an optimal solution to a bilevel
programming problem is certainly a very important topic in bilevel programming.
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The bilevel programming problem with parameter considered in this paper is stated
as (BLP(g)): . - : :

minir?ize F(x.v.€) where v solves
RYSD,

minimize f(x,y,€)
vey

subject to gi(x.v.€) <0, i=1.---.m

where v € RM and v € R" are controlled by the leader and the follower respectively.
X and Y arc closed convex sets in R™ and R™ respectively, € is a parameter vector in
R*. F(x.v.€) and f(x.y.€) are the objective functions of the leader and the follower
respectively. g;(x.v.€).i = .-+~ .m. arc the constraint functions.

When the parameter vector € is identical with the zero vector (i.e., no data is
perturbed in the model), the problem (BLP(g)) can be written as (BLP):

minimize F(x.v) where v solves
xeX : :

minimize f(x,y)
nmize JLx.

subject to gi(x.v) <0. i=1.-.m

where F(x.y) = F(x,5,0). f(x.y) = f(x.»,0) and gi(x.y) =7gi(x.y.0).0 = 1,---.m.
This type of bilevel programming problems have been extensively studied by many
authors. Refer to Ben-Ayed (1993) and Wang and Wang (1994) for a survey.

For a given x € X, we denote the inner program as P(x,€) and define

Y(x.€) = {v¥| v is a minimum of P(x,€)},

Sey={(x,») €XxY | gi(x.x&) <0.i=1.---.m, and vy € Y(x.€)}

and
m

Llx.y.eu) = flx.y8) + Y wigilx,.e)

i=1
We make the following assumptions:

(i) the bilevel problem is well-posed, ie.. Y(x,€) is a singleton and the unique
element is denoted as y(x,€);

(ii) F,f and g;(i = 1,---,m) are twice continuously differentiable in y, their gra-
dients with respect to y and g;(i = 1,--- ,m) are continuously differentiable in
both x and €, f is convex in y;

(iii) for any x, the second—order sufficient conditions for a minimum of P(x,€) holds
at y(x,g), with associated Lagrange multipliers u(x,€) i.e., for any s # O that
satisfies



STV_\.gi(.r,)'(x,e),E) =0,i € I)(x,€)

STV,gi(x,v(x,€),8) <0,i€h(xe)
sTVft).L(x,y(x,e,e,u(x,e)))s > 0 holds where /| (x,€) {] |gj(x,y(x,€),€) =0,u;(x.€) >
0} and h(x.€) 2 {j| g;(x.v(x,€).€) = 0,u;(x,&) = 0};

(iv) the gradients V,g;(x,y(x,€),€),i € Ip(x.€) {j | gj(x.y(x,€),€) =0} are linearly
independent;

(v) strict complementary slackness holds. i.e.. uj(x,€) > 0 when i € Iy(x.€);
(vi) F(x,v,€) is continuous on X x ¥ x R* and X and Y are compact.
A pair (x(g),¥*(€)) is said to be an optimal solution to (BLP(g)) if it satisfies (1)
vi(e) € Y(x*(g),€) and (ii) F(x"(g),v"(€),€) < F(x,y.€) for any (x,v) € S(€).
Define

V“L(x ¥(x,0),0,u(x,0))  Vigi(x,v(x,0),0), - Vigm(x,3(x,0),0)
WV 0.0 alalx0.0) 0
M(x) = .
Vgl (5,¥(+.0),0) 0 o gl6(1.0),0)
and

“N(x) = [—VérL(x,y(x,O),O,u(,r, 0)), —u; Vegi (x,¥(x,0),0), - - ,——ungg,,,(x,_v(x,O),O)]T.

Lemma 1

For any given x € X, M(x) is nonsingular.

Proof
Without loss of generality, let Io(x O) {1, p} I\NIp(x,0) ={p+1,--- ,m}.
Denote :
G - (V‘g[(X V(x 0) 0)7 o \g[?(x7y(x70))0))7
G = (V,\‘gp+l(x7,V(an)7 )a ) ygm(xJ(X’O),O)),
U= diag(ul(xao)* e 1up(x’0))
and

D= diag(gp-H(.x’y(va)vO)v'" ,gm(x,y(x,O),O)).
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Then -
V2 L(x,y(x.0),0,u(x,0)) G G
M(x) = h UG’ 0 0
0 0 D
From Assumption (v) and the assumption of Iy(x.0). u;(x,0) > 0,i=1.---, p and
gj(x.3(x,0),0) <0,j=p+1,---.m. So the matrices U and D are nonsingular. Hence,
it is only required to show that matrix

Vs).L(.r.)'(,r.O).O.u(.x:O)) G
uG’ 0
is nonsingular. This is equivalent to prove that the following system

V%\AL(.\:,_\'(.\‘,O),O, u(x,0))s—Gz=0 (la)

UGTs=0 (1h)

has the unique solution s =0.2=0.
From (1b). we get GTs = 0. Hence. s satisfies Assumption (iii). Multiplying (1a)
by s. we have
sTV2 L(x,¥(x,0),0,u(x,0))s — sTGz =0,

sTV2L(x,¥(x.0).0,u(x,0))s = 0.

By Assumption (iii), we get s = 0. Thus, Gz = 0. Owing to Assumption (1v), the
column rank of G is full. Hence, z = 0. Therefore, M(x) is nonsingular.

a
Lemma 2
For any given ¥ € X, the following first-order approximation
v(xe) | _ | ¥(£0) —lar( =
a9 =) |+ e sotien @
holds in a neighborhood of € = 0.
Proof
From Assumption (iii), we know that
V.L(x,y.e,u) =0 (3a)
uigi(x!yve) :07[_—_ L. m (3b)
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hold at (x,v(%.0),0,u(x.0)). By Lemma 1, the inverse of the Jacobian of the vector-
valued function (V.L(x,v.€,u).u,g1(x5).€), - -umgm(x.¥.€)) with._respect to (v,u)
exists. Hence, the assumptions of the implicit function theorem with respect to (3) are
satisfied and we can conclude that in a neighborhood of € = 0. there exists a unique
continuously differentiable function (v(¥.€).u(x.€)) satisfying (3). This implies that
for any € near 0, v(t.€) is a Kuhn-Tucker point of P(x.€) with associated Lagrange
multipliers u(¥.€).

The gradient of (v(f.€).u(¥.€)) with respect to € at € =0 is M(£)"'N(¥). So the
conclusion of this lemma holds.

]
Lemma 3

F(x.v.€) is uniformly continuous on X x Y x Nyp(g) and M(x)"'N(x) is uniformly
bounded on X. where Ny(€) is a neighborhood of € = 0.

Proof

It is not difficult to show M(x) and N(x) are continuous on X. Since M(x) is
nonsingular for all x € X, M(x)"'N(x) is continuous on X. Hence. we can get this
result from the properties that continuous functions are uniformly continuous and
uniformly bounded on compact sets.

Let (x*,v*) be the unique optimal solution of problem (BLP(0)). Then, we can
prove the following main result.

Theorem 1

Suppose Assumption (i)—(vi) are satisfied. Then for any given positive number v.
there exists a & such that when ||g|| < 9,

|F(X*(€),yx(8),8)—F()C*,_\'*,O” <w

Proof

Let (x"(€),v*(€)) be the optimal solution of (BLP(g)), then v*(g) = »(x"(€).€).
Denote o) = |F(x*(€),y"(€),€) — F(x*(g),»(x"(€),0),0)| and 62 = |F(x",¥(x",€).€) -
F(x".y".0)]. Since

F(x*(g),¥(x"(€),0),0) > F(x",¥",0)
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and
F(x",y(x",g),€) > F(x"(g),y"(€).€).

|F(x"(€).v"(g),€) — F(x",y",0)] < max{c1,02}.

From Lemma 2, for x*(€) and x*, we have the following first-order approximations
in a neighborhood of € =0,

[ 'L'(x*m’g) }+M(x*(e>>-'N<x‘(e>)s+0<H€H> (4)

e (©,0) | = [ e ©.0)
e =) | e e )

Because of the uniformly continuity of F(x.y.€), for any given positive number v.
there exists a &; such that when |(v*(g).€) — (v(x"(€).0).0)| < 8, we have 0 <
v. By the uniformly boundedness of M(x)"'N(x) and (4), there exists a & such
that when ||g]| < &, |(v*(€),&) — (¥(x"(€),0),0)| < & holds. With an almost same
analysis. we can find a 8 such that when |lg|| < 83,02 <v. Let 8 = min{82.83}.
We can conclude that for any given v. there exist a & such that when |[[g]| < 6.
|F(x(€),y"(€),€) = F(x",»",0)] <v.

Now we give an example to illustrate the above theorem.

Consider the following bilevel programming problem (P(€)):

L 2
minimize x + 2¢€y where v solves
xe

minimize v
ey

subject to y—x 2> €

where x € R! and y € R! are controlled by the leader and the follower respectively.
X={xeR'||x|<M}and Y = {v€R'||y| <2M}, M is a given positive number and
€ is a parameter vector in R? satisfying |&;| < M.

For any given x € X, the unique optimal solution of the inner problem

minimize y

yevY

subject to y—x > €
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is v*(x,€) =x+¢€;. So the problem (P(g)) can be reformulated as

. . . il
minimize x~ + 2€;(x + €>).
xeX

It can be easily shown that the optimal solution of this minimization problem is

x"(g) = —g; and the optimal objective value F(x™(€).v"(g)) = 2¢,&» —8%. When

g1 =& =0, (P(g)) is reduced to the following bilevel programming problem (P(0)):
minimize.\‘:

WEX

minimize v
yeY

subject to vy — x> 0).
It is obvious that the optimal objective value of this problem is F(x.y".0) = 0.

[t is not hard to verify that Assumptions (i) - (vi) are satistied. By Theorem 1.
for any given positive number v, there exists a & such that when |[g|| < 8.

[F(x*(e),y"(e).8) = F(x".y".0)| < w.

In fact, if we choose & = /¥, then
[F(x"(€),y"(€).€) — F(x",y".0)| = |2 €2 — €]

< ledl? +2leie2] < [fel]* +2lel =3]lell* <.
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