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LONGITUDINAL K-SETS ANALYSIS
USING A DUMMY TIME VARIABLE

EEKE VAN DER BURG and CATRIEN C.J.H. BIJLEVELD

Generalised Canonical Analysis (GCA) (Carroll, 1968) and nonli-
near Generalised Canonical Analysis (Van der Burg, De Leeuw &
Verdegaal, 1988) are shortly introduced. The latter technique is sui-
ted for categorical variables by means of optimal scaling and is im-
plemented in the computer program OVERALS. Nonlinear GCA 1is
tllustrated using a longitudinal study on the dyadic interaction of
mothers and children (Van den Boom, 1988). A dummy variable
models the time dependence. The supposed relation between mother
and child behaviour during the first siz months and the type of atta-
chment is confirmed.

Key words: Canonical correlation analysis, generalised canoni-
cal analysis, longitudinal research, nonlinear trans-
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INTRODUCTION

Generalised canonical analysis (GCA) or K —sets canonical analysis relates
several sets of variables simultaneously, searching for what is common between
the sets (Carroll, 1968). Van der Burg, De Leeuw and Verdegaal (1988) presented
an extension in which categorical variables are rescaled by means of optimal
scaling, which was implemented in the computer program OVERALS.
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Nonlinear GCA has not often been applied in longitudinal analysis; in the
present study the application of nonlinear GCA to the dyadic interaction of
mothers and children (Van den Boom, 1988) is illustrated, using a dummy va-
riable to model the time dependence. During the first six months after birth,
characteristic behaviour of mothers and children has been registered, that sup-
posedly predicts children’s future attachment; the attachment hypothesis could
be confirmed in our analysis.

This paper is meant to illustrate the usefulness of OVERALS in longitudinal
research. First a short introduction of (nonlinear) GCA is given. As longitudinal
data correspond to measurements in time, we are dealing with a three dimen-
sional data table or data box. We show how to rearrange the data box and how
to construct a dummy time variable. Next, the longitudinal application on the
attachment between mothers and their babies is discussed extensively.

GENERALISED CANONICAL ANALYSIS

Generalised Canonical Analysis (GCA) is a generalisation of Canonical Cor-
relation Analysis (CCA) as described in many text books on multivariate analysis
(e.g. Tatsuoka & Lohnes, 1988). The generalisation refers to the number of sets,
which can be more than two, say K. In fact, canonical correlation analysis can
be generalised in many ways (e.g. Kettenring, 1971; Van de Geer, 1984; Gifi,

1990), however, we are interested in a special type, namely the one defined by
Carroll (1968).

CCA solves the problem of finding linear composites of variables for two sets
in such a way that the correlation between the weighted sums is maximised.
GCA solves the same problem for K sets. Thus both CCA and GCA can be
applied in case there are sets of variables in the data, and in case the research
question deals with the correspondence between the sets.

Carroll’s (1968) formulation of GCA is as follows: maximise the weighted
sum of squared correlations between unknown scores for subjects and linear
composites of variables per set. The weights in this formulation are chosen
constants. Taking the weights equal to one, Carroll’s formulation can be shown
to be equivalent to: minimise the squared difference between unknown scores
for subjects, referred to as object scores, and linear composites of variables for
K sets. A second solution for the object scores must be taken independently
from the first solution, and -these scores must be standardised. In addition,
all subsequent solutions, say P, of the object scores must be independent from
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each other. Let us denote the sets of (standardised) variables by Xj (N x M)
with N the number of subjects, and M} the number of variables. In addition,
denote object scores by Z (N x P) and the weights for the linear composites by
Ag (Mg x P). According to the above formulation of GCA, we get the following
expression, which is equivalent to Carroll (1968):

(1) minimise o(Z, Ax) = 3 SSQ (Z — XxAy),
k=1

subject to the condition that the columns of Z are standardised and independent.

The notation SSQ stands for Sum of Squares. If we allow the data matrices
X to be rescaled by optimal scaling, a nonlinear version of GCA results (Van
der Burg, De Leeuw & Verdegaal, 1988). In optimal scaling we deal with several
types of measurement levels: nominal, ordinal and numerical. For nominal data
only the classification (of the subjects) by the variable counts, for ordinal data
the classification and the order are taken as fixed, and for numerical variables
the interval level is assumed. Denoting the rescaled variables by Qi (N x M),
and referring to the restrictions of each variable as measurement restrictions, we
can reformulate expression (1) by adding optimal scaling as follows:

K
(2) minimise 7(Z, Qk, Ax) = Y SSQ (Z — QrAr),
k=1
subject to the conditions that the columns of Z are standardised and inde-

pendent, and the columns of Q; are standardised and satisfy the measurement
restrictions.

The weighted sum of variables for set k, Qx Ak, can be rewritten in several
ways:

M My My
(3) ZijBjk = ZijCjka;'k = Zija;k = QrAx,
j=1 j=1 j=1

with ¢jz a column of Qk,a;.k a row of Ag, and Gjicjr = ¢jr. The matrix Gji
corresponds to the indicator matrix of variable j of set k, the vector ¢;; has to
satisfy the measurement restrictions of the corresponding variable and matrix
B 1s equal to cjraj,, which means that this matrix has rank one. The matrix
Bj; contains the category quantifications, i.e. the rescaled values of the category
scores for a variable. As this matrix has rank one, the category quantifications
are found on a line.

If we allow a nominal variable to be rescaled differently for each solution,
this means that the restriction ‘Bj has rank one’ is relaxed, that is ik 1S
unrestricted’. In that case we say that the variable is considered as multiple
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nominal. If we deal with one rescaling for a nominal variable, we say that the
variable is considered as single nominal. In case of a multiple nominal variable
the category quantifications are no longer on a line.

Expression (2), combined with the possibility of handling a nominal variable
as multiple, is called nonlinear GCA (Van der Burg, De Leeuw & Verdegaal,
1988; Gifi, 1990). This technique is-implemented in the computer program
OVERALS, which is in the SPSS package (SPSS, 1990).

The OVERALS analysis results contain several tools for interpretation. In
the first place the object scores form perpendicular axes, on which subjects
as well as rescaled variables can be projected. The subjects form a swarm of
points with variance equal to N in the direction of the axes. We can average the
subjects (object scores) for special categories of a variable, to obtain an idea how
these categories move around in the swarm of points. For the rescaled variables
we can compute the correlations with the axes. These correlations, referred to
as component loadings, provide the coordinates for the rescaled variables in the
object scores space. The component loadings can be interpreted in a similar way
as the component loadings in Principal Component Analysis (PCA). The fit of
the solution is reflected in the eigenvalue, which is maximally one and minimally
zero. The fit measure corresponds to the mean explained variance by the linear
composites per set (and not by the variables like in PCA). As we deal with sets,
we also deal with overlap within sets (multicollinearity), so that weights per set
give rise to the same interpretative problems as in multiple regression. Therefore
we use the component loadings for interpretation.

We realise that this description of nonlinear GCA is limited, however, it
is beyond the scope of this paper to provide a full explanation of nonlinear
GCA. For a more detailed description we refer to Van der Burg, De Leeuw and
Verdegaal (1988), as well as to Gifi (1990).

FLATTENING THE DATA BOX AND TIME AS A DUMMY VA-
RIABLE

In longitudinal research, we are usually confronted with a three dimensional
data box as there are, in the majority of the cases, measurements for N indivi-
duals on M variables for T time points. Only few multivariate techniques are
suited to analyse an N x T' x M data box. For instance LISREL can model
the time dependence and analyse a data box, however, only few time points and
numerical measurement levels are possible.
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In many instances we are forced to flatten the data box (Visser, 1985, chapter
4). Also in case of GCA we need a two dimensional data matrix. The flattening
of the data box is done in the following way. First we stack the individual T x M
data matrices in a two-dimensional super-matrix, that is of size (N xT') x M. This
matrix constitutes the first set, the so-called variables-set. Next, a dummy time-
variable is constructed as an (N x T') x 1 vector, a super-vector, that contains the
time points that have been numbered in such a way that each t—th time point
gets a unique identification. For the values of the dummy time-variable, we could
take the number of the time point. For T time points, we then get as subsequent
values of the dummy time-variable: (1,2,...,T),(1,2,...,7),...,(1,2,...,7T),
where the values for each subject have been put within brackets. The dummy

time-variable constitutes the second set, the so-called time-set. For a schematic
representation see Figure 1.

1 M 1
data 2
subject 1 .
T T
1 M 1
data 2
subject 2
NV .
T T
1 M ;
data
subject N .
T T
set 1 set 2
Figure 1.

Schematic Representation of the Dummy Time-Variable Set Up.
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Next, the dummy time-variable will be treated as a single nominal variable;
the variables in the first set will be treated according to their measurement
level. Because CCA or GCA maximises the canonical correlation between the
two sets, the relation between the variables-set and the time-set is optimised.
Consequently, the category quantifications of the nominal dummy time-variable
are the best possible summary of the scores of all subjects on the variables at
the respective time points. The category quantifications of the dummy time-
variable then describe the general development of subjects on the variables, over
the consecutive time points.

Variations on this theme are possible. The dummy time-variable could be
treated as multiple nominal, which gives several, independent, summaries of
development over time. A similar result is obtained by adding more dummy time-
variables to the time-set, labeled in different fashions (otherwise most algorithms
collapse). All dummy time-variables can then be treated as nominal, and higher
dimensional canonical spaces can be analysed, opening up the possibility to
investigate more-dimensional development.

Another possibility would be to scale the dummy time-variables not nomi-
nally but ordinally, or even numerically, so that trends can be approximated. For
instance, if a first dummy time-variable would be labeled as above with its values
equal to the number of the time point, this dummy time-variable would serve to
approximate linear development. Quadratic development could be approximated
by adding a second dummy time-variable to the time-set, that could then be labe-
led for instance: (1,2,.”,%T,...,?,l),(l,?,..., %T,...,2,1),...,(1,2,.,.,%T,
...,2,1), with the values of the time-variable again put between brackets for
each subject. And so on for more dummy codings.

The analysis of time-dependent data using the dummy-time variable set-up,
is possible using OVERALS. However, the summary of time-development is not
computed in the space of the time-set, but is projected into the space for the
object scores. In addition, the contribution of the variables-set is expressed in
terms of the space of object scores by means of component loadings. In two sets
canonical correlation analysis, usually a difference is made between the space
of the first set and the second set, and then we could choose the space of the
set referring to the dummy time variable (compare Van der Burg & De Leeuw,
1984). In OVERALS the two spaces are averaged into the space of object scores.
If we are dealing with more variables-sets and one time-set, OVERALS averages
all spaces.

Using one dummy time-variable and one set of variables, CCA or GCA re-
duces to a multiple regression. In that case, other regression-type multivariate
techniques can be used as well, such as multiple regression and redundancy
analysis, on the understanding that a nonlinear version exists.
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A LONGITUDINAL EXAMPLE: DEVELOPMENT OF ATTACH-
MENT IN YOUNG CHILDREN

The data used for this example stem from a study into the development of
attachment in babies (Van den Boom, 1988). Broadly-speaking, babies can-deve-
lop three types of attachment relationships to their mothers: secure attachment,
resistant attachment and avoidant attachment. Infants who are securely atta-
ched use the mother as a secure base from which to explore, they reduce their
exploration and may be distressed in her absence, but greet her positively on her
return, and soon return to exploring. This is the pattern shown by two-thirds
of infants in normative samples. It has been associated with responsive care in
the home during the first year. Infants whose attachment pattern is avoidant,
explore with minimal reference to the mother, are minimally distressed by her
departure, and seem to ignore or avoid her on return. In normative samples,
this pattern characterises one in five infants. Prior maternal home behaviour in
this group has been described as intrusive and reflecting discomfort with phy-
sical contact. Theoretically, avoidant attachment in infancy is associated with
later anti-social and aggressive behaviour, but the subject is controversial. The
third major pattern is described as insecure resistant. It is marked by minimal
exploration, reflecting inability to move away from the mother. These infants
are highly distressed by separations and are difficult to settle on reunions. In
normative samples, approximately one in seven babies shows this pattern; it is
considered to reflect a history of inconsistent maternal responsiveness, and sub-
sequent social development vulnerable to social withdrawal. However, since this
is also the least frequent pattern, it has been impossible to provide strong em-
pirical tests of these propositions (for details and references see Van den Boom,

1988).

Table 1
Mother and Child Behaviour Variables

child variables mother variables

positive sociable behaviour observing baby

observing persons and objects effective stimulation
vocalising vocalising/offering objects
whining/crying physical contact
exploration comforting

sucking uninvolved

responsiveness to crying
responsiveness to positive behaviour
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The design of this study was as follows. Thirty mothers with their children
were observed for 40 minutes on two occasions in each month during the six
months after birth. During these observations, a number of variables were scored.
Each time the mother or child exhibited a certain type of behaviour, this was
scored, so that the measurements were actually frequencies of occurrence of
types of behaviour in small (6 second) time intervals. The mother and child
variables are in Table 1. After 12 months, it was assessed whether the child
had developed a secure, resistant or avoidant attachment; this constituted the
(non-time varying) criterion variable. It was assumed that mothers influenced
children, and children influenced mothers, in addition a time-dependence was
supposed.

To investigate the general development of mother’s and children’s behaviour,
in relation to attachment, we chose the following design. The mother and child
variables were put in separate sets. Attachment constituted the third set; in
a fourth set we had a dummy time-variable, formed in the same way as in the
previous section, except that now for each mother and child we had 6 time points,
and we used a second, independent dummy time axis by taking the measurement
level of the time variable as multiple nominal. Each observation unit (mother
and child) is considered as six subjects (one new subject at each time point). All
behaviour variables were treated ordinally (the original frequencies of behaviour
were recoded into 7 or 8 categories), the attachment variable was treated as
multiple nominal. One child had gone to hospital in the last two months, which,
with lots of crying, caused rather deviant scores, so for this child we deleted the
last two months from the data set. By choosing this set-up, OVERALS will
maximise the relation between mother and child variables, the time axis and
attachment variable. As attachment has only three categories, we perform a
type of multiple group (longitudinal) discriminant analysis. It means that the
groups are predicted as well as possible on the basis of what is common in child
behaviour, maternal behaviour and the development of these.

ANALYSIS RESULTS

The eigenvalues of the first and second canonical dimension were .630 and
.560 respectively. This is slightly on the low side, which can be explained by
the fact that attachment does not vary in time as the other variables do, which
thus more or less suppresses the relation between sets. In Table 2 the contribu-
tion of each set to the eigenvalues is shown. This contribution, or fit per set,
corresponds to the squared multiple regression coefficient of the object scores
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and the variables of a set. Indeed we see from Table 2 that attachment and time
contribute mainly to different dimensions. Although time and attachment were
completely independent in the raw data, the rescaling allows for a very small
dependency to be introduced in the second dimension (c.f. Figure 3).

Table 2

Fit For Every Set per Dimension and Eigenvalues

dim.1 dim.2
mother variables 732 821
child variables 872 .812
time .895 .101
attachment .019 .505
eigenvalues .630 .560

The component loadings are in Figure 2; maternal behaviour has been typed
in plain face, children’s behaviour in italic face. The object scores are not plotted
in Figure 2, however we can interpret the component loadings as characterising
those subjects who can be found in the direction or the neighbourhood of an
arrow.

In the center top of the picture, crying occurs together with comforting, so
children who cry a lot, are usually comforted much (although the component
loadings are not identical). Thus we can expect in the top of the plot, mother
and child pairs in observation periods during which the baby cries a lot, and the
mother does quite a bit of comforting; in the bottom of the plot we can expect
mother and child pairs in observation periods during which the baby cries little,
and the mother does little comforting. Turning clockwise, we find physical con-
tact of the mother closest to responsiveness to crying. Next, children’s positive
behaviour, stimulation by the mother, and less strongly so, vocalising by the
baby and the mother’s responsiveness to positive behaviour point in approxima-
tely the same direction. Vocalisation by the child is apparently more related to
stimulation by the mother, than by her vocalising, as we find this variable at
some angle, closest to exploration by the baby. Turning further, we find uninvol-
vement by the mother. Nearby, the baby’s watching of the mother can be found,
and close to it, the mother’s watching of the baby. Both watching variables and
the sucking variable have moderate to low component loadings.
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Component Loadings of Rescaled Mother and Child Variables.

Looking at the children’s development, we have drawn in Figure 3 the average
monthly object scores for the mother-child pairs in month one to six: all start
in month 1 at the right-hand side of the picture, and end in month 6 at the left-
hand side. Figure 3 should be interpreted in connection with the former figure
of component loadings, which means that for instance the resistantly attached

cry a lot in month 1, the mothers have lots of physical contact with the securely
attached in month 1, and so on.

In Figure 3 the first thing that catches the eye is, that the three attach-
ment groups are markedly separated in the plot. The securely attached ‘travel’
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through the bottom of the plot, from month 1 to 6, and the avoidantly attached
and those with resistant attachment both travel in the upper regions. On the
average, children develop from right to left. Combining this with the information
from Figure 2, the following emerges. The mothers of those children who will
eventually become securely attached, start out with lots of physical contact with
their babies; they are very responsive to crying, especially in the second month.
In the second and third month, these children show lots of positive behaviour,
and, though less markedly so, start vocalising, with their mother stimulating
them. The mother’s responsiveness to positive behaviour then increases towards
the fifth month, as does her vocalising and offering of objects. In the last month,
children start to explore to the full. Towards the end of the six months, mothers
become less involved with their children. For the securely attached children,
crying and comforting are more or less stable over the months.

2
1
. .
s
3 0 1
o
E
© 6
: 2
S
4
-1 3
A resistant
A ® avoidant
B Secure
-2
L ' T I T I 1
-2 -1 0 1 2
dimension 1
Figure 3.
Developments for Three Attachment Types, Numbers Correspond to Time
Points.
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Those children who eventually develop an insecure attachment pattern, in-
teract with their mothers along different lines. The resistantly as well as the
avoidantly attached are both located close to crying. Especially the resistantly
attached, start with a lot of crying in the first month. These children (and their
mothers) make a bad start. Mothers and children then make a swing to the
right, as probably mothers try to cope with this behaviour by lots of comforting
and more physical contact in the second month. In the third month, physical
contact decreases already, and mothers become less and less involved with their
children towards the last months, while children become more explorative. The
children that will become avoidantly attached do not make such a bad start
as the resistantly attached, although these children also cry a lot in the first
month. The mother comforts the child more than in the resistant group, and in
the second month there is also a movement towards more physical contact. In
the third month, the mother and child do some stimulation, positive behaviour,
vocalising, but this is counteracted by still lots of crying by the baby. In the
fourth month, things go ‘wrong’ for this group, as mothers become less involved,
a tendency which continues until the last month. Looking at differences between
the avoidant and resistant group, it appears that the resistantly attached make
an even worse start than the avoidantly attached, and that uninvolvement by the
mother occurs earlier in the resistant group than in the avoidant group. In both
groups, children are more left alone at quite an early stage, than in the secure
group. It should be noted, that all babies develop into the direction of explora-
tion, meaning that, independent of the development of attachment, explorative
behaviour grows in time.

DISCUSSION

Previous experience with the research presented in this paper showed that it
was hard to demonstrate the attachment hypothesis as it is not the behaviour
of mothers and children that produces a special type of attachment, but the
change of behaviour in time that is related to attachment. By using OVERALS
we succeeded in a very nice way to demonstrate this phenomenon. Plotting
the component loadings (Figure 2) and the mean object scores (Figure 3) gave a
very clear impression of how the relation between attachment, time and different
types of behaviours can be interpreted.

In this paper we used a dummy time variable to model the relation between
the measurements and time. Another way of modelling time dependence in lon-
gitudinal research is by dealing with lagged versions of the data. In Bijleveld
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and Van der Burg (1993), this method is explored, also in combination with
OVERALS. The conclusion of this analysis is rather similar to our finding, al-
though it is more difficult to interpret lagged versions of variables. The method
presented in this paper shows an elegant and easy to interpret solution.
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