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MINQUE OF VARIANCE COMPONENTS IN
REPLICATED AND MULTIVARIATE
LINEAR MODEL WITH LINEAR
RESTRICTIONS
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The Minimum Norm Quadratic Unbiased Invariant Estimator of the
estimable linear function of the unknown variance-covariance com-
ponent parameter ¥ in the linear model with given linear restrictions
of the type RY = c is derived in two special structures: replicated and
growth-curve model.
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1. INTRODUCTION

A general linear model with variance-covariance components is often consi-
dered in the form (see e.g.Rao—Kleffe [2])

(1) y=XB+e, E(e) =0, E(eE'):V(ﬁ):Zp:ﬁivi
i=1
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where X, V; are given matrices, V; are symmetric for all ¢ = 1,...,n, and J =
(P1,...,7p) € © C R? is such that V = {V(9) : ¥ € O} constitutes a closed
convex cone. The vector parameter 3 is an unknown vector of fixed effects. The
existence of the 3rd and the 4th moments of the vector ¢ is assumed.

The aim is to find an estimator of a given linear function f'J as a function
of the vector of observations v.

There are many authors investigating the problem (see e.g. [1]) considering a
quadratic approach. The basic idea of this approach is to construct a quadratic
form, say y' Ay, with a symmetric matrix A such that the statistic 3’ Ay meets
additional requirements as e. g. unbiasedness and invariance. If the distribution
of the vector ¢ is given, it is known how to find a statistic which minimizes the
variance in the class of quadratic unbiased estimators.

In the early seventies C. R. Rao introduced a MINQUE principle which is
based on the idea to find a quadratic form y’ Ay which is an unbiased and
invariant estimator and the matrix Ag minimizes the Euclidean norm tr AGAG
for a suitable choice of the matrix G.

Let ¥ be a preassigned vector from the parametric space such that V(d) is
a nonnegative definite matrix. In case that the vector y is normally distributed,
to minimize the variance of the unbiased and invariant statistic y’ Ay at the point
Jg means to minimize the norm tr AV(d9)AV (Jg). One reasonable suggestion is
to substitute the matrix V(?o) for the matrix G in the expression which should
be minimized for getting the MINQUE.

To recall the known facts we give the following considerations which lead to
the explicit form of the MINQUE under the model (1) for a nonnegative definite
matrix V(Jg). For simplicity we shall use the notation V(dJ5) = V.

It is useful to analyze first the invariance principle. We can refer to e.g. Seely
in [3] or, Rao and Kleffe in [2].

If the expectation of the vector y is an unknown vector X3 we can investigate
a vector of observations in the form

Yo = XBu +¢,

where y. = y— X G for a fixed vector By € R* and B, = B— Bo. The covariance
matrix V(J) of the vector y. is the same as the one of the vector y. It is natural
to require that the estimator of the function f'd based on the vector y is the
same as the estimator based on the vector y.. That should be valid for all vectors
B € R* what implies the next definition.
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Definition 1

The statistic T'(y) is said to be invariant under the group of transformations
y— y— XB in model (1) if T(y) = T(y — XB), for all 8 € RF.

It is easy to see that the quadratic form y’ Ay, A = A’ is an invariant statistic
in the model (1) if and-only.if AX = 0..Referring to.Rao.and Kleffe.in [2] p.78
we give the definition of a maximal invariant.

Definition 2

The statistic T'(y) is said to be maximal invariant with respect to the group
of translations if T'(y;) # T'(y2) whenever y; and y; are such that no translation
maps y; into ys.

The condition for the quadratic form to be an unbiased and invariant esti-
mator for the function f’4 yields the necessary and sufficient condition for the
matrix A of the form:

(2) AX =0, trAV;=f;, i=1,...,p.

Denote Ty = Vo + XX’. The matrix A satisfying the condition (2) meets
the equality tr AVoAVy = tr ATy ATy. The inclusion R(X) C R(Tp) and the
property

TEX —THX(X'TF X)) X' T X =0

imply the equalities
(3) T =T X (X' T XY X'T = (MToM)T = (MVoM)*,
where “4” can be replaced by “—” in the first part of the equation. Here

M =1- XX, and the superscript “—” denotes the g-inverse of a matrix and
“4+” denotes the Moore - Penrose inverse of a matrix.

The following result can be found in [2] page 94.

Proposition 1

(a) The MINQUE of the estimable function f'¥ in the model (1) is given by

14
o= Z)‘iQi;
i=1
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where
(4) g =y (MVoM)*Vi(MVoM)*ty,i=1,...,p

The vector A is any solution of the system KA = f, where the matrix K
is given by the entries

{K}i = tr (MVaM)* V(MY M)*V,
and represents the criterion matrix for the estimability of the function f'9.
(b) The variance of ﬁ at ¥ under the normality assumption is given by

varg, f'9 = 2 KA = 2f K~ f.

Remark 1
Alternatively, the entries ¢; defined by (4) are given as:
¢ =y Rr,ViRpy, Rry =Ty Mz,, Mg, =1-X(X'Tg X)"X'Ty,
The choice T for T leads to (4). (See also [2].)

The estimation of f'¥ can be investigated also as a special linear problem, as
considered by e.g. Verdooren in [4]. The estimator !'(y ® y) is a linear function
of the vector y ® y, where ! is an n? dimensional vector and ‘@’ stands for
the Kronecker product. This approach enables to apply linear methods to the
problem of quadratic estimation.

Now let us introduce a class of estimators which is wider than the class of
quadratic forms in y. The class of quadratic functions including the linear term
and a scalar term

E={yAy+by+d: A=A, beR" deR'}

is investigated. A characterization of unbiasedness and invariance is given in the
next theorem.

Theorem 1

Let R(V(9)) = R(Vi:...:Vp), for all ¥ € ©. The class of unbiased estima-
tors for the function f’ 19 and invariant with respect to the group of translations
y — y — X B in the model (1) is given by

B)ur={yAy+b'y: A=A, beker X', AX =0,trAV; = f;, i=1,...,p}
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Proof

A condition for the unbiasedness of the estimator y’Ay + b'y +d € € is
expressed as

(6) E(yAy+by+d)= f'dfor all B € R* and 9 € O.
The left hand side of the relation (6) is
P
BX'AXB+ Y VAt AV + VX[ +d= f'9
i=1
forall e R¥ and ¥ € O, which implies
P
(7 D Oitr AV; +d = f'9, and FX'AXB+VXB =0,
i=1
for all € R* and ¥ € ©.
A necessary and sufficient condition for invariance is
8) (y+XB)A(y+ XB) + V' (y+ XB) +d =y’ Ay + by +d
for all B € R* | which implies
9) BX'AXB+bXB+ 26X Ay =0 for all 8 € R*.

The relations (7) and (9) imply the necessary and sufficient condition of the form

p
(10) Y WitrAVi+d = f'9
i=1
BX'AXB+VXB = 0
ﬂIX/Ay =

for all B € RF and ¥ € ©.

Let T be an arbitrary matrix which fulfils the condition R(T) = R(X :V;:...:
Vp). Then (10) is equivalent with

P

(11) doUitrAVi+d = f'9
i=1

BFXAXB+VXB = 0

BX'ATz = 0

187



forall ¥ € ©, # € R*, and z € R". The system of equations (11) leads to

(12) d=0, trAVi=f; i=1,...,p
X'AT =0, be&kerX’

It is clear that each estimator from the class £ meets the condition (12).

Let y' Ay+b'y be such that the matrix 4 and the vector b satisfy (12). Denote
A. = T~'T'ATT=. We have to prove that A,X = 0. Since y € R(T) almost
everywhere, the equality

YAy+by=yAy+dy
holds.

Further, tr A,V; = trT"T’ATT"V} =trAV; = fiforalli=1,...,p, and
AX =T~'T'"ATT=X = T~'T"AX =0, hence the estimator y' A, y+b'y belongs
to the class £.

Remark 2

The following definition will prove to be very useful in more complicated
situations when the parameters of the model do not belong to an open set, e. g.
if linear restrictions on the parameters are present.

Definition 3

The linear-quadratic statistic T'(y) of the form T'(y) = y' Ay+b'y+d = I'(y®
y) + b’y + d which is unbiased for f’d, invariant under the group of translations
y — y+X B and minimizes the variance var 3,7 (y) under normality of the vector
y at a given point ¥ will be called the MINQUE of the estimable function f'9.

Lemma 1

The statistic T(y) = y’ Ay + b’y + d introduced in Definition 3 reduces in the
model (1) to the simple form y' Ay.

Proof
We only need the decomposition

var 9, T(y) = vary,(y' Ay + b'y) = varg,(y' Ay) + var g, (b'y),
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as cov 9,(y' Ay, b'y) = 0 under normality. The minimization requirement yields
var g, (b'y) = 0, from which follows b’y = 0, as E(b'y) = 0.

Sometimes it is reasonable to consider the situation that linear restrictions
on the parameter ¥ are given. They are often presented as RY = ¢, where the
matrix R and the vector ¢ are given. The model (1) together with RY = ¢ yields
the model

P
(13) (v, XB, > 0:Vi|[R9 = c)

i=1

Utilizing the linear approach the MINQUE for the estimable function f0 in
model (13) has been derived by Volaufova and Witkovsky, see [5]. In the next,
certain special structures of the model (13) are considered.

2. REPLICATED MODEL

In practical work we come across situations where data from different sources
contain information on the same set of parameters. In such cases we have the
problem of pooling all the available information for an efficient estimation of
parameters. In special cases one may have the replicated model

Yo =XPB+eq a=1,...,m
E(ea) =0, E(ee')=V(I) cov(ca,ep)=0 a#f
which can be written as a combined model
(14) y=Xp+e

where y=(v},95,...,4,), X=(1®X), 1=(1,...,1) and analogously
€= (1,---,€,)". The conditions E(g) = 0, E(ee’) = I ® V(9) hold.

Under the above given assumptions the estimators can be based on the sample
mean vector and the sample variance matrix

1 <& . 1 &
15 j = — V=—-ooo-o o — P(ya — 7).
(15) 7 m;ya, m_lg(y 7)(ve — 9)
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Denote W; = I ® V; and W(9) = I ® V(9), respectively. In case we have linear
restrictions on the parameter ¥ we get the model

(16) (v, XB,W(9) | RY = )

Fix the value ¥ and denote Ty =W(8o) + X X’. ‘Denote by T, g square
root of the matrix Ty, for which the equalities UjUp = Ty, and UgToUf = 1
hold. The vector y transformed by the matrix Uy imply the model

(17) on = UoXB + Uge.

The maximal invariant with respect to the translation Uoy = Uoy + U XB is
then the vector z = MyUsy, where the matrix M, of the foorm M, = I —

UoX(X'Ti" X)~X'Uy’ is the projection matrix onto the orthogonal complement
of the column space of the matrix UpX.

Consider the vector z ® z. The expectation of this vector is
E.}(z ® Z) = (VCCMOUowlUQIMO, ey VecMoUonUolM_o)ﬂ

The symbol “vec” of the matrix denotes the vector formed by the columns of
the matrix one below the other. For the sake of simplicity we shall denote the
matrix

(vec MyUoW1Uo' My, .. ., vec MoUo W, Uy’ M)
by the symbol Q.

In general the variance matrix X(9) of the vector z ® z depends on the 3rd
and 4th moments of the vector y, i.e. not only on the vector parameter 9.

These simple considerations imply the model formed by the vector z ® z, its
expectation QU, and the covariance matrix fixed at Jy. Denote this model as

(18) (2 ® 2, @Y, Z(Y))
A straightforward application of the linear theory offers the following lemmas.

Lemma 2

The linear function f'd is unbiasedly invariantly estimable in model (18) iff

f € R(Q'Q) or equivalently iff f € R(H), where the matrix H has elements
H ij =tr V,V] .

(See also [2])
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Lemma 3

Consider the model (18). Let the vector y be normally distributed. Then
the ordinary least squares estimator of linear function f'¢ with f € R(Q'Q) is
the BLUE in the sense that it is a linear function of z ® 2.

Proof

The best linear (as a function of z ® z) unbiased estimator (BLUE) of the
function f’¥ in the model (18) is given in general as

F(Q(E(W0)+2Q)7Q)” Q'(E(¥0) + QQ) ™ (2 ® 2).

The ordinary least squares estimator (OLS) of the estimable function f'9 is given
as

FRY QE®2).

It is enough to show that the model (18) fulfils one of the necessary and sufficient
conditions for the OLS to be the locally best linear (in z ® z) unbiased estimator
of f'¥9, 1. e. to show that the inclusion

R(Z(90)Q) € R(Q)
holds.

In the case that the vector y is normally distributed, the matrix $(Jp) is of
the form

(19)  E(do) = (MoUo ® MoUo)(I + F)(W(90)UgMy @ W (90)UgM,),

where the matrix F' is uniquely determined by the relation Fvec A = vec A’, for
each matrix A of proper dimension. We show that

E(do)vee MoUoWiUg M, € R(Q).
Substituting the expression from (19) for £(do) we gradually get

E(do)vec M UW;Ug M, =
= (MoUo ® MoUo)(I + F)vec (W (90)Ug MoUoWiUg MoUo W (d0))
= 2vec (MoUoW (90)(MTo M)t W;(MTo M) W (90) U M,)
= 2vec (M UoTo(MToM)* Wi (MTo M)* ToULM,)
= 2vec (M UoWiUs M,).
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Here we have used the first part of the equalities (3). The matrix M is defined
asM=I1-XX*%.

The proof is complete.

Remark 3
The matrix M can be expressed as
(20) M=M,QI,+ P,®M,

where P, = :—111’, My, = I— Py, I, is the n x n identity matrix and the matrix

Misgivenas M =1 - XX*.

Corollary 1

The ordinary least squares estimator in model (18) is the MINQUE of the
estimable function f'9.

For the purpose of completeness we give the following lemma. (See also [2]).

Lemma 4

The MINQUE of the estimable function f'd is given by
— & m
19 = g, = V 4+ — 7 AT
(21) f1I = ;_1 Aig; =tr GV + —¥ Ay,

where the vector § and the matrix V are given by (15),
P
G=Y NViVivg,

i=1

p
A= N (MVoM)*Vi(MVoM)*,

i=1
(22) ¢ = (m-DaVFVViT+ %g’(M%M)m(MVOM)’fy]

A= (A1,...,2p) is any solution to the system (QQ)A = f,and A* = (m—1)A.
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Proof
Following the statement of Lemma 3 it is enough to express the estimator
fI(QIQ)—QIZ ® z

in the desired form. Let us denote by A = (Q'Q)™ f, where the matrix Q@)
is an arbitrary g-inverse of the matrix Q_’Q

Let us concentrate now on the vector Q'(z ® z), which we denote by the
symbol ¢. The i-th entry of the vector ¢ is then

(23) 9, = (vec MaUoWilUo' M,) (MoUoy ® MoUsy)
= (vec Uo'_MOUoW}UO'M_OUo)’vecy_y'
= Y (MWoM)*Wi(MWoM)*y,

due to the fact that

(24) Uo'MoUp = (MToM)t = (MWoM)*.

Substituting (20) for M in (24) we get
(MWoM) = My, @ Vo + P @ (MVo M)

and consequently
(MWoM)* = My, @ Vit + P @ (MVoM)*.

From that we get directly

4 = ¥ (Mn®VTViVih + P @ (MVoM)*Vi(MVoM)*)y

m — Dtr ViTViVgtV + mg (MVo M)t Vi(M Vo M)ty
0 0

(m—1) (tr Vit Vivet v + ml_lg'(MVoM)JfVi(MVoMﬁg) :

The i, j-th element of the matrix Q_’Q can be expressed as

{QQ)i; = (vecMUoW;Uo'M,) (vee MU W;Us' M)

tr (MWo M)t W;(MWo M)t W;

(m = Dtr Vet ViVgh s + tr (MVo M) V(M Vo M)V,

= (m-1) [t ViV Vi + (m = 1) " e (MVo M) P Vi (MVo M) ;]

It means that

(25) QQ=(m-1)[Go+(m-1)7'Q'Q],
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where

(26) (Go)ij = tr Vi ViV,
(27) (Q'Q)i = tr (MVoM)*Vi(MVoM)*+V;.

Then the solutions of the systems Q'QX = f and (Go + (m — 1)"1Q'Q)\* = f
are connected by the relation A = (m — 1)~1A*. The statement of the Lemma is
straightforward.

In case that there are linear restrictions on the vector ¥ we shall refer to the
model

(28) (2®2, QO|RY = ¢, T(Yy))

which can be treated as a linear model (in ¥) with restrictions. The natural
reparametrization of the model (28) is as follows: let 9 = R~c 4+ B7y be the
general solution to the equation RY = ¢, where the matrix B fulfils RB = 0.
Hence we get

(29) (z®2—=QR ¢, @By, T(dy))
It is clear that according to the relation
f'9=f'R7c+ f'By

the estimability of the function f’d is equivalent to the estimability of the func-
tion f'B7 in the model (29).

__The MINQUE of the function f'9 would be then the estimator f’t? f'R™c+
f’Bn, where f’Bn is the MINQUE derived in the reparametrized model (29).

The procedure avoiding the reparametrization is presented below.

The model (28) can be interpreted in the form

@ 2)-(2). 9 0]

We shall take into account Definition 3 and Lemma 1 . The following two
theorems will conclude our considerations.

Theorem 2

The linear function f’¥ is unbiasedly and invariantly estimable in model (16)
iff  f € R(U), where the matrix U is given as U = (Go+ (m — 1)"1(Q'Q+
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R'R)). The MINQUE of an estimable function f'd is then ﬁ = f'Y9, where 9
is the solution to the system

((m = 1)Go + Q'Q)9 + R'v
(31) RY

The vector v is the vector of the Lagrangian multipliers and the vector ¢ is given
by (4).

I

Proof

The linear function f'? is linearly (in (2’ ® 2’,¢')’) unbiasedly estimable in
model (30) iff f € R(Q', R') ( % ) = R(Q'Q + R'R). The i, j-th entry of the
matrix Q'Q + R'R is given from (25), (26), and (27) as
BN A{QQ+R'R}ij = (m—1)[Goij + (m - 1) ({QQYij + {R'R}i)] -

It is Znough to denote U = Q'Q + R'R and the first part of the theorem is
proved.

Consider now two models:
(2®2,@I|RI=c,I)and (z® 2, QV|RY = ¢, £(¥y)).

According to Definition 3 it is enough to find an estimator which is unbiased
and minimizes the variance at ¥y under the normality assumption of the vector

y. The invariance is obvious since each estimator based on the vector z® z is a
statlstlc which is a function of the maximal invariant.

As it was shown in the proof of Lemma 3, under the normality of the vector
y the equality £(90)@ = 2Q holds. Hence the minimization of the form (2 ® z —
Qt?) (2©2-Q79) under the restriction RY = ¢ is equivalent to the minimmization
of (z@z— Qt?)’ (Y0)” (2®2z—QV)" under RY = ¢. The statement of the theorem
is then straightforward. -

Theorem 3

One special choice of the MINQUE in model (16) of the MINQUE-estimable
function f'¥ is

—_— P
= Ry m Tl Rz E O

i=1
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where the vector § and the matrix V are given by (15), and the matrices G(®)
and A by the relations

4
GB — Zni%+‘/i%+,

i=1

P
AP =3 " ki (MVaM)YVi(MVo M),
i=1
respectively, where k = (ki,...,kp) is any solution to the system
(MrUMp/)tk = f, and the vector v is given by v = (RU~R')"RU~f. The
matrix U is given in Theorem 2, and the matrix Mg is defined by Mp =
I- R(RR')"R.

Proof

The statement is a direct consequence of Lemma 3 taking into acount the
special structure of the matrix Q’ Q and the criterion matrix U as well.

3. GROWTH CURVE

In the following we shall concentrate our attention on the multivariate model
often referred to as the growth curve model, in the special form:

(34) Y = XBZ +e,

where Y is the n x m-matrix with expectation XBZ. The random matrix e
satisfies the assumptions

p
E(vece) =0, E((vece)(vece))=W(d) = Zi?,-(Vi ®X).
i=1

Both the matrices X, Z of the type n x r and ¢ x m, respectively are known, and
the matrix B is an r X ¢-matrix of unknown parameters of the expectation. The
matrices V;, ¢ = 1,...,p and £ are known and symmetric, and the parameter
space © C RP for ¥ € © is such that the matrix W(9) is p.s.d. for all ¥ € ©.
At first we shall present the MINQUE of an estimable function f'd. We shall
proceed analogously as in the replicated model.
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Denote by W; the matrices V; @ &
Using the operation ‘vec’ we create the model
(35) vecY = (Z' @ X)vec B + vece

Let us use the notation y = vecY', and € = vece. Then the model (35) is in the
vector form given as

(36) y=(2'®X)vecB+¢
and together with the properties

P
E(e) =0, E(ec)=> oW
i=1
it forms a special form of a linear model with variance-covariance components
as given in (1).

Fix the value ¥o. Let the matrix W(9,) be denoted by Wy. Let us use the
notation To = Wo + (2'Z @ XX'). Transform the model (36) by the matrix
Uo, a square root of the matrix Ty, analogously as in the previous section. The
resulting equality is

Uoy = Uo(Z' ® X)vec B + Uge.

If we are interested in invariant estimation with respect to the translations of
the type Uoy +— Upy + Uo(Z’' ® X)vec B the maximal invariant is the statistic
M Upy, with

My=I1-Uo(Z'®X)((Z®X")T{(Z2'® X)) (Z® X")Uy'

Lemma 5
The matrix M can be expressed as

(37) Mo:MVO+%Z’®I+PV0+%Z’®ME+§X,

where the matrix
P oy, =Vo 22V 2y 2y,
o
Mysyg, =1-Fay

and analogously the matrix

M,

stix =1 Py

+§X’
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with

Py, =THIX(X'SHX)"X/(StE).

Denote S = MUpy. Then the corresponding linear model will be considered
in the form

(38) (vec SS’, E(vec SS'), Zo(vec SS')),

where To(vec SS”) is the covariance matrix of the vector vec SS’ fixed at the
point Jg.
Lemma 6
The expectation of the vector E(vec SS’) is
E(vec SS') = Q9,
where the columns of the matrix Q are given by the relation

+1 +l’
Q. = vec MV0+%Z'V° AN MV:%Z,@I

+1 +1/
+ PVO+%Z"/O 2WV0 : Mv:'%z/ ®ME+%X

+1 +l'
Moy VOV Pay @ Moy

+1 +1/
TP VUV Py @ My |

As before we want to utilize the general results of the theory derived for
model (13).

Lemma 7

The linear function of the parameters of the form f’J is estimable in model
(38) iff f € R(Q'Q). The ordinary least squares estimator of f/1J is given as

?’T? = f(Q'Q)"Q'vec SS'.
Using the same argumentation as in the previous section it is easy but tedious

to show that the OLSE of f’¥ given in Lemma 7 is the MINQUE defined in
Definition 3.

Consider the linear restrictions RY = c on the parameter 9. Then we get the
model

(39) (vec SS', QU|RY = ¢, To(vec SS")).
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Denote § = Q'vec SS’. The next two lemmas give the expressions for the
entries of the vector § and the matrix Q'Q.

Lemma 8

The i-th element of the vector § is given as

(40) G=tuSHY - YVt ViVt (Y - Yo).

Proof

The result is the consequence of the following calculations. Let us denote by
U; the matrix

+1 +1/ +1 +1/
MVO+%ZIV° 2V1V0 2 MVO+%Z'®I+PVO+§Z'VO QViVO 2 AJVD+%Z'®A[E+%X

otix

+1 +l/
+Mvo+%Z'V° Vv PV.,J'%Z'@M X’

+1 +1/
+PVO+%Z'V° A TATAR PV:%Z’®ME+1
Then _
3i = Q' ;vec SS' = (vecU;)'vec SS'.
For any two matrices A, B with appropriate dimensions the relation
(vec A)'vec B =tr A'B
holds. From that we get
3 = trU{SS' = tr S'U;S.
Substituting the vector MUy for S we get
g = leoMoUiMoon = (vec Y)’UoMoUiMoUoveC Y,
what after substitution for M, Ty , and U; leads to
& = uItyvivivty!
=2 DX (X'SY X)) X'SYY Vi 2/ (2 2 - 2V vivgty!
+tr X (X' Y X))~ X'SYY Vit 2/ 2Vt 2 -z vt
xV;Vet Z'(2VetZ2')~ ZvitY' st X (XS X)X,
If we denote by Y the estimator of XBZ which is given by

XBZ = X(X'StX)~X'StY Vi 2/ (2Vi 2')- 2,
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the resulting formula follows from

G = e SYY VAV Y - 20 SHY oV ViV Y + e SHY OV VY,

By the analogous procedure we get the result of the following lemma

Lemma 9

The 4, j-th entrie of the matrix Q'Q is given by

R 1/
QQuy = rOuM .y My vy
1/
+ My trPV+%ZIVo L ATAR] My, AR AL
o
+ trMV+%Z,V0+5V,~V0+ e LR

(41)

-+

+3,+% +io, 0 ,+4
Py, VeV P, Vo T ViVeE |

The statement of the next theorem leads to the MINQUE of the estimable
function f'¥ in the growth curve model with linear restrictions on ¥.

Theorem 4

The linear function f’ ¥ is unbiasedly and invariantly estimable under the
model (39) iff fe R(Q Q@ + R'R). The MINQUE of an estimable function f'o
is then f'J, where 9 is any solution to system of equations

QRI+Rv = ¢
Rv =

The matrix Q'Q and the vector § are given by (41) and (40), respectively. The
vector v is the vector of Lagrangian multipliers.

The proof of the theorem goes on the same lines as the proof of Theorem
2. The last theorem gives the explicite form of the MINQUE in case that the
matrix R is of full rank in rows and the relation R(R') C R(Q’Q) holds, what is
equivalent to the existence of a matrix, say C, for which the equality R = CcQ'Q
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is valid. The statement of the theorem is then the direct consequence of the
linear theory applied to model (39).

Theorem 5

The MINQUE of a MINQUE-estimable function f'4 in model (39) under the
assumptions given above is given by

F9=Fo+ 1(QQ) R (R@Q)R)™ (c - Ca),

where 9 is the MINQUE of 9 in model (38).
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