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QUANTILE PLOTS IN THE ANALYSIS OF
HETEROSCEDASTIC MODELS

M. PEPIO and C. POLO
Laboratorio de Estadistica
E.TS.EILT.-U.P.C.

Recent developments in qualily engineering methods have led to con-
siderable interest in the analysis of variance, building a dispersion
model, tdentifying tmportant effects from replicated ezperiments and
checking for significance by means of a half-normal plot. A metho-
dology based on a chi-squared quantile plot is presented here for che-
cking first the presence of heteroscedasticily, outliers and other data
peculiarities, and after the estimation stage a new stepwise procedure
tests for significant effects.

Quantile Plots in the Analysis of Heteroscedastic Models.

Keywords: Chi-squared Plot; Dispersion Model; Stepwise Test.

1. INTRODUCTION

In the process of ascertaining the functional relationship amongst the obser-
ved response and the experimental factors, two points are to be considered.
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On the one hand, to include in the model all knowledge anticipated by the
physical nature of the phenomena under analysis and, on the other hand, to look
graphically into the data to reveal specific shapes to modelize the response. From
a data analytic viewpoint, one would like to have procedurres which use some
sort of statistical model for aiding the process of making inferences, while at the
same time not requiring a commitment on any narrow specification of objectives,
including the unquestioned acceptance of all the assumptions made in the model.
Thus the techniques should have value not only for identifying possibly real
effects but also for indicating the presence of outliers, heteroscedasticity and
other peculiarities which are often assumed to be non-existent by the formal
model.

2. QUANTILE PLOTS

Quantile plots [2, 3, 4] are general purpose displays that portray many distri-
butional features of a set of data. Quantile plots not only are useful for graphi-
cally describing the distribution of a set of data values, but they can also be used
to assess the fidelity of a set of data to a hypothesized probability distribution.

For many analyses the calculation and plotting of quantiles will suffice to
enable an experimenter to discover most of the salient distributional features of
a data set. This technique allows an analyst to see more complex variations in
the data than those that are provided by simple summary statistics. The entire
range of the distribution can be examined, and subtle shifts in shape, location
and spread are easily detectable by departures from linearity, zero intercept and
unit slope.

The most widely used quantile plot is likely the Normal Probability Plot,
comparing the empirical distribution function of a set of data with the Normal
distribution function. Be y(;) < --- < ymn) the ordered observations, p; a cu-
mulative proportion associated with the i—th ordered observation —(i — 0.5)/n
and i/(n + 1) are very common— and g¢(p;) the standard normal quantile, the
Normal Probability Plot is a plot of the points {y),q(pi)},i=1,...,n.
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3. QUANTILE PLOT FOR VARIABILITY

Common variance is a standard assumption in many statistical analysis (Li-
near Model, Anova, etc.) checked afterwards by means of a plot of residuals
versus the predicted values. Nevertheless, if there are r replications within each
cell of a multiway cross-classification or within each treatment of an n = 2¥ pos-
sibly fractional, factorial experiment, then the analysis leads to n sums of squared
derivations from the within-replication mean, s?,...,s2, each with v = r — 1
degrees of freedom.

Given the assumption of normality and no correlation, to test the homos-
cedasticity and assess the relative magnitudes of s2,...,s2, these once divided
by the unknown variance can be considered as a random sample from a central
chi-squared distribution, and the appropiate quantile plot is thus a plot of the
ordered values s?l <...< 52"), against the quantiles of a x? distribution with
r — 1 degrees of i)reedom. If( all observations have the same variance the plot
configuration would be linear with zero intercept and the slope would be an
estimate of the common variance. But if the configuration is suggestive of two
or more straight lines a reasonable interpretation would be that the treatments
or cells belonging to the same linear piece have an underlying common variance
but those that belong to two different pieces do not share a common variance.

4. DISPERSION MODEL

If lack of homoscedasticity is detected a commonly used method for iden-
tifying important dispersion effects from replicated experiments is based on a
least squares analysis of the logarithm of the within-replication variance [1].

Let Y;;(¢ =1,...,n;7=1,...,7) be the responses of r replications of an n =
2% factorial experiment. The data are supposed to follow a location-dispersion
model
(1) Yij = mi + oi€i;

where the ¢;; random values are independent, normally distributed, with zero
mean and unit variance. A model [5, 7] relates the variances o2 to the dispersion
effects 6; by means of

(2) h(c?) = AB
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where o2 is the vector of variances, § the vector of unknown parameters, A
denotes the regression matrix associated with the design and a; will be used to
denote the ith row of A. For inference about the dispersion effects we use the
sums of squared deviations from the within-replications mean Y, ,

(3) Si=) (Y=Y i=1...,n
j=1

and then S;/c? = u; is distributed x? with v = r — 1 degrees of freedom. Thus,
in order to have an additive model, we take logarithms (h(e) = In), getting

InS; = lna? +Inu; = aif +Iny;
where the random component Inu; is In x2.

With the least squares estimator é,

1
=2 = a;b
(4) Ul r— le

is an unbiased estimator for the variance of each treatment.

If 67 is a good estimate of o2 then a plot of S;/67 against the quantiles
of the x? distribution with ¥ = r — 1 must show the whole set of points near
to a straight line through the origin. Then a stepwise method to find out the
significant dispersion effects 6; is to introduce in the regression function the
estimated effects one by one as per biggest absolute value to obtain the estimates
62 and the quantile plot. If the plot shows any kind of departure from the
straight line the regression function is incomplete requiring at least a new term.

The procedure ends when the plot may be considered as sufficiently null and no
other departures are uncovered.

5. AN EXAMPLE

Pignatiello and Ramberg [6] presented an experiment concerning the deve-
lopment of a heat-treatment process of leaf springs in trucks so that the free
height, Y, of a spring in an unloaded condition be as close as possible to the
target value of eight inches with minimum variability. The design factors were
B, furnace temperature; C, heating time; D, transfer time; E, hold down time,
and O, quench-oil temperature. Among the five factors, quench-oil temperature
is not easily controllable, and Pignatello and Ramberg treated it as both a con-
trol factor and a noise factor. In our analysis we treat quench-oil temperature as
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a control factor to estimate the regression function for the dispersion model and
check for its significance. This results in three replications of a 25! factorial.

The data are presented in Table 1, jointly with the treatment means, Y;, and
the sums of squared deviations, S;.

Table 1

Data From a Replicated 2°~! factorial experiment.
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Fig. 1 is quantile plot of the ordered S;, displaying, as we may see, two distinct
set of points. Accordingly, we apply least squares to estimate the dispersion
effects, 6, as shown in Table 2.
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Table 2

Estimates of the dispersion coefficients.

Alias 0 o* o'
I -4.2382 —4.3739 —4.2924
B+ CDE 0.9443 1.0800 0.9985
C+ BDE —0.2832 —0.1475 —0.2290
BC + DE 0.0005 —0.1352 —0.05637
D+ BCE 0.1241 0.2598 0.1784
BD+CE —0.2133 —0.3490 —0.2676
CD+ BE 0.3364 0.2007 0.2822
E+BCD 0.1078 0.2435 0.1620
0 0.1401 0.0044 0.0859
BO —0.2952 —0.1595 —0.2410
co —0.2974 —0.1617 —0.2431
DO —0.5549 —0.4192 —0.5006
EO 0.0648 0.2005 0.1190
BCO 0.5448 0.4091 0.4906
BDO 0.2154 0.0797 0.1611
CDO 0.4282 0.2924 0.3739

The biggest absolute effect is associated to factor B, furnace temperature, giving
the estimates
1
62 = 3 EXP [—4.2382 + 0.9443* B]

and Fig. 2(a) plots the ordered S;/5? against the quantiles of the x? distribution
of v = 2. This figure shows all points except one near a straight line through the
origin. The anomalous point corresponds to Sg. We proceed to introduce the
next biggest absolute effect into the regression function to obtain the estimates
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52 = LExp [—4 — 2382 + 0.9443" B — 0.5549* D* O]
279

and the quantile plot of Fig. 2(b). This figure displays a pattern similar to that
of panel 2(a) and the deviant point corresponds again to the same treatment.
Then Sy is considered an outlier and in order to correct it the bigger or the
smaller replicate must be replaced by the average of the other two. If the bigger,
7.5, is the replaced one, then Sg = 0.0085 and the estimated effects are denoted
¢* and exhibited in Table 2. The quantile plots of St /63% and S} /632 are shown
in panels (a) and (b) of Fig. 3, and none is a null one. But when we replace the
smallest data value, 7.12, we obtain S} = 0.0313, the effects 6’ of Table 2 and the
quantile plots of Fig. 4. The first three panels, (a), (b) and (c), are associated to
the regression function with only one, two and three effects introduced according
their biggest absolute value. Looking at these plots we see that the anomaly has
been removed and can infer that only factor B effects dispersion, thus

(5) 6% = -;- EXP [-4.2924 + 0.9985" B]

is the best estimate of the variability associated to each treatment. Fig. 4(d) is a
quantile plot of the sums of squared deviations, S}, once amended the anomalous
value of number 9 treatment. This exhibit also shows two distinct straight lines
proving the heteroscedasticity of the process.

0 0.05 0.1 0.15

Figure 1.
Chi-squared quantile plot corresponding to Table 1.
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Figure 2.

Q-plots for the stepwise regresion.
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Figure 3.

Chi-squared probability plots disentangling the outlier.
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Plots for removing the outlier and looking for significance.
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Figure 5.

Q-plots of two subsets of sums of squared deviations.

Since the process variability only depends on factor B, the sums of squared
deviations can be split in two sets of equal variance according the B levels, and
a quantile plot of each set has to show a linear configuration. Fig. 5 exhibits
these plots: panel (a) displays data as measured and shows clearly two straight
lines and one deviant point, Sg. Panel (b) of figure 5 corresponds to the sums of
squared deviations after amending that anomaly, its configuration corroborates
the conclusions of our analysis.
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