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1. INTRODUCTION

Given a measurable space (x,@) let II be the set of all probability measures
on (x,Q). Let Py be a subset of I, Pps C II. We may define a statistical model
as a family of probability spaces

M ={(x,a,P): P € Py}

The statistical model is often defined through an n-dimensional C*° real
and connected manifold (Par, ¢p,, ), where Py C II and ¢p,, is a maximal C*
atlas on Ppr. If the probability measures of Pp are dominated by a common
reference measure y, taking into account the Radon-Nikodym theorem we are
able to represent (Pas, ¢p,) by a manifold of measurable functions, or, more
precisely, equivalent classes of measurable functions (D*, ¢p»), where D* C F,
through the map

®,: Py — D>
e

where ) is a strictly monotonous real function, F stands for the set of all mea-
surable functions on (x, @) and the ¢p» is obtained by considering all the local
charts of the form

(‘I’A(U)»5°‘I’Il) V(U,f) € ¢PM

We may call (D*, ¢p») the A-representation of our statistical model. We shall
restrict our study to function manifolds which satisfy some adequate regularity
conditions such as for every local chart (U,£) and given any point ¢ € U C
D> of coordinates & = £(q) the functions in z , 8 33.;9 i=1,...,n are
linearly independent, and belong to a convenient £*(p(:; é)dp). Also, the partial
derivatives 8/86; and the integration with respect to the measure p(-; 8)du can
always be interchanged.

Let A(p(-;0)) be a point ¢ € U C D* with coordinates 8 = £(g), we denote
by D; the tangent space to D* at the point ¢. D* may be represented by the
vectorial space Ea € L%(¢(p(+; 0))du defined by

OA(p(50))  OA@(:6))

A
Ee =< 601 ’ ’ 89n
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through the map

=. D) — EX
Xy — —(Xq) = 21—1 M

where z1, ..., z, are the coordinates of X, relative to the usual basis of the tan-
gent space D" corresponding to the local chart (U,€), and defined by (55- 37, )of =

Di(fo€~ 1)(5 (9)) i=1,...n, where the differentiation on the right is the usual
in R"

We may now define an inner product on D;\ by
<Xy,Y,> = < E(X ), E(Y,) >=
.0 -0
»r / 22(5(:600) 260360 4 5 z; 6)) du(z)

i,j=1

where if we require that this inner product has to be invariant under reference
measure changes, we obtain the inner product matrix

dlnp(x;0) 6lnp(x;9)> ij=1,---,n

gi(6) = kE ( 5 0,

which is, up to a proportionality constant, the Fisher information matrix, Rao
(1945), see Oller(1989) for more details.

From now on we shall consider A(z) = In(z) and we shall denote by E'e the
representation of the tangent space D'e.

Let us consider the manifold (D', #p:) representation of a statistical model.
Given a point coordinated by @ there is a natural way to represent statistical
individuals as linear forms on E’a, through the map:

(1.1) 6: x — EO
x — §(x)=

in such a way that Y*(Y)=Y(x) VY € EIG Every statistical individual can
be represented as an element of Elé of coordinates
x — (81 1n p(x;8),---,0nIn p(x;0))

where 0;In p(x;0) = gin ggzc;e :
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Notice that on the whole manifold, whitout considering a given point 8, every
statistical individual can be identifed with a first order covariant tensor field.

Through representation (1.1), we may define a pseudodistance on x by
(1.2) d(x,%) = dg, (Y*,Y") =< ¥* —-Y*,Y* -Y* >E;=

= (0g Inp(k;6) — g In p(x; 6))'G~1(6)(0g Inp(X; 6) — 9g In p(x; 8))

where

99 Inp(%;6) = (a‘“P(X»") 3lnp(x,6))

86, ' 06,

For this pseudodistance to be a proper distace we may define an equivalence
relation on x as x ~ % <= d2(x,%) = 0, and extending the pseudodistance dy
to the equivalence classes of the quotien set x/ ~.

Notice that the defined distance is not an intrinsic distance between indivi-
duals in the sense of Rao(1982), since it depends on the statistical model and
on the population to which individuals belong, characterized by the coordinates
0 . Additional details may be found in Cuadras (1989a,b), Oller (1989) and
Mifiarro (1991).

2. SOME PROPERTIES OF THE SCORE DISTANCE BETWEEN
STATISTICAL INDIVIDUALS

Proposition 2.1

The distance (1.2) is invariant under reference measure changes 4 — v such
that p << v.

Proof:

It follows from the invariance of Fisher information matrix and of the coor-

dinates (81 In p(x/6),---,0,1In p(x/0)) |
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Proposition 2.2

Let T be a measurable map from (x, @) into (x',@’), with P'(B) = I 9(t;6)
dv(t) VB € @’. Where P’ = PT-! and v is a o-finite reference measure on
@’. If T is a sufficient statistic then:

(2.1) d2(%,x) = dLi(t,t)
where t = T(x) and t = T'(X).

Proof:

It follows from the invariance of Fisher information matrix and from the
Neyman-Fisher factorization criterion, since then:

(2.2) p(x; 0) = g(t; 0) h(x)

and from (1.2) it follows immediately (2.1) |

Proposition 2.3

The distance (1.2) is not decreasing if the number of parameters increases.

Proof:

(1.2) may be represented by the quadratic form w'G~'u where u = (9g
Inp(x; 8) — 0g Inp(x; 6)). Let us remember that G is a symmetric and positive
definite matrix. Let us consider now u = (u3,u2) and

G Gz )
G=
( Ga1 Ga
The proposition will be proved if we show that «'G~1u — u,G1luy > 0, where
G-l _ ( Gll G12 )
- G21 G22
Let us break down u = v + w where v = (G11G} u1,GnGwy) and w =

(0,uz — G21GTuy)’, then w'G~lu = w'G~'w 4+ v'G™1v + 2¢'G~'w. Immedi-
ately w'G~'w > 0, since G~! is also positive definite, and we can easily see
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that v'G~1v = u{G7'u; and also that v'G~'w = 0. So v'G~'u — u{Gj'u; =
WG lw >0 [

Proposition 2.4

Let 0},...,0% ,63,...,02,,...,0%,...,0%, be the parameters of the density
corresponding to a statistical model, where ny + --- + ny = n. If the Fisher
information matrix is of the form

A, 0 -+ 0
Ay - 0

G(9) = .
0 0 --- A

where A; are n; x n; matrices. The squared distance between two statistical indi-
viduals in the dual tangent space to the manifold coordinated by 6 = (61, . ..,6,)
is equal to the sum of the k squared distances between the individuals in the
k dual tangent spaces of the k n;-dimensional manifolds coordinated by 6; =
(6i,...,65,) i=1,...,k. As a particular case if pi(x1;61),...,pe(xx; Ox) are
representations of k independent statistical models, then the distance between
two individuals on the model p;...x(x1,...,Xk;01,...60%) is obtained from

(2.3) df.k((X1s--s %), (¥1, - -, W) = df (1, ¥1) + -+ dE(%k, k)
where d?(x;,y;) is the distance on the model p;(x;; 6;).

Proof:

It follows from definition (1.2) and from the fact that the inverse Fisher
information matrix is of the form

ATV 0 - 0

A2-1 e 0

G}(6) = S
0 0 - Af?

48



3. DISTANCES FOR SOME WELL-KNOWN DISTRIBUTIONS

In this section we show the resulting expressions of (1.2) for some well-known
familes of distributions. The two individuals are considered to be samples of size

m,x = (21,...27,-") and Y= (yl:ym)

3.1 One-parameter distributions

Distribution d(x,y)
Poisson ( Mean X ) R(x-3)?
Weibull ( Mean ﬂl:—'&l (7 known ) ) ‘\mi (E:nzl (zF - ¥))?
Gamma ( Mean £ ( p known ) ) mp°2 x-¥)?
Exponential ( Mean 1) m a?(x - 3)?
Binomial ( Mean mp ) %:—(—Ty‘_%j
Negative Binomial ( Mean ﬂlp_—”l ( k known ) ) i-f_; :

N (g,00 ) ( oo known ) %(2-7)2

N (po,0 ) ( po known ) o (5%(x) - S*(y))?

where x = L 5~ 2; and S x) =% Yt (zi— wo)?.

Note that most of the cases above are particular cases of the exponential
family p(x;0) = exp{Q(0) T(x) + D(0) + S(x)} where the distance takes the
form

d*(x,y) = {Q"(O)E[T(x)] - D"(0)}"H{Q'(®))* {T(x) - T(y)}*.
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3.2 Multiparameter distributions

We now consider some multiparameter examples.

e Multinomial distribution

m!
p(zl,...’xn+1;p1,...,pn): 0 |(p1)z'l...(pn+1)1'u+l
zy! e zpg!
The squared distance is:
n+1l
(3.1) d*(x,y) Z Eizw)
m = Di

e Negative Multinomial distribution

(z14+--+zn+r—1)!
! zpp!l(r = 1))
o (Pa)™(1=p1—---—pn)

(pl)rl oo

P(‘”l:"’,xn;Ply"‘,Pn) =

The squared distance is:

(3.2) dz(x)y) - 1- RN (Z (-Tz - yz (E(x‘ y'))2)

=1

e Distributions of the form p(z1, -+, zm;u, 8) = [Ti=, pF [(" ) ]

Where p€ R, 8> 0and F:R* U {0} — R* U {0} with

(o]
/ F(u?)du = 1
-0
Assuming that
(o)
a=4 / /2L PY2(8)F(1)dt < 00
0

and

b= / ” (14 2(LF)(w?))u?)?f(u?)du < o0
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where LF = —FF—.I The squared distance is:

2
dz(x,y)- [ SR (EEP)(E 2(£F)((y“ )2)("";")] +
1

i=1

o 2
,,i[}: EREFENESEY - S et )]
(3.3) )

Some results on this family may be found in Mitchell (1988). Some of the
following are particular cases of the mentioned above.

Normal distribution N(u, o).

The squared distance is:

(3-4) d*(x,y) = (2 o*(x—3)* +($*(x) - $*(v))*)

where k= L S0, 2y y S3(x) = & L0ty (20 — po)®

Logistic distribution

p(zy, - zm; 0, f) = H—sech ( ,Ba>

The squared distance is:

m 2
d*(x,y) =3 (Z(T(iz) - T(y,-))) +
i=1

2
(9 Zmzre ( (Z(l T(z:) = yiT(ys) + «(T(2i) = T(!/a))))

where T'(2;) = tanh (" “').

Wald distribution

m by 1/2 Mz 2
p(a’.l"‘.’mnl;A"u)=H(2771-3) exp (_ ( (22122:#) ))
i=1 i !
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The squared distance is:

2

(3.6) d*(x,y) =

2mu?

.. T — yi m,_
1-nx_y+ 2 —_— +—x_
(( )+u 2 wm) Fx=7)

x=L1 5™ 2
where X = - >0 ;.

Multivariate normal distribution N(M, o) ( Zo known ).

The squared distance between two individuals X and Y is:

(3.7) X, Y)=(X-Y)ZsH(X -Y)

Notice that (3.7) is identical to Mahalanobis distance, although the latter
between populations, Mahalanobis (1936).

Multivariate normal distribution N(Mpy, Z) ( Mo known ).

The squared distance between X and Y is now:

d?(X,Y) = %((AY’E‘IAY)2+
(3.8) (AX'T™'AX)? —2(AX'TSIAY)?)
where AX = X — My.

Multivariate normal distribution N (M, I).

The squared distance between X and Y is:
e#(X,Y) = X-Y)SH(X-Y)+ %((AY'Z}“AY)z +
(3.9) (AX'S™IAX)? - 2(AX'TTIAY)?)
that can also be written in the alternative form:
EX,Y) = X=-Y)5'(X-Y)+
(3.10) %((AX’ +AY)W(AX — AY))

where AX = X — My and W = 7Y (AXAX' - AYAY')E~L.
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4. SOME APPLICATIONS TO STATISTICAL INFERENCE
4.1 Parameter estimation

We may define an estimation procedure based on geometric considerations by
using the distance between statistical individuals. Given a sample, from which
we wish to estimate the coordinates of the density, we require that the expected
distance between our actual sample and any other possible sample from the
population be minimal. That is, we wish determine the value 8 of 8, provided
that exists, which minimizes the function:

(L1) Eg(d*(%, %)) = / &2(%, X)p(x; )du(x)

If this value exists, it is the minimum ezpected squared distance estimator (MESD)
of 8. Taking into account definition (1.2) and that Eg(dg In p(x;6)) = 0 and

Eg((9p Inp(x; 6)) (3g In p(x; 6))) = G(6)

we obtain the following:

Eg(d’(%,x)) = (9glnp(k;8)) G~(6)(dgInp(k;6)) —
2(0g Inp(%; 6))’ G~1(9) Eg(dg Inp(x;6)) +
Eg((9g In p(x;6)) G™1(6) (89 In p(x; 6))) =
(9gInp(%;6))' G=1(8) (99 Inp(X; 6)) +
tr(G™(6) Eg((8g In p(x; 6)) (9 Inp(x;9))")) =
(1.2) (0gInp(xk;8)) G~1(9) (OgInp(k;0))+n

which is the sum of the number of parameters and the squared norm of the
vector of coordiantes of the sample x in the dual tangent space.

As we can see any consistent root of the likelihood equations defines the
MESD estimator, since then

(1.3) 1 9 np(%; ) [| = 0

However, note that the MESD dos not coincides necessarly with the maxi-
mum likelihood estimator (MLE) since we do not require the solution to be a
maximum for the likelihood. If we consider, for example, the estimation of the
parameters of a normal distribution from a sample of size one, the MLE leads
to it = Z and & = 0. If ,on the other hand, we develope the expected squared
distance we obtain:
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(14)  E@E2) = (5’;“)2 +3 ((i;")2-1)2 +2

which reaches the minimum at 2 = # being o? arbitrary. We consider more
reasonable the result provided by MESD.

This is not the first time that solutions of likelihood equations not necessarly
an absolute maximum are used to obtain estimates. Duda and Hart (1973) con-
sider a mixture of normal distributions with unknown parameters, the maximum
likelihood solution is singular, but they obtain reasonable estimates usign the
greatest relative maximum of the likelihood function.

4.2 Testing Statistical Hypotheses

Another possible application of distance between statistical individuals is
concerned with testing parametric statistical hypotheses. Let us consider a hy-
pothesis testing defined by

Hy: 60Oy
Hy: 6¢€06

where O is a restriction of the original parameter space defined by the null
hypothesis.

Given a sample X € x, let us consider the following statistics:

(1.5) eienef Eg(d*(x,x)) = Eél(d"’(i,x)) = E (%)

(1.6) inf Eg(d*(%,x)) = Ep (d*(%,%)) = Ex(%)

Provided that (4.5) and (4.6) exist, we may define a statistical test for solving
the previous hypothesis testing by considering a critical region of the form

(1.7) W:{(@l,---,im):%zxe}

where ¢ is the significance level of the test and the constant A is chosen in such
a way that P(A > A\/Ho) <.
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For a simple hypothesis Hg : 6 = 6, and taking into account that under the
null hypothesis

(18) X2 = (9gInp(%;60))' G~ (60)(9g Inp(X; 60)) = Y ~ X2

that is, X2 will be asymptotically distributed as a chi-squared random variable
with n degrees of freedom.

From (4.2), the critical region (4.7) may now be expressed as
(L9) W = {%: (0 np(X; 60))' G (80) (3 Inp(%; ) 2 e}
and now, c. can be easily determined.

The test obtained in (4.9) coincides with Lagrange multiplier test, Aitchison
and Silvey (1958), or score tests, Tarone (1988), first considered by Fisher (1935).
In general, score tests are asymptotically equivalent to Wald tests based on
maximum likelihood estimators and to likelihood ratio tests.

As an example let us consider the multinomial distribution, as defined in
section 3, with the hypothesis test

Ho: p=po
Hy: p#po
It is not difficult to see that the test defined in (4.9) takes the form
n+l1
(1.10) W={x: E W —-m > ¢}

z? :
and under the null hypothesis, the statistic Z:’J’ll e —m is asymptotically
distributed as a chi-squared distribution with n degrees of freedom.

Note that the statistic obtained is the well known Pearson’s chi-squared.

4.3 Discriminant Analysis

Let % be an observation to classify between a set of populations Iy, ..., IIx.
We may define the following discriminant function

(1.11) fi(%) = En, (d*(%,x))

where x is any possible sample from the population II;. The decision rule is to
assign x to II; if

(1.12) fi(%) = min (f1(%), ..., fi(X))
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Another possible discriminant function proposed by Cuadras (1989a) is

fi(%) = df,(%,0)

which may be considered as the squared distance between x and the mean indi-
vidual of the population, since E(; In p(x;0)) = 0. Some other comments can
be found in Cuadras (1989a) and Sanchez (1989).
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