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THE CAPACITATED ARC ROUTING
PROBLEM. A HEURISTIC ALGORITHM

E. BENAVENT, V. CAMPOS
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Universidad de Valencia

In this paper we consider the Capacitated Arc Routing Problem, in
which a fleet of K wvehicles, all of them based on a specified vertez
{the depot) and with a known capacily Q), musl service a subset of the
edges of a graph, with minimum {otal cost and such thatl the load
assigned to each vehicle does not exceed its capacity.

A heuristic alogithm for this problem is proposed consisting of: the
selection of K centers, the construction of K connected graphs with
associated loads not exceeding the vehicle capacities, the resolution of
a Generalized Assignment Problem, if necessary, to get a complete
assignment of edges 1o vehicles and, finally, the construction of the
routes, by solving, heuristically, a Rural Postman Problem for each
vehicle.

Computational results on graphs up 1o 50 vertices and 97 edges are
included. On average, the feasible solution is within 6.4% of the best
known lower bound.

Keywords: Distribution, Heuristics, Routing.

1. INTRODUCTION

Routing Problems have been widely studied in the last years, mainly because
of the great number of practical applications and the big increase of the costs
associated with operating the vehicles. Basically, these problems can be divided
into Node Routing Problems, if the demand occurs in the nodes or vertices of
a graph, and Arc Routing Problems, in which the pickup or delivery activities
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occur along the arcs or edges of a graph. See Bodin and Golden (1981) and
Lenstra and Rinnooy-Kan (1981) for a more detailed classification of these
problems and their complexity.

However, the research work has been mainly focused on Node Routing Pro-
blems (see the excellent survey of Bodin et al.(1983)), while Arc Routing Pro-
blems have received comparatively little attention (see Benavent et al.(1983)),
in spite of their applications in a great number of real problems, such as pro-
blems of refuse collection, street sweeping operations, delivery of milk or post,
inspection of distributed systems (electric power, telephone or railway lines)
and school bus routing.

In this paper we consider the Capactitated Arc Routing Problem (CARP),
in which a fleet of K vehicles, all of them based on a specified vertex (the
depot) and with a known capacity Q, must service the edges with positive load
of a graph, with minimum total cost and such that the load assigned to each
vehicle does not exceed its capacity.

Although Assad et al.(1987) have shown that certain classes of the CARP
with special graph, demand or costs structures can be solved with a polynomial
time algorithm, the general case is a NP-Hard problem. Even the problem of
finding a solution with a cost less than 1.5 times the optimal solution cost is
NP-Hard, as shown by Golden and Wong (1981).

Due to the complexity of the problem, several heuristic algorithms and lower
bounding techniques have been developed for the CARP. Among the heuristics,
it is possible to point out those of Cristofides (1973), Beltrami and Bodin (1974)
for the routing of street sweepers, Male and Liebman (1978) and Bodin et
al.(1989) for refuse collection problems, Stern and Dror (1979) for the routing
of electric meters readers, Golden and Wong (1981), Golden et al.(1983) and
Chapleau et al.(1984) for school bus routing,.

Lower bounding techniques for the CARP are presented in Golden and Wong

(1981), Assad et al.(1987), Benavent et al(1987), Pearn (1988) and Zaw Win
(1988).

In this paper we present a new heuristic algorithm for the CARP which is
an extension of the one proposed by Benavent ef l.(1985) and consists of: the
selection of K centers, the construction of A connected graphs with associated
loads not exceeding the vehicle capacities, the resolution of a Generalized As-
signment Problem (GAP), if necessary, to get a complete assignment of edges
to vehicles and, finally, the construction of the routes, by solving heuristically,
a Rural Postman Problem for each vehicle.
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2. PROBLEM DEFINITION AND NOTATION

Given a connected and non directed graph G = (V, E), consider that to
every edge e = (i,j) of G there is associated:

i) aload ¢. >0,
ii) a cost ¢, > 0 of just traversing edge e and
ili) a cost ¢, > 0 of servicing edge e (thus, traversing it), if g, > 0.

Given vertex 1, representing the depot, and a number K of vehicles (K > 2),
each one with capacity Q (Q > max{¢., e € E}), the problem considered in
this paper consists of finding a set of K routes, each one containing the depot,
such that, jointly, they service all the edges with positive load of G, at a
minimum total cost and such that the sum of the loads corresponding to the
edges serviced by each route does not exceed the vehicle capacity ). Note that
a route is determined by a set of traversed edges, with indication of the serviced
ones.

Let s;; denote the cost of the shortest path from vertex ¢ to vertex j, com-
puted using the costs c.; costs s;; will be also referred to as distances. Let
ER = {e € E : ¢ > 0} be the set of required edges, VE the set of vertices
incident with at least one required edge and GF = (VR ER).

For a given subset of edges E’,q(E’) will denote the sum of the loads asso-
ciated to the edges in E'. A graph is even iff the degree of all its vertices is
even.

3. DESCRIPTION OF THE ALGORITHM

The heuristic algorithm proposed for the Capacitated Arc Routing Problem
consists of several clearly differentiated stages. In the first stage, the set of
edges to be serviced by each vehicle is defined, taking into account the capacity
of the vehicles. In the second stage, the routes are constructed thus obtai-
ning a feasible solution to the CARP. Finally, the solution is revised using an
interchange procedure.

The first stage influences most decisively the quality of the feasible solution.
Let Ey C E® be set of required edges assigned to vehicle k, and let Gj be the
graph induced by Ej . In the first stage, the objective is to construct subgraphs
Gy, k=1,--., K such that:

a) they ought to have the minimum possible number of odd degree vertices,

b) they should be composed by a few number of connected components and,
in any case, the distance among them should be small, and

¢) they should be as close the depot as possible.
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In order to meet, at least heuristically, these requirements, the procedure
followed in this first stage is:

i) K vertices (called centers), uniformly distributed on the graph, are selected
from VR,

i) Complete cycles in the graph are, successively, assigned to each center, in
such a way that the set of cycles assigned to a center is connected and
its total load does not exceed the capacity of the vehicles. Previously,
artificial edges have been added to the graph GF in order to obtain a
connected and even graph.

iii) In case that in the previous step some required edges had been left unas-
signed, a GAP is solved by using assignment costs of edges to vehicles
that take into account the partial assignment obtained in ii} as well as the
objectives a) and c¢).

In what follows, a more detailed description of every stage of the proposed
heuristic algorithm is given.

3.1 Selection of centers

For each vehicle k, a vertex iy € VT (center) other than the depot is selected,
trying to obtain a uniform distribution of centers on graph GG. Several methods,
with different objectives were tried and computational results showed that the
quality of the final solution did not depend too much on the selection method.

The finally adopted procedure consists of constructing a set of K centers,

selecting for each £k = 1,--- K a vertex i, € VF_ such that the product
of the distances from this vertex to the centers iy, - ,7,_; and the depot is
maximum.

Afterwards, an interchange type procedure is applied, trying to generate
new sets of centers in such a way that each interchange increases the product
of distances among all centers and distances between the centers and the depot.
The procedure ends when no further increase is obtained.

3.2 Assignment of Cycles

As a previous step, a set of edges with zero load (called artificial edges) is ad-
ded to G to obtain a new even and connected graph G'. This is accomplished
by solving, first, a Shortest Spanning Tree Problem (SST) to convert G® into
a connected graph, if it were not already connected and, second, a Minimum
Cost Matching Problem on the odd degree vertices of the graph resulting from
GR by adding the edges in the above SST solution. Costs, in the resolution
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of both problems, are equal to those of the shortest paths, s;;, between every
pair of vertices.

The following procedure determines, for each vehicle k, a set of edges Ej
from G'. Let G} be the subgraph induced by the set of edges Ej . Initially,
G, contains only center ix and no edges. Let Qr = Q — q(E:) denote the
residual (disposable) capacity of vehicle k.

Cycle assignment procedure:

Step 0: (Init)
Mark all vehicles as not complete.

Step 1: If all vehicles are complete, stop. Partial assignment.
Otherwise, let k* be the vehicle with the biggest residual capacity
among those not yet completed.

Step 2: Using a shortest path algorithm, find in G’ the minimum load cycle
containing any vertex of G%..
If such a cycle does not exist, or its associated load exceeds Qg ,
mark vehicle £* as complete and go to Step 1.

Step 3: Add the edges of the above cycle to Ei., update Qi and delete
from G’ the corresponding edges.
If the load associated to G’ is zero, stop. Complete assignment.
Otherwise, go to Step 1.

If the above procedure produces a complete assignment we should go directly
to build the routes, as explained in 3.4. However, the first application of the
cycle assignment procedure results, generally, in a partial assignment, i.e. in
G’ there are required edges of the original graph G not assigned to any vehicle.
Typically, the resulting graph G’ consists of one or more cycles, each one with
such a load that can not be assigned to any vehicle. In order to obtain a better
assignment, two improvement procedures have heen designed.

Note that in G’ there are artificial edges with zero load, as well as required
ones. Both procedures try to interchange edges of G’ with edges of some graph
G}, , maintaining graph G}, even and connected, provided that the residual ca-
pacity of vehicle £ allows it and the load associated to the edges of G’ decreases
with such an interchange. In what follows, by interchanging a set of edges S
of G’ with a set of edges T of G}, it is meant to do G’ = G’ ~ S+ T and

t =G, —T+ S, and update Qx = @y — q(S) + ¢(T).

The first improvement procedure examines the set of artificial edges assigned
to a vehicle. Let ¢ and j be the terminal vertices of such and edge and let k
be the vehicle. If the required edge e = (7,j) exists in G’ and q. < Qj, the
change of the artificial edge by the required one takes place. The procedure
ends when such an interchange is no longer possible.
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The second improvement procedure considers more general interchanges:
Those of S, the set of edges of a path in G, with T, the edges of a path
in some G} with the same terminal vertices. A detailed description of the
procedure is given in what follows:

Improvement Procedure 2:

Step 0: (Init)
Let G” be the graph with set of vertices V' and no edges.

Do Flag = 0.
Step 1: While ¢(G') £ 0, do:
Begin

- Find a simple cycle C in G'.

- For every pair of vertices i,j of C, find P, and P, the two
sections of C determined by ¢ and j, let q; and ¢o be the associated
loads and do:

- For every vehicle k,k = 1,--- | i, such that i and j belong to
G}, , compute P;, the minimum load path in G} between i
and j, and let g3 be the associated load.

If for some value of r = 1,2¢, — q. < Q% and ¢, > q3 (the
interchange is both possible and convenient), interchange the
set of edges of P, in G’ with that of P in G}, do Flag = 1.
- If no interchange has been made, change the set of edges of C
from G’ to G".
End.
Step 2: If Flag = 0, Partial assignment. Stop
If ¢(G") =0, Complete assignment. Stop.
Otherwise, do G' =G, G” =0, Flag = 0. Go to Step 1.

Note that, in Step 1, all the paths in G), between i and j could have been
considered instead of only the one with minimum load, but at a greater com-
putational effort. For the same reason, only paths in G’ that are sections of a
simple cycle have been considered.

The three procedures: assignment of cycles, improvement 1 and improvement
2, are applied successively as long as interchanges are produced. If a complete
assignment is obtained in any of them, the algorithm will proceed to construct
the routes. Otherwise, if at the end of the procedures there is some required
edge in G’ not yet assigned,a GAP will be solved, as described in the next
section. In any case, let Ey = E| N ER je. E, is the set of required edges
assigned to vehicle k by the above method.
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3.3 A Generalized Assignment Problem

Consider the following GAP:

K
Min Z Z ek Yek

e€ER k=1
K
Z Yer =1 Ve ¢ EF
k=1

Y geya<Q Vk=1-. K
e€cER

Yer € {0,1} VEGER, Vek=1,--- K

where y.r = 1 iff the required edge e is assigned to vehicle k and 0 otherwise.
The first set of constraints assures that each required edge is assigned to only
one vehicle and the second set, that the capacity of the vehicles is not exce-
eded. Costs a.; take into account the partial assignment obtained using the
procedure described in the previous section and are set as follows:

aer =0iffe € Fx  and
der =Min {81,- + CQ + 8¢5, + Sip1, S1t + C’e + Spi, + Sikl} — 2541 Ve ¢ Ex

where r and ¢ are the terminal vertices of edge e and i, is the center associated
to vehicle k. Obviously, this cost represents the difference between the cost of
just going and coming back from the depot to center 7 and the cost of doing
it and furthermore servicing edge e; it approximates the cost of assigning edge
e to vehicle k.

The solution to the above GAP produces an assignment of required edges to
vehicles satisfying the capacity constraints provided that one exists (otherwise,
the CARP would be infeasible). Usually, this assignment respects much of
the partial assignment produced by the procedures of the previous section,
therefore, the routes for the vehicles can be constructed at a small additional
cost.

In order to solve the GAP, the “branch and bound” method of Ross and So-
land (1975) has been implemented, using in the computation of lower bounds
the algorithm of Fayard and Plateau (1982) for the resolution of the Knapsack
Problem. This algorithm generates a sequence (usually a small number) of fea-
sible solutions to the GAP with decreasing costs until the optimum is reached.
Each of those feasible solutions is used to generate a solution for the CARP
by using the method described in the following section. Since the assignment
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costs a.x are computed heuristically, suboptimal solutions for the GAP may
generate solutions for the CARP better than the one generated by the optimal
GAP solution.

The idea of solving a GAP to obtain an assignment of customers to vehicles
satisfying capacity constraints in order to construct the routes for the vehicles,
was first proposed by Fisher and Jaikumar (1981) for the Vehicle Routing
Problem (VRP).

3.4 Routes generation

Once the subsets E; (with ¢(Ex) < @), k= 1,---, K, a partition of the
original set of required edges ER  have been determined, all that is needed
in order to obtain a feasible solution to the CARP is to generate, for each
vehicle k, a route servicing each edge of Ej, starting and finishing at the
depot. Obviously, each one of these routes will consist of required edges, which
must be serviced while being traversed by the vehicle, and, possibly, of artificial
edges that will only be traversed.

For each k= 1,--- K, let E,':' = E; if any edge of Ej} is incident with
the depot. Otherwise, in order to build E,'C" , add to E} one artificial edge
with zero load representing the depot; distances from its terminal vertices to
the other vertices of the graph are equal to those from the depot. Let G:
be the graph induced by E: I G',: is connected, the problem of generating
a route traversing all the edges at a minimum cost reduces to solving the
Chinese Postman Problem (CPP) (Edmonds and Johnson (1973)). Otherwise,
a Rural Postman Problem (RPP) has to be solved where the set of required
edges is E,': . As this last problem is NP-Hard, it is solved heuristically using
the algorithm proposed by Frederickson (1978) and Christofides et al.(1981),
consisting of:

1) Adding a set of artificial edges to Gz' , with minimum total cost, to obtain
a connected graph. This is accomplished by solving a Shortest Spanning
Tree Problem (SST).

2) Add to the resulting graph, that will be denoted too as G}, a set of
artificial edges, with minimum total cost, to obtain an even graph. This is

accomplished by solving a Minimum Cost Matching Problem on the odd
vertices of GY .

In both problems the costs are set equal to the distances, s;; , between every
pair of vertices.incident with edges in E .

For every k = 1,---, K, the resulting graph is even and connected and can
be traversed by vehicle k without repeating any edge. Therefore these graphs
provide a feasible solution to the CARP. Its cost will be the sum of the costs of
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the artificial edges added to each vehicle plus the fixed cost given by the sum
of the servicing costs of all the required edges in the original graph G.

As mentioned before, this procedure is applied to each solution of the GAP
generated by the branch and bound algorithm, thus obtaining the correspon-
ding CARP solution and, finally, the one with minimum cost is selected.

3.5 Improving the solution

Once a feasible solution to the CARP has been obtained, it is possible, in
some cases, to improve the solution by applying a simple procedure which is
described in what follows.

Let G:’ be the graph corresponding to each vehicle ¥ = 1,--- , K in the
feasible solution. If there exists a pair of vertices /,j such that:

- for some vehicle ¢,G; contains the required edge e = (¢,7) and an arti-
ficial edge (4,7),

- the removal of these edges does not disconnect the graph G , and

- there exists another vehicle r, such that graph G} contains an artificial
edge (%,7) and its residual load is not less than g¢.,

then changing the required edge e = (i,j) from G} to G} and removing the
artificial edge (4,7) from both graphs produces a new feasible solution to the
CARP with lower cost.

The procedure is applied until no further improvements are possible.

4. COMPUTATIONAL RESULTS

The heuristic algorithm described in Section 3 has been implemented in
Fortran and applied to a set of test instances, using a UNIVAC 1100 / 60
computer. Table I describes the main characteristics of the 10 graphs used:
number of vertices (N), number of edges (M) and total load (Q7). In all the
instances, every edge had a positive load. Loads and costs have been generated
between 1 and 15, and the servicing cost was always greater than the traversing
cost.

Table II shows the results obtained with the algorithm. For each instance,
the graph used, the number of vehicles (/) and its capacity (Q), the best
known lower bound (LB) (see Benavent et al.(1987)), the cost of the heuristic
solution (Z(H)), its deviation from the lower bound (D = (Z(H)- LB)/LB)
and total CPU time in seconds (T} are given.
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TABLE 1
Characteristics of the graphs

n 24 24 24 41 34 31 40 30 50 50
m 39 34 35 69 65 50 66 63 92 97
Qr 358 310 137 627 614 457 652 566 654 704

TABLE II

Computational results

Graph K Q LB Z(H) D(%) T

200 247 256 3.6 0.8
120 247 260 5.3 1.6
180 297 324 9.1 0.7
120 309 346 119 0.6
80 103 108 4.8 0.6
50 107 115 7.5 0.7
225 516 536 3.9 3.4
170 522 576 10.3 3.6
130 528 624 18.2 130.5%
220 562 594 5.7 1.8
165 580 620 83 10.3
130 598 646 80 16.1
170 330 337 21 1.1
120 336 351 45 146
200 382 382 0.0 1.5
150 382 414 8.4 2.0
200 522 556 65 209
150 531 566 6.6 138.9
235 448 462 3.1 3.2
175 453 484 6.8 3.5
140 459 494 76 121
250 637 658 3.3 5.5
190 645 665 3.1 2573«
150 633 684 4.7 4.7

—
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In some instances (indicated by an asterisk) the branch and bound algorithm
for the GAP was stopped before reaching optimality, after examining 20000
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nodes in the tree search. Only the GAP solutions so far obtained were used to
generate CARP solutions. Note that it occurs in only 3 out of the 24 tested
instances.

On average, the heuristic solution has a cost 6.4% above the lower bound and
has been obtained within a computational time that is less than 21 seconds,
except for the 3 mentioned cases. Note that in graph 7 with K = 3, the
feasible solution is optimal.

5. COMMENTS

The described heuristic algorithm has some characteristics that rend it more
attractive than the existing ones for this problem:

- it always finds a feasible solution if one exists, because the GAP includes
the constraints that assure the problem feasibility,

- the solutions consist of routes that, in most cases, are balanced and “com-
pacted”.

- the algorithm could be easily adapted to the case in which the vehicles
capacities are different.

- by applying the algorithm to different fleet sizes it is possible to evaluate
the convenience of acquiring or not more vehicles.

6. APPENDIX

Consider the instance of the CARP associated to graph 10 (depicted in Figure
1) with K =3 and Q = 250. The depot is indicated by 1, numbers next to
the edges correspond with the data in Table III, which contains, for each edge
e, the load ¢, the servicing cost ¢, and ¢, , the cost of just traversing it.

Figure 2 shows the graph obtained at the end of the cycle assignment pro-
cedure (corresponding to section 3.2). The selected centers are indicated by
an asterisk. The cycles assigned to each vehicle are indicated with dotted,
dashed and continous lines respectively. Non-straight lines are artificial edges
added to make the graph even. Note that there are three unassigned cycles,
corresponding to edges 51, 59, 60, 67, 80, 81 and 89.

Finally, Figure 3 (in which non—straight lines correspond to edges traversed
without been serviced) represents the feasible solution obtained after applying
all the stages of the above described heuristic. Note that the final assignment
of required edges to vehicles given by the solution to the GAP is very similar
to the partial assignment given by the cycle assignment procedure.
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Cycles Assignment
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The feasible Solution

Route

Figure 3:
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TABLE III
(edge #) (Iea Clei Ce

(1)13,14,10 (2)8,7,7 (3)7,5,2  (4)10,9,6  (5)7,5,1 (6)9,8,6 (7)6,5,5
(8)6,5,3 (9)10,9,9  (10)9,5,3 (11)12,10,9 (12)7,5,5  (13)7,5,2 (14)8,7,3
(15)6,4,2  (16)6,5,4  (17)5,3,3 (18)7,5,3  (19),9,9,8 (20)8,4,2 (21)9,8,5
(22)11,10,7 (23)5,4,3  (24)8,5,1 (25)4,5,1  (26)7,5,2  (27)6,6,2 (28)6,5,3
(29)5,3,1  (30)9,8,5  (31)7,6,2 (32)6,5,1  (33)8,8,7  (34)7,5,3 (35)8,8,7
(36)4,2,1  (37)9,5,2  (38)10,9,5 (39)9,9,3  (40)6,5,1  (41)7,5,4 (42)12,12,9

(43)10,8,5 (44)7,5,4  (45)6,4,2 (46)9,8,6  (47)8,7,6  (48)10,7,3  (49)7,5,2
(50)11,10,5 (51)6,5,3  (52)4,2,2 (53)3,2,1  (54)10,12,5 (55)6,6,3 (56)12,10,7

(57)9,8,6  (58)12,11,8 (59)4,2,1 (60)10,10,6 (61)8,9,6  (62)7,5,5 (63)5,3,1
(64)5,5,3  (65)6,4,2  (66)7,5,3 (67)9,8,5  (68)6.5.4  (69)8,5,3 (70)7,4,3
(71)10,9,6  (72)5,4,2  (73)5,3,1 (74)6,5.3  (75)4,3,3  (76)4,2,2 (77)6,5,2
(78)9,10,7 (79)7,5,2  (80)8,6,3 (81)9,8,7  (82)4,3,3  (83)3,2,2 (84)6,74

(85)3,2,1  (86)4,3,2  (87)9,8,4 (88)3,3,1  (89)4,3,1  (90)6.6,6 (91)5,5,4
(92)7,6,5  (93)7,5,3  (94)7,6,4 (95)6,5,3  (96)10.9.7  (97)12,10,10
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