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A BAYESIAN APPROACH TO
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A general probabilistic model for describing the structure of statistical
problems known under the generic name of cluster analysis, based on
finite miztures of distributions, is proposed. We analyse the theoreti-
cal and practical implications of this approach, and point out to some
open questions on both the theoretical problem of determining the ref-
erence prior for models based on miztures, and the practical problem
of approzimation that miztures typically entail. Finally, models based
on miztures of normal distributions are analised with some detail.
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1. INTRODUCTION

The clustering problem is usually stated as given a set of (generally) mul-
tivariate data, classify them into a (not necessarily predetermined) number
of clusters according to some measures of distance and/or similarity defined
among the units of sample data.

A Bayesian approach to the problem within the context of decision the-
ory, i.e. specifying a loss structure, was initiated by Binder (1978). On the
other hand, Symons (1981) deals with the clustering problem using a statis-
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tical model based on mixtures of multivariate normals. Using the standard
non-informative priors on nuisance parameters he derives -under several hy-
potheses on these parameters- criteria which are shown to be equivalent to
certain classical clustering criteria.

Usually, the emphasis in these, and other related papers, is on the problem
of determining the optimal allocation of observations into clusters, with no real
concern on the estimation of nuissance parameters such as those describing the
individual clusters (e.g., the mean vector and covariance matrix in the normal
case) and the mixture parameters, i.e., the proportion of sample elements in
each cluster.

One major disadvantage with these approaches, which is also shared by the
maximum likelihood method, is that an initial estimate of the mode of the
posterior distributions over all possible allocations is needed. This starting
solution can be improved to a local maximum of the posterior distributions
but, ussually, there is no guarantee that the local maximum is global; so that
one has to search for further local maxima.

Our approach to the clustering problem, to be presented in section 2, fully
based on Bayesian decision theory, is essentially different from previous ones in
that our major concern is to shape the data on a specific probabilistic mixture
model, not to allocate observations into clusters.

Some of the theorical problems involved in the model which are described in
section 2, are treated in more detail in section 3, where some specific models
are considered.

The paper concludes with a general discussion on the topics involved, includ-
ing some aspects of their practical implementations, and directions for further
research.

2. THE CLUSTER MODEL

Let D = {z; : j = 1,...,n} with z; € R” be a data bank which consists of
n p—dimensional vectors, and suppose that there are reasons to believe that
those vectors have been produced by an unknown number of possibly similar
probabilistic processes. Thus the z;’ s could be the clinical data corresponding
to patients suffering from a common syndrome which might have been pro-
duced by an unknown number of different disorders; the psychological profiles
of students generated by an unknown number of different types of education, or
the mineralogical data produced by an unknown number of geological periods.

In those situations, it is obviously desired to learn about the structure of the
population in order to identify the number and characteristics of the proba-
bilistic processes involved, henceforth referred to as the classes or clusters in
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the problem, and to allocate, or rather predict, the classes to which any vector
z; should correspond.

We shall now formalize a model within which these ideas can be made precise
and spell out the general solution to the question posed. The argument lies
entirely within the Bayesian framework.

For notational convenience, we shall work in terms of generalized probability
densities with respect to some -usually obvious- underlying measure and shall
not distinguish between random quantities and the particular values they pos-
sibly take; thus, p(z), p(6), p(=|f) respectively stand for densities of the random
quantities z, 8, and z given §, without any suggestion that those densities have
the same functional form. Moreover, integration will always be assumed to be
over the entire support of the variables integrated and, therefore, will not be
made explicit.

DEFINITION 2.1.

A clustering model for p~dimensional data = 1s a probability density p(z|p)
of the mazture form

(2.1) plzlp) = ZNP(-’CWJ

where © = {k,A,0} are unknown parameters with k € {1,2,3..};) €
Sk = {(A1y-An)yXi > 0 and 5 X = 1};0 = {61, ...,0k} and where the
{p(zl6:),7 = 1,..,k} are probability densities of = completely indentified by
their corresponding paremeters 0;.

Intuitively, we assume that the data bank D = {z;:j = 1,...,n} consists of
a random sample o size n of a population governed by the probabilistic model
(2.1), i.e., one which contains k clusters, with proportions A1, ..., A, each of
which generates p-dimesional data distributed according to p(z|6;).

To avoid unnecessary technical difficulties, the mixture model (2.1) will be
assumed to be identifiable. Very often too, the functional form of the p(z|6;)’s
will be the same, e.g., normal densities with different location and scale pa-
rameters.

A solution to the problem posed consists of an estimate @ belonging .to the
set of possible p’s which completely identifies the clustering model. This may
be seen as a decision problem where the action space consists of a set

®={p=(kA0), withk=12..}

and the loss function L(p,$) is a measure of the loss incurred if the esti-
mated model p(z|@) is used in place of the true model p(z|p). A number of
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information—theoretical arguments may be invoked (Bernardo, 1987) to justify
the Kullback-Leibler divergence

p) = z o p(:z:lgo) z
(2.2 He,#) = [ plelehogZ 22l

of the approximated model from the true model, as the appropiate loss function
to measure misspecification errors in probability models. It then follows, from
standard Bayesian decision theory arguments, that the best solution to the
problem posed is the clustering model p(z|@) identified by the value ¢ € @
which minimizes

(2.3) [ teopteln)de
where

p(elD) & [] plz;le)n(v);

Jj=1

L(p, @) is given by (2.2) and = (), in the absence of prior information, is the
reference (non-informative) prior (Bernardo, 1979) for the model (2.1).

Note, from our definition of a clustering model, that the problem of allocating
observations into clusters is not central to our approach, markedly in contrast
with the usual approaches to the clustering problem. In fact, the allocation
problem only makes sense after k has been estimated, so that all probabilities
of classification are condzttonal on the value of k, this value being either fixed
or estimated. Thus, conditional on the number of clusters k, the computation
of the probabilities of classification of each observation z; of the data bank in
the clusters can be carried out by introducing the discrete hyperparameters
Ty,..,Tp in the mixture model (2.1) -where {x; = 1} represents the event
“z; was generated by the model p(z]6;)”- and then applying straighforward
Bayesian techniques to the hierarchical model to obtain

(2.4) p(m =11, .., 7 =1,|D), 1;€{1,..,k}

From this joint distribution the individual probabilities of classification are
easily calculated.

The proposed solution is totally general but immplies formidable technical
dificulties. Indeed, due to the complicated structure of the mixture model (2.1):
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(1) The loss function (2.2} is difficult to evaluate analytically.

(i) The reference prior 7() required in (2.2) is very difficult to obtain, even
in simple mixture models.

(iii) The posterior distribution p(¢|D) required in (2.3) is never obtainable
in exact closed form, due to the combinatorial explosion which mixtures

entail.

(iv) The computation of the joint probabilities of classification given by (2.4)
also entails formidable computational requirements.

Hence, a number of approximations and simplifications will be necessary in
order to obtain results which do not fall short of our proposed model but, on
the other hand, may be computationally feasible. This will typically imply

(i) Working conditionally on k, then computing the conditional expected
losses of the optimal choice, i.e.,

(2.5) / Ligx, &x)p(0x|D)dpr,

where

Pk = {)\1, eny )\k); (91,...,9k)},

and then selecting that which minimizes (2.5).
(ii) Using approximations to the exact form of the reference prior 7 (px).

(1ii) Using approximations to the exact form of the posterior distribution
p(px|D) to avoid the combinatorial explosion.

(iv) Using approximations to the individual probabilities of classificiation.

In the following sections we shall explore some of these problems in a number
of examples. In particular, we shall deal with problems (iii) and (iv), leaving
aside (i) and (ii) for future research (see, e.g., Bernardo and Girén (1988) for
some results in these directions.)
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3. APPROXIMATION PROCEDURES

As pointed out in the preceding section our analysis of the clustering model
1s to be conditional on k. Thus throughout this section & will be a fixed positive
integer.

The first step to be taken in applying the mixture model to the data bank
D is an appropiate choice of the p(z|6;)'s which describe the corresponding
clusters. This choice will depend, to a great extent, on the type of the individual
components of the vectors z; of the data bank, i.e., whether they are discrete,
continuous, etc.

Greater generality in the model is accomplished by allowing the §; to con-
tain enough unknown parameters, but at the expense of greatly complicating
the analysis of the already complex mixture model. Therefore, a compromise
between tractability and, on the other hand, a flexible and realistic model for
the individual p(z|6;)’s, is called for.

An obvious candidate, and by far the most used model, is a mixture of mul-
tivariate normals. A point in favour of this choice is that any multivariate
distribution can be approximated (in the sense of weak convergence) by a fi-
nite mixture of multivariate normal distributions. Indeed, even if the “true”
model consists of a single population from a non-normal distribution, a sen- -
sible approximation by a finite mixture of normals will not be misleding for
most interesting applications; in particular this situation would suggest that
the original population may be thought of as a mixture of appropriately defined
subpopulations, thus suggesting areas for new research.

With multivariate normal distributions, the general model (2.1) adopts the
form

>

(3.1) (z|ex) = Z N, (z]8;, ;)

where N, (z]6;, Z;) denotes a p-variate normal distribution with mean vector
6; and covariance matrix ¥;.

Consider first the case of homocedastic clusters, that is $; = ¥ fors = 1,...,k
with ¥ unknown. Then, model (3.1) becomes

bl

(3.2) p(z|),6,%) Z N,(z)6:, %)

We have already pointed out that the non-informative prior, even for the
simplified model (3.2) is difficult to obtain. On the other hand, conjugacy is
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not preserved when dealing with mixtures; yet a weaker for of conjugacy is
possible: namely, if the prior belongs to the class of finite mixtures of (the
usual) conjugate family, then the posterior is also in this class.

So let us suppose that the prior distribution of (X, 6, X) is such that A and
(6, X) are independent a priori, and A follows a Dirichlet distribution with
parameters a(lo, o agco, which will be denoted by A < Dz (/\|a(10, ey aLo)' The

joint distribution of (6, 2) is such that 6 given T follows a matrix-variate normal
distribution.

6|5 — Nip(0]35; Mo, Lo @ X)

and I follows an Inverted Wishart distribution, & — W (Ao, vo). We shall
denote this joint distribution of § and & by NW ~1(6, £| My, Lo, Ao, vo)-

Prior independence between A and (4, L) seems very reasonable as a starting
working hypotheses. A more flexible prior distribution allowing for depen-
dence between A and (6, Z), which still preserves the weak conjugacy property,
would be a finite mixture of independent Dirichlet—-Normal-Inverted Wishart
distributions.

Note that prior independence of §;’s given ¥ is not assumed. Furthermore,
the form of the joint prior of (fy,...,6x) given T is general enough to acco-
modate the hypothesis of exchangeability among the clusters. This hypothesis
seems fairly reasonable in the proposed mixture model and, in many practical
situations, may facilitate the assesment of the matrices My and Xg.

With these assumptions on the prior distribution the form of the posterior,
though complicated due to the k™ terms of the mixture, has some remarkable
features. Indeed, the posterior distributions is

Ji 1
3.3 )
( ) XD'L </\|Q11l ..... Jn., ’ail Jn)
xNW~1(6,Z|M;, s Zg1 . gnr Adrinr Vi, dn)

where, for example,

Ji,...
L

v g =t0+n and oft7" = aﬁo + 65, + .o+ bij 8a

6;1 being Kronecker’s delta.

The remaining parameters have more complicated formulae and shall not be
given in explicit form. Also the computation of the weights p(m = 7
Tp = Jn|D) involves the calculation of some predictive distributions.
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From (3.3) it follows that

(i) The true posterior distribution is a finite mixture of independent
Dirichlet-~Normal-Inverted Wishart distributions. Thus, the weak con-
jugacy property holds.

(if) The posterior marginals of A and (6, £) are also finite mixtures of Dirich-
let and Normal-Inverted Wishart, respectively.

(iii) The weights of the mixture {3.3) are the posterior joint probabilities of
classification.

The computation of the exact solution (3.3) is usually prohibitive even for
moderately small data banks, so that some sort of approximative procedures
are required.

Our approach to the approximation problem is somewhat related to previous
work by Smith and Makov (1978), Titterington (1976), Titterington et al.
(1985), Bernardo (1987) and Caro et al. (1986a).

The idea of the procedure is to update the prior coherently given the first
element z; in D and the approximate this mixture of k terms (the true posterior
given z;) by a single distribution. Then, this approximation is combined with
the likelihood proportional to p(z2|A, 6, £) via Bayes theorem to produce a new
mixture of k terms which, in turn, is approximated by a single distribution and,
then, the procedure is applied over and over again until the whole data bank
is exhausted.

The posterior distribution of A, 4, X given z; is

(3.4)

p(\6,Blz1) = Y p(m = 5l21)Di (Mol® + 61, _al® + )

.....

j=1

XNW =" (6,2|M], 21, 4],+])

where M{, E{, A{ and v{ are the revised parameters. In particular v{ =y +1
forj=1,..,k

The form of the loss function (2.2) and the arguments put forward in
Bernardo (1987) suggest that the best aproximation to the mixture (3.4) is the
one that minimizes the Kullback-Leibler divergence within a specified class of
distributions. If this approximation is to be used as a prior for the next up-
dating and the weak conjugacy property be preseved in sucessive updatings,
an obvious choice of the class of prior distributions on (1,4, ¥) is the class of
independent Dirichlet—Normal-Inverted Wishart distributions. Therefore the
problem is reduced to find a member of this class that minimizes the Kullback—
Leibler divergence from the mixture (3.4).
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The next lemma, whose proof is elementary, reduces the problem to the sim-
pler problems of approximating mixtures of Dirichlet and mixtures of Normal—-
Inverted Wishart distributions by Dirichlet and Normal-Inverted Wishart dis-
tributions, respectively.

LEMMA 3.1.

Suppose that f*(y) € F minimizes the Kullback-Leibler divergence from
the model T¥_ p; fi(y) over ¥ and g*(2) € G minimizes the Kullback-Lerbler
divergence from the model T¥_ p;gi(z) over G. Then, the joint distribution
h*(y,2) that minimizes the Kullback-Leibler divergence from Lf_pi fi(y)gi(2)
within the class ¥ = {h(y,2) = fly)g(z) : f € F,g € G} is precisely
h*(y,2) = f*(y)g"(2).

Unfortunately, this solution, though it preseves the marginal distributions,
does not take into account the possible dependencies between A and {6,X). A
way to circumvent this difficulty is considered in the next section.

The following lemma, stated without proof, give methods for computing the
required approximations.

LEMMA 3.2.

ar), that minimizes the divergence

.....

rom the mizture St p;Di{ Ao o) is such taht its parameters are the
j=1P3 1 k p

.....

(3.5) ...............................................................

<,
il
-

where ¢ denotes the digamma function.

LEMMA 3.3.

The Normal-Inverted Wishart distribution, N,,kW’,—l(ﬂ,EIM,Z—),A,U) that
minimazes the divergence from the maizture EleijW"l(H,Ele,Ej,A]-,u]-)
15 such that its parameters are the solution to the system:
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T v+1—1 S L4 +1—1
og 4+ 59 (“55) = £ o gl + £ v (42 1)]
=1 J=1 =1

These lemmas applied to (3.4) show that the best approximation to this
mixture is a density of the form

Di (,\|a§1, ...,a,(cl) x NW=1(8,£|M;, Ty, Ay, vy),

whose parameters are the solution to

where a® = ol + . 4 a,(co; and
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M, Zi p(my = jlz) M

j=1

k .
pX, =p (Z plm = 1'111)211) + (vo + 1)
J=1

k , ,
x 35 p(m = jlza)(M] — My)A; (M7 — M,)*

j=1

k
v1 Ay =(vo + 1) > p(m = J’Izl)AJl
=1

log 41| + 2 ¥ (21.11.:1) :ép(“ _ i) [log|A " E y (vo t2- )}

2

These recursive equations form the basic of subsequent updatings. In Caro
et al. {1986b) some properties of the solutions to (3.7) and (3.8) are given
along with some useful approximations and computacional procedures.

If this approximation is used as a prior for the next updating, the approzimate
posterior to p(}, 4, X|z1, z2) is given by

.....

k
Z i (Mol + 610! + 8;) x NW T (6,2|ME, 35, 45, %),

where p; is the approximate posterior probability of x5 being classified in cluster
7 given z; and z;.

Proceeding in this way, the approximate final distribution of A, 8, % is

k

p(\,0,8ID) & 3 (mn = 5ID)Di (Mal"™* + 6150l + 545
7j=1
(3.9) xNW™! (9, 2| M3, 21, A%, v1),

where p(m, = j|D) is the approximate posterior probability of classifying z,,
in cluster 7 given D. Inferences on the cluster defining parameters should be
drawn from this approximate distribution.
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The case of heterocedastic clusters, that is, model (3.1) without constraints
on the parameters, is treated in a similar way. The specification of the prior
distribution should now be made so as to preserve some sort of conjugacy as
in the homocedastic case. The form of the likelihood (3.1) suggest that an
appropriate prior on (A, 85, Xy, ..., 0k, i) be such that A, (61, £1), ..., (6, Zk)
are jointly indepedent; further

X o Di (A, .., al°)

and

(310)  (055:) = NWH (6, 5[l 00, 4L, 0°), for i=1,...k.

Prior dependence can be introduced by specifying a finite mixture of priors
like (3.10). This still keeps the posterior within the conjugate family.

The corresponding posterior given z; is
(3.11)
k
P(3,03, B, 00, Balzn) = 32 plms = jlea) Di (Ml + by, 0l + 65
J=1
{1 {1 _{1
X NW~ 1(9,,2 18, o, AL, ;)

T 9 (0, o)

where u( § A 17 (* are the usual revised parameters of the corresponding

NW = (05, 3,10 ol 40, o)

density given that observation z; comes from the j-th cluster.

The best approximation to {3.11) by a density of the form

k
DiAa’, all) [T MW (6, milul?, ol Al of")
i#5

1s that for which the a(ll, oy a}cl satisfy equations (3.7), and the new parameters
are computed from the following equations
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ol (wl® — ) 4L (ul° - ul?)
oA =p(my = ijz.) (o A1) + (1= plms = ila)) (o1 41°)

log |AL| + v (o4 /2) = p(m = il=1) (tog 4"+ (+4*/2))
(1~ p(m1 = ila) (log | 4]+ (+{°/2))

(3.12) +(1 - p(my =1{z,

Equations (3.7) and (3.12) are the basis for the recursive updatings of the
parameters in the heterocedastic case. Thus, the approximate final distribution
1s
(3.13)

k
p(X; 81,515 s 0, S| D) Y p(mn = §|D)Ds (,\la';-l T N e 5k]»)
=

XNW = (85, S5l 0", A ol

7 .7
XH1¢]NW 1(0”21#(71 1’ (n 1 A(n 1 (n 1)

4 1

where, as before, f(m, = 7]D) denotes the approximate posterior probability
given D of classifying the n-th observation of the data bank in the j-th cluster.

From (3.13) approximate inferences on the parameters can be drawn. Thus,
for example, the (approximate) marginal posterior distribution of (f;, £;) is

p(6:, S| D) =p(mn = §ID)NW (05, Silul", ol A", of")

(1= plrn = §|D)NW L (8, Bilul" ™ o f" 7 Aol

O 1Y

From this, the marginal of ;, given D is easily seen to be a mixture of two
multivariate ¢ distributions.
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4. DISCUSSION

The cluster model of Section 2 is quite general as a description to the clus-
tering problem. It is in fact too general, even tough the specification or model
choice of the terms in the mixture p(z|6;) is not regarded as part of the deci-
sion problem. In Section 3 some reasons were put forward to favour the normal
mixture model without actually implying that the applicability of the model is
restricted to this particular, tough important, case. In fact, some of the ideas
and procedures developed in Section 3 can be generalized to some multivariate
exponential families.

As pointed out in Section 2, one of the important issues in the present ap-
proach is the developement of reference priors for the general cluster model
(2.1) or for the simpler models (3.1) and (3.2). The usual reference priors for
each individual cluster plus the hypothesis of prior independence, though much
favoured in the literature, does not seem appropriate as a reference prior, unless
the clusters are well defined and further apart from each other, a fact generally
unknown a priori. A reference prior which could be approximated by a member
of the extended (finite mixtures of) conjugate family would desirable. Thus,
further research in this area is called for.

The procedures outlined in the preceding section for the normal mixture
model are relatively easy to compute. Unfortunately these procedures are
order dependent and their perfomance depend, to some extent, on the order in
which the elements z; are in the data bank D. At every stage of the updating
procedure the closer the approximation is to the true posterior the better the
perfomance of the procedure and the less order dependent it becomes. In
fact, when the marginal probabilities of classification f(mp, = jlz1,..., Zm-1)
are sharp, i.e., are closed to a vertex of the k-dimensional simplex, then the
divergence of the approximation from the posterior tends to zero.

Thus, in order to make the procedures less order dependent at least in the
first critical iterations or updatings, the following procedure is sugested: Com-
pute using formulae (3.4) to (3.13) the sequence of weights.

(- Blmy = glz1), ...} (o0 B2 = 7|21, 22), ) oo (s Bmn = 5| D), -.0)

for any ordering of the data bank D Then, order the sample in increasing order
according to the distance of the classification vector to the closest vertex of eh
k—dimensional simplex and apply the standard procedures to the rearranged
bank. Some simulations studies have shown that this procedure works well in
practice.

It is also clear from the discussion above that when the classification prob-
abilites are not sharp or definite enough, our approximations may be rather
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misleading (they fail to capture the dependencies among the parameters). One
way to circumvent this difficulty without greatly increasing the computational
complexity of the preceding procedures is as follows: “update the parameters
coherently given z; and z, and then approximate this mixture of k? terms by
a mixture of k terms; then repeat the procedure over and over again”.

The computation of this approximation in closed form by minimizing the
Kullback-Leibler divergence, a problem similar to that of obtaining a closed
form the loss function (2.2), is not feasible due to the mixture form of the ap-

proximation. An alternative solution will be reported elsewhere (see Bernardo
and Girén, 1988).
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