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SOME ASPECTS OF PARAMETER INFERENCE FOR NEARLY
NONSTATIONARY AND NEARLY NONIN VERTIBLE ARMA
MoODELS 11
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This article will extend the discussion in Ahtola and Tiao (1984a) of the finite sample dis-
tribution of the score function in nearly nonstationary first order autoregressions to nearly
noninvertible first order moving average models. The distribution theory can be used to ap-
preciate the behavior of the score function in situations where the asymptotic normal theory
i8 known to give poor approximations in finite samples.

The approximate distributions suggested here can be used to test for the value of the moving
average parameter when it is close to unity. In particular, a test for noninvertibility can
be obtained with an exact finite sample distribution of the test statistic under the null hy-
pothesis.
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1. INTRODUCTION.

Parameter inference of ARMA models relies
heavily on asymptotic distribution theory
for the estimators of the parameters. To
obtain asymptotic normality for the least
squares estimators, say, both stationarity
and invertibility are assumed. This asymp-
totic theory is known to break down if the

autoregressive operator has roots on the
unit circle. Fuller /10/, Dickey and Fuller
/7/, Rao /18/, Evans and Savin /8/, Hasza
and Fuller /11/, and Bhtola and Tiaoc /2/
provide theory to cover some cases when the
model is purely autoregressive. The asymp-
totic theory for noninvertible models is yet
to be developed. The presence of the moving
average part in general, invertible or not,
brings in a substantial complication for the
estimation of the parameters, compared to
the purely autoregressive models, where or-
dinary‘least sgquares can be used. Some sort
of iterative procedures are called for and
closed form expressions for the estimators
are consequently not obtainable.

A serious problem arises when asymptotic nor-

mal distributions are used for finite sample
inference, even when the true model is sta-
tionary and invertible. Evans and Savin /9/,
report calculations with a first order auto-
regression, which clearly indicate that nor-
mality is a poor approximation for the least
squares estimator of the autoregressive para-
meter even for large sample sizes, when the
true parameter is near but below unity. Si-
milar problems, but possibly somewhat less
pronounced, are reported in Fuller /10/

(p.357) in connection with a nearly noninver-
tible first order moving average model. A com-
mon feature in both cases is the fact that the
distributions become skewed. An additional dif-
ficulty with the finite

sample distribution

of an estimator of the moving average para-
meter is that the usually applied estimation
techniques give estimates exactly on the
noninvertibility boundary with positive pro-
bability; this probability being the bigger
the closer to the noninvertibility boundary
the true parameter is. Therefore the finite
sample distribution of the estimator is of

a mixed type and not absolutely continuous
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everywhere. See Cryer and Ledolter /6/

C R OREGR ON.

To obtain some useful insights into the

finite sample inference problem we suggest
in Ahtola and Tiao /1/ the

function and discuss the distribution theory

use of the score
associated with it in a first order autore-
gression in nearly nonstationary situations.
More specifically, we consider the model

Vg E ¢yt_1 +ag, (1.1)

?

where y =0, a NID(O,1), t = 1,2,...,n
The general case of var(at) = 02 poses no

difficulties and is dealt with in Section 6.
The score function, that is, the derivative
of the loglikelihood

to ¢ is readily written as

function with respect

n n 2 ~
I vy 43 = 21 Ve (6 - ¢)

S, (y) =
¢ t=1 t=

(1.2)
where ¢ is the least squares estimator of
¢. S¢(y) has a convenient quadratic form
representation which can further be decompos-—

ed into a linear combination of independent

and identically distributed chi-square va-

riables with one degree of freedom. Speci-
fically,
Sy (y) z 2
Sply) = a’Ca = I
¢ jo1 ”anJ(T) )
where a = (al,...,an)',
1 [ n-2 ]
C = 5 0 1 $ .. b
1 . .
¢ . ¢
E . 1
T
and njn’ j=1,...,n are the eigenvalues of
C.

When ¢=1, the eigenvalues are

jﬂ— ] J'=1,2,...,‘n-1

=3
t
I:S
Nft
- ]

nn

For |¢| < 1 closed form expressions for n,

jn
are difficult to obtain. When normalized by

the inverse of the standard deviation of
S¢(y),

c{¢,n) =
2.1/2 -
R AR CR R R R LR I
1 -1/2
E?Hn—1” , 6= 1

such that the score has variance equal to 1,

c(¢,n)s¢(y) can be decomposed into two
terms
c(¢,n)s¢(y) ={Y - BX)+ (1+B)X (1.3)
where
n n )
= o 2 = . {1
Y = mjf] Xj(1)’ X jE] (kJn+m)xJ( )

A = c(¢,n)njn,

5n -m = m%n(xjn)

J
and

—2m2n

R = is the regression coefficient

tem'n of Y on X.
Note that Y - BX
lated. Y - BX

and (l1+B)X are uncorre-

is aproximately distributed
as -mx?(nd”Y), and (1+8)X is approximately
distributed as (2mn)—lx2(2(mn)2d-l), where
d = 1+2m2n.

It can also be shown that an asymptotic ap-
proximation to ~m is

-m = _(1+¢)'1c(¢,n).

This approximation is exact when ¢ = 1, for

any n, and it performs very well for ¢ va-
lues dawn to .6 with sample sizes of, say,25
and bigger. Therefore the normalized score
function has a readily obtainable approxi-
mate expression as a sum of two uncorrelated
weighted y? variables. Note that this ex-
pression is a function of only two parame-
ters m and n. The approximate expression is
very convenient in the interpretation of the
exact behavior of the score function, when ¢
and n are varied. In particular, the finite

sample behavior of the score when ¢ appro-

aches unity becomes very clear, and in fact,
when ¢ is unity the approximate finite sam-
ple distribution is exact.
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The plan of the rest of this article is as
follows. In Section 2 we show how the re-
sults concerning the behavior of the score
function in the first order autoregression
can be extended to characterize the distri-
bution of the score function in the first
order moving average model, when the moving
average parameter is close to unity. In Sec-
tion 3 we give an interpretation for the
score as a function of an estimator minus

the +true parameter. This interpretation
gives additional intuition to why the score

function is a natural test statistic to look
at. Section 4 contains the interpretation of
the transition of the distribution of the

score when the moving average parameter ap-
proaches unity. In Section 5 we present ta-
bles for inference in practice, and Section

6 contains some concluding comments.

2, DISTRIBUTION OF THE SCORE IN A FIRST
ORDER MOVING AVERAGE MODEL

Consider the model

Yy =3, - 0a ., (2.1)
where ao=o, at~NID(O,1), t=1,2,...,n.
Now we can express a, as

a=y, + 0y, . +...+ 0% (2.2)
= Vi teg oo Y, .

The loglikelihood function is

1ely) =

n 1 0
= ~ Ziog(2n) - L t-
51og(2m) 5 t§1(yt + eyt_1 +oou+ O 1y1)2

The score function, Se(y), is now

n
Se(y) =~z

(y, + oy +eeor 0871 +
t=1 © -1 * Yl gy

+20y, 4.+ (t-1jet R )
t-2 1 (2.3)

Using (2.2) it is readily seen that

n
Se(y) =~z a

t-2
o t(at—1 + eat—Z toour B al) (2.4)

Recall that the score function in the first

order autoregression is Zatyt_l; However,

Y-, then has an expression

= a + a5+t ¢t'2a

Yio1 = B g 1

therefore we immediately see that Se(y) is
the negative of the score function of the
first order autoregression (l1.1) with para-
meter §. This fact implies that we get (see
(1.3)) ’

c(e,n)se(y) = ={1+B8)X + (BX-Y)
2 '32X2(b2) + a1X2(b1) (2.5)
where
a, =m b, = nd-1
1 ! 1
a, = (2mn)—1, b, = 2(mn)2d_1,
d=14+ 2m2n, and
-m 2 -(148)"'c(0,n), (2.6)

and the two x?'s are uncorrelated. In par-
e

ticular, when = 1, all the approximations
in (2.5) and (2.6) become exact and further-
rmore the two ¥2's are independent. We

therefore have an exact result for 8 = 1.

C(e,n)Se(y) = -[(n_])(zn)'1]1/2xz(1)

+ [2atn-1]1"22 (n-1) (2.7)

where the two chi-squares are independent.

3. AN INTERPRETATION OF s, (y) AS A FUNCTION

~

F 8 -9

In the autoregressive case it is straight-
forward to see that

s ' 2 G

oY) = t§1 Ve = ¢) (3.1)
where $ is the least squares estimator of ¢.
Therefore S, (y) offers a natural test sta-
tistic from the estimation point of view.

Since the least squares estimation in the
moving average case is much less straight-
forward, expressions like (3.1) are not

readily available. However, if we define an
iterative least squares estimation procedure

as in Fuller /10/ (p.344) (see also Macpher-

son and Fuller /13/, we can obtain' an analo-
gue to (3.1), but naturally only in an ap-
proximative sense. To this effect, let us
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denote (2.2) as

t-1
at(y,e) = yt + eyt_1 +ee0+ O y1 (3.2)

Define the least squares estimator of 0 as

the value which minimizes
Qn(e) = tZ {at(y,e)} (3.3)

The minimization of (3.3) is necessarily
iterative, and let us denote by 6 some ite-
rate which can also be a suitable initial

estimate. Expand now at(y,e) as

2,(¥,0) = 2 (y,0) + W (y,6)(8-8) + r,(y,6)

(3.4)
- oa, (v, 8)
where Wt(y,e) = — ~ , and
36 6=0
rt(y,é) is the remainder term.
We can write (3.4) as
ay(y,0) = -W (y,8)(0-6) + r (v,0) +a, (3.5)

which suggests regression of at(y,é) on
-Wt(YIé)

note the new estimator obtained from this

to obtain an estimator of 6-8. De-

regression by 8 = é + Ag, where from above

. = IW(y,0)a,(y,0
Ae= t H t H

s (3.6)
I{w (y,6)}

After iterating until convergence is achiev
ed and arguing asymptotically, we obtain
from (3.6) and (3.5), (see also Fuller /10/
(pp.347-348))

~ -z Wt(y,e)at

6 -0: 3
£0, (y,0)}° (-7

where = denotes asymptotic equivalence.
Therefore,

n

PIEN n
r {W (y,0)}°(6-6) 2 -3 W, (y,0)a
t=1 t t=1 t t (3.8)

Since the right hand side of (3.8) equals
Se(y), (3.8) is now the analogue of (3.1).
The two formulas are easily seen to be in
agreement with each other, since in the

autoregressive case

..Wt(y,¢) = yt—1 (3.9)

which effectively allows the simple, exact
formula (3.1).

To avoid possible confusion, we might note
that the above iterative least squares pro-
cedure is not needed to obtain a test sta-
tistic for testing, say, HO:S = 60 vVS.

le 6 # eo. The test statistic can simply
be obtained from (2.4) by calculating

c(eo,n)se (y) . Therefore no "estimation
o
under the alternative hypothesis" is needed.

This is a very tractable feature of testing
procedures based on the idea of efficient

score or Lagrange multiplier in general.

4, INTERPRETATION QF THE FINITE SAMPLE
DISTRIBUTION OF c(o,n)s,(y)

As a point of reference we have computed
percentiles of the exact distribution of
c(e,n)se(y) by numerical methods for various
® and n. Numerical evaluation of the eigen-

values njn and numerical integrations +to

n
obtain pr( I A

I X;(l) < x,) for appro-

jn
priate X, were required. Table 1 summarizes
these computations.

The distribution is seen to be very skewed

to the left when 6 is close to unity for

all sample sizes. For large samples the skew-
ness diminishes faster than for small samples
when 6 moves away from unity. ~This is the
well known "central limit effect", which is

known to work with invertible models.

The approximation (2.5) yields an intuitive-
ly appealing device to interpret the behavior
of the distribution of c(e,n)Se(y). Recall
that the exact distribution is that of a
linear combination of n independently dis-
tributed chi-square random variables each
with one degree of freedom. Therefore, in
some sense, we have a total of n degrees

of freedom. Now the degrees of freedom of
the two approximating component chi-squares
in (2.5) add up to n, and hence "the ap-
proximation can be thought of as allocating

the total nomber of degrees of freedom bet-
ween these two components.

158



Qtiestiié - V. 8, n.° 4 (desembre 1984)

To see how the negative component of the ap-

proximation dominates the sum when 6 is close

to unity, let us denote

Var(8X - ¥) = w and Var(~(1+8)X) = 1 - w,
2 -1, 2

where w = (1+2m"n) "2m n. Then the degrees

of freedom b1 and bz in (2.5) can be written
as b1 = n(l-w) and b2 = nw., Thus, l-w measu-
res the portion of the total variability ac-
by - the

(2.5) and nw measures its skewness.

counted for negative . component. of -

Tables 2a and 2b give, respectively, values

of 1-w and nw for various values of 6.

From 6 = .8 and up the dominance of - (1+8)X
is very marked and also the skewness is seen
to increase when 6 increases and/or n de-
creases. For fixed n, we see a smooth transi-
tion in the behavior of the approximation
(2.5) as © decreases from unity. This corres-
ponds directly with the exact behavior of
c(e,n)Se(y) in Table 1.

In summary, the behavior of the distribution

of c(e,n)se(y) can be conveniently summarized

as a linear combination of two chi-square
random variables. The characteristics of

this linear combination are determied by

m and n, since (al,bl) and (a2'b2) are func-

tions of only these two quantities. In parti-

cular} the two functions 1-w and nw together
illustrate in very simple terms the nature
of the distribution in the transitional si-
tuation when 6 is close to unity as well as
the inadequacy of using asymptotic normality

as an approximation for finite n in such a
situation.

2. APPROXIMATE FINITE SAMPLE DISTRIBUTION
FOR c(8,n)s4(y)

We have used (2.5) to interpret and appre-
ciate the distribution of c(e,n)Se(y) when 6
and n vary rather than suggesting it as an

approximate distribution for practical use.

A somewhat better overall fit to the exact

distribution can be obtained by using appro-
Ximations

-{1+B)X = -bF(\’1,v2) (5.1)

BX = ¥ 2 N(u,w) (5.2)
where the parameters of the scaled F-distri-
bution are obtained by equating the first
three moments on both sides of (5.1), and u
BX-Y. For de-

tails of the evaluation of these parameters

is the approximate mode of

and the motivation behind these approxima-
tions the reader is referred to Ahtola and
Tiao /1/.

We now present percentiles of the approxima-
tion

=(148)X + (BX-Y) 2 =b F(V,,v,) + N(W,W) (5.3)
where the F part and the normal part are
treated as independent. We call this approxi-
mation the F-Normal approximation. We also
compare this approximation to the exact dis-
tribution by giving the exact cumulative
probabilities at the percentiles of the

approximation.

Table 3 summarizes the performance of the
approximation for various n and 6. The lower
tail is generally extremely well approximated.
Although the upper tails show some discrepan-
cies particularly when n = 100 and 6 1is
.99,

to work well enough for practical wuse and

around the F-Normal approximation seems
performs far better than the asymptotic nor-

mal approximation.

6. CONCLUSIONS.

We have demonstrated how the distributions
of the score functions of the first order
autoregression and the first order moving
average model are in close connection with
each other. The discussion was carried
through by assuming the disturbance variance,
var(at) equal to 1. It is straightforward to
see ‘that if var(at) = 02,
c(e,n)Se(y)
all the previous results apply. Usually it
is the case that 02 which

some es-—

the test statistic

need to be divided by 02 and

is unknown, in

case 02 must be substituted for by

timate for practical applications. Simula-
tion studies indicate that using e.g. the

MLE of 02 has no practically significant
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TABLE 1 Exact Percentiles of c('G,n)Se(y)
(a) n=25

0 .C10 025 .050 . 100 .900 .950 .975. .990
.6 -3.01  -2.3%  -1.81 -1.28  1.12  1.41  1.66  1.95
.8 -3.36  -2.52 -1.88 -1.27  1.01 1.2 1,43 1.66
.9 -3.66  -2.65 -1.92 -1.22 .92 1,09 1.24 141
.95 -3.84 -2.75 -1.96 ~-1.20 .84 .98 1,10 1.25
975 -3.90  -2.79 -1.98 ~1.20 .80 .92 1,03 1.15
.99 -3.92 -2.80 -1.98 -1.20 .78 .89 99 1.10
.995  -3.92  -2.80 -1.99 -1.20 .78 .89 .98 1.10
(b) n =50
5] .010 .025 ,050 . 100 .900 .950 .975 .990
.6 -2.83 -2.25 -1.79 -1.30 1.17 1.46 1.71 2.00
.8 -3.12 -2.41 -1.86 -1.30 1.09 1.32 1.51 1.74
9 ~-3.43 -2.56 -1.91 -1.28 1.00 1.17 1.32 1.48
.95 ~3.70 -2.63 -1.94 -1.23 .89 1.02 1.14 1.26
975 -3.87 =2.77 -1.97 -1.21 .81 .92 1.01 1.11
.99 -3.94 -2.81 -1.99 -1.20 .76 .85 .92 1.00
.995 -3.95 -2.82 -2.00 -1.20 .75 .83 .89 .97
(c) n = 100
<] 010 .025 .050 . 100 .900 .950 975 .990
.6 -2.68 -2.17 ~1.75 -1.30 1.21 1.51 1.77 2.06
.8 -2.91 ~-2.30 -1.82 ~1.31 1.16 1.40 1.61 1.84
.9 3,17 -2.44 -1.88 -1.31 1.08 1.28 1.44 1.62
.95 3.46 -2.58 -1.93 -1.28 .98 1.13 1.25 1.38
.975 -3.72 -2.70 -1.95 ~1.24 .88 .99 1.08 1.17
.99 -3.91 -2.80 ~1.99 -1.20 .78 .86 .92 .99
.995 -3.96 -2.83 -2.00 -1.20 T4 .81 .86 .92
TABLE 2a oo TABLE 2b
Values of 1-w = Var{1+B)X Values of nw = b,

) n 100 50 25 \\3\3 100 50 25
.6 .663 .660 652 .6 33.684 17.021 8.696
.8 814 .810 .800 .8 18.605 9.524 5.000
.9 .900 .895 .882 .9 10.000 5.263 2.938
.95 .950 .939 .823 .95 5.405 3.026 1.906
975 .969 .961 .943 .975 3.072 1.940 1.427
.99 .983 .973 .953 .99 1.748 1.348  1.163
.995 .986 977 .957 995 1.353  1.168  1.080
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TABLE 3 Percentiles of the F-Normal Approximation
(a) n=25
0 .010 .025 .050 . 100 .900 .950 .975 .990
.6 -2.99 <2,40 ~1.94 -1.47 .98 1.26 1.50 1.77
.8 -3.29 -2.52 =1.96 -1.40 .95 1.19 1.37 1.58
9 -3.53 -2.61 -1.95 - -1.33 .89 1.07 1.22 1.38
95 =3.69 -2.74 -1.96 -1.28 .84 .98 1.09 1.22
975 -3.80 -2.74 -1.98 -1.26 .78 .90 1.00 1.11
.99 -3.89 -2.80 -2,01 -1.26 ° T4 .84 .93 1.02
.995  -3.92 -2.,82 -2.,02 -1.26 .72 .82 .90 .99
Exact cumulative probabilities at the above percentiles
.6 .010 .023 .042 .078 .863 .928 .961 .982
.8 011 .025 .046 .086 .878 .941 .969 .986
.9 .011 .026 .049 .090 .889 .. 946 .973 .988
.95 .011 027 .050 .093 .900 .951 974 .988
975 011 .026 .050 .095 .890 944 970 .986
.99 .010 .025 .049 .095 .875 .930 .962 .980
.995 .010 .025 .049 .095 .863 .923 .955 L9177
(b) n =50
8 .00 .025  .050  .100  .900  .950  .975  .990
.6 ~2.84 =2.31 -1.89 -1.44 1.07 1.37 1.62 1.90
.8 -3.09 -2.42 -1.91 -1.39 1.05 1.29 1.50 1.73
.9 -3.35 -2.52 -1.92 -1.33 .98 1.18 1.34 1.51
.95 -3.55 -2.,60 -1.92 -1.28 s W91 1.06 1.18 1.31
975 -3.70 -2.66 -1.93 -1.24 .84 .96 1.05 1.14
.99 -3.83 -1.74 -1.97 <1.23 17 .86 .93 1.01
995  -3.89 -2.79 -1.99 -1.23 .73 .81 .88 .95
Exact cumulative probabilities at the above percentiles
.6 .010 .023 .043 .082 .875 .937 .968 .986
.8 .010 .025 .047 .090 .887 . 945 .974 .990
.9 .01 .026 .050 .094 .894 .952 .978 .991
.95 .011 .027 .051 .095 .908 .959 .982 .993
975 .01 .028 .052 .097 .915 . 964 .983 .993
.99 .01 .027 .051 .098 .907 .956 .978 .991
.995 .010 .026 .050 .098 .887 .942 .971 .987
{(c) n = 100
¢} .010 .025 .050 .100 .900 950 975 .990
.6 -2.69 -2.22 -1.,83 -1,40 1.13 1.45 1.7 2.01
.8 -2.89 -2.31 -1.85 -1.37 1.12 1.39 1.61 1.86
.9 =3.13 =2.42 -1.88 -1.34 1.07 1.29 1.47 1.66
.95 -3.37 -2.52 -1.90 -1,30 1.00 1.17 1.30 1.45
975 -3.56 -2,59 ~1.90 -1.25 .92 1.04 1.14 1.25
99 =3.74 =2,68 -1,93 -1.,21 .82 9N .97 1.04
995 - 3,83 2,74 1,95 -1.22 77 .84 .89 .95
Exact cumulative probabilites at the above percentiles
.6 .010 .023 044 .087 .882 .942 .971 ..998
.8 .010 .025 .048 .093 .891 . 948 .975 .991
.9 011 .026 .050 .096 .897 .953 979 .992
.95 .01 .027 .051 .098 .907 - .960 .982 .994
975 011 .028 052 .099 .921 .966 .986 .996
.99 011 .028 .052 . 100 .929 .972 .987 .995
. 995 .01 027 .052 .099 .925 .967 .984 .994
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influence on the distribution of the score
compared to the known 02 case.

A major usefulness of the decomposition of
the score function into two approximately
chi-square distributed, uncorrelated random
variables is the simplicity of the ensuing
characterization of the finite sample dis-
tribution, when the parameter approaches
the boundary value. Also exactly on the
boundary, characterization can be sharpened,
since it can be shown that all the approxi-
mations become exact and uncorrelatedness
becomes independence. Therefore, the exact
(2.7) could be used as
for testing for noninvertibility of the
del.

distribution such

mo-
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