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PROBLEMS IN SCIENTIFIC TIME SERIES ANALYSIS
TUNNICLIFFE WILSON
UNIVERSITY OF LANCASTER, U. K.

The paper reviews the statistical methods of time series analysis used in a selection of
papers from respected seilentific journals. In particular, problems are considered in the
search for cycles, the use of regression to establish causal links between variables,
transfer function modelling and the use of filtering to extract components of time series.

An attemp? ig made_to assese how useful the ideas of ARMA and Transfer Function modelling
might be in wnproving the efficiency of statisticaql inference in these contexts.

Keywords: PARAMETRIC MODELLING,
LINEAR FILTERING,

1. INTRODUCTION,

Time series analysis is an activity with an
extremely broad range of applications, in-
cluding engineering, and the physical and
social sciences. Within the subject a selec
tion of techniques for 'signal processing'
have been developed which are designed to re
veal the structures within series and the re
lationships between them, so that they are
evident to the analyst.

In so far as it is concerned with the manipu
lation of observational data, time series

analysis may be formally considered a branch
of statistics. The applications of methods

of statistical inference to time series ana-
lysis has developed over the years, leading
to model building procedures with a sound

statistical foundation.

Gwilym M. Jenkins, through his major books
with D.G. Watts /18/ and G.E.P.Box /3/, his
extensive consulting and Instructional acti
vities, and his recent books describing prac
(1979~
1983) contributed to and promoted such an ap

tical experiences and case studies
proach to time series analysis. This has had
a major impact on the application of the sub
ject in many fields, particularly business
and economic forecasting. Engineering, and
some of the physical and environmental
sciences such as hydrology have also readily

ARMA MODELS, TRANSFER FUNCTION MODELS,
CLIMATOLOGICAL TIME SERIES.

accepted this approach.

There are however, several areas of scienti-
fic time series analysis which have not been
fully exposed to this approach. The aim of
this paper is to look at a selection of pub-
lished scientific analyses, and to assess
whether and how they might benefit from the
application of the ideas of ARMA and Transfer
Function modelling. To leave it at that would
be rather arrogant. An attempt has therefore
been made to understand some of the tech-
these

the widespread use of data filtering. In seek

niques used in papers, particularly
ing the statistical justification for such
techniques, I believe we can uncover gquestions
of real interest to the statistician concern-
ing procedures of statistical inference for

time series.

The selection of papers for consideration, was
made mostly from well known and widely real

scientific journals. Many are associated with
climatology a subject of considerable popular
interest with a reputation for attracting ex-
planations in terms of cycles of various ori-
gins. I shall consider the papers under four

headings: the search for cycles, the use of
regression, transfer function models and last
ly, the use of filtering. Under each heading

I shall briefly describe some sciehtific data
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analyses, comment on what has been done, and
describe some of the problems which may be
worthy of further consideration. I hope
others will be encouraged to examine these
problems, since I believe the statistician
could do much more to assist the scientist

in the interpretation of his data.

2. THE SEARCH FOR CYCLES.

A distinction should be made here between
the search for evidence of cycles with fair-
ly well precribed frequencies, and the more
suspect search for cycles of indeterminate
frequency.

Consider first an excellent example in Hays,
Imbrie and Shackleton /16/. They examine a
set of three indices obtained from measure-
ments on deep sea sediment cores. Each se-

ries is of approximately 160 points repre-
468KY

(thousands of years). They seek evidence to

support the Milankovitch theory of the ice

senting a geological time span of

age. This theory implies that glaciation of
the earth follows cycles in the obliquity of
the earth's axis (with a period of ~41KXY),
precession of the eguinoxes (period ~21KY),
and possibly also eccentricity of the earth's
orbit (period ~93KY). Berger /1/ presents
tables of the periods of the main cycles pre
dicted by the theory. Their indices are ex-
pected to reflect the variation in climate,
so that significant cyclical components
corresponding to these periods will be taken
as supporting evidence for the theory. In
fact the postulated cycles are only quasi-
periodic, and over the time span of interest
the cycle of period 21KY is better represent
ed as being split into components of period
19 and 23 KY. There is also some slight un-
certainty in the dating of the core, due to
variations in sedimentation rate, so the
time scale attached to the data points may
be in error by about 5%. The authors there-
fore attach greater importance to finding a
pair of cycles with approximate periods 41
and- 23K years, but with a relatively pre-

cise ratio of 1.8.

The method used is classical spectral ana-
lysis, and a precise description is present-
ed. Both Blackman and Tukey /2/ and Jenkins

and Watts /18/ are referenced, and acknow-

ledgement is giVen of advice from J.W. Tukey.
Because the aim is to detect discrete compo-
nents in the spectrum, a high resolution spec
trum (hrs) of handwidth ~ .01 cycles/KY is
calculated. Peaks in the spectrum are found
close to the prescribed frequencies. Their
statistical evaluation uses a low resolution
spectrum calculated for the same data. Then:
'Based on the null hypothesis that the data
are a sample of a random signal having a ge-
neral distribution of variance like that in
the observed low-resolution spectrum, confi-
dence intervals are calculated as a guide to
the statistical significance of spectral es-
timates in the high resolution spectrum. A
particular peak in the spectrum is judged
significant if it extends above the 1lrs by
an amount that exceeds the appropriate one-

sided confidence interval.’

This is an extremely rigorous test, as might
be expected given the advise received by the

authors . Of six peaks examined, two are

found significant at P = .05, one at P = .02,
COMMENT:
(a) The choice of bandwidth = .01, means that

between the postulated peaks at frequen-
cies £ = .01, .024, .043, .052 and the
origin f = 0, there are only one of two
bandwidths. To properly assess a peak in
a spectrum one needs to compare it with
the general level of the spectrum at
neighbouring frequencies. With the band-
width chosen in this analysis, the four
frequencies of interest are so close,and
close to £ = 0, that there is very little
information from neighbouring frequencies
that can be used for comparison. The
chosen course of computing a lrs for com
parison, incorporates the variance from
the peaks in the level of the 1lrs. Even
if the peaks were real, unless one of
them were particularly dominant, their
deviation from the lrs would be small. Un
fortunately therefore, the method used
for assessing the peaks would seem to be

lacking in sensitivity.

(b) One might question why an' even smaller
bandwidth was not used, because the pre-
sence of discrete components is best de
tected in the absence of smoothing, using
the raw sample spectrum. Even the small

amount of smoothing used in the hrs could

10
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cut a discrete component down by a fac-

tor of about four. The reason may be

that the expected cycles are not in

fact so well defined in frequency,
e.g.
scale,

due
to modulation of amplitude or time
so that a narrow peak is a better

description than a discrete component.

SUGGESTIONS:

(a)

A time domain model for a mixed spec-

trum might usefully be considered for
this data, e.g.

X, o= A cos wt + B sin wt + e (2.1)

t

is the observed series and e

The sinusoidal terms could

where Xt
the error.
be repeated for each frequency w expect
ed in the data. A low order ARMA model
would be used for the error process.The
coefficients A and B would be estimated,
together possibly with the freguency w
the

time

if there was some uncertainty in
the

scale calibration limitations.The range

value of this, arising from

of possible frequencies would however

have to be narrowly defined for each
component.
The selection of the ARMA model would

provide a problem. One possibility is
to fit an ARMA model to X, without the

sinusoidal components, and to use this

with the parameter values held fixed,
in the mixed spectrum model (2.1). This
the

lrs for assessment of the hrs peaks. It

would be equivalent to the use of

would also suffer a similar criticism,
in that if substantial discrete compo-
nents were present the ARMA model would
be biased away from that apprecpriate in
the true model (2.1). The significance
of the discrete component would tend to
be diminished. A more appealing proce-
dure is to estimate the ARMA model para
meters in (2.1) along with the coeffi-
cients A, B and frequency w. This fol-
lows the treatment given by Campbell
and Walker /5/ to mixed spectrum esti-
mation. The possible danger
the
components from Xy would deplete

here how

ever is that removal of discrete
the
of fre-

quencies of interest. This could bias

error spectrum over the range

the ARMA model in the opposite direction
so that the significance of the discrete
components would tend to be misleadingly
enhanced. Provided the discrete components
were neither too many in number, not tao
close in frequency, the bias in the ARMA
model should not be of great concern,and
for the data set considered here, should
be tolerable, Preliminary

data

analysis of

one of the reveals that
(2.1)
well, with significant coefficients A, B

and an ARMA (2,1)

sets
the mixed spectrum model fits very

error structure.

Another example which merits a much more

skeptical approach to its conclusions,

is given by Luo et al /22/ whose work is

reported by Gribbin /14/ They seek
cycles in a series of 150 annual measure
ments of the change in daylength. Their

method is to select peaks in the periodo
gram, and then to refine the frequencies
and amplitudes by fitting a model such

as (2.1) uéing ordinary least squares ap
plied to the errors ey.
different frequency components in

They find twelve
the
series.

COMMENT :

(c)

The dangers associated with the previous
example occur here in an extreme manner.
The frequencies are not prescribed, and
those discovered are separated approxi-
mately by the fundamental
w = 27/150.

fore absorb almost all the low fregquency

frequency
The fitted components there-
variance in the series, and leave very
little information in the residual spec-
trum for use in assessing their statis-
tical significance. I have fitted the
first 8 discrete components to this
(2.1) with ARMA

error structure and the following dif-

series using model
ficulties arise.
«An ARMA (2,2) model with strongly auto-

fits well the

series Xy without discrete components.

regressive behaviour

.If this model with the ARMA coefficients

fixed, is used as the error structure in

the

components are not significant.

the mixed spectrum model, discrete

11
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,If the same model is fitted but with
the ARMA coefficients freed, the auto
regressive parameters are much reduced
and the discrete components become high
ly significant. Exact Gaussian Likeli-
hood was used, and the likelihood ratio
test statistic for the discrete compo-
nents (+trend) was 101.2 which weould be

referred to chi-sguared on 17 d.f.

To obtain some feel for where the truth lies
a resort was made to simulaticn. This is
very much to be reccmmended to the scientist
who 1is concerned to know whether the struc
ture he has discovered might be spurious. It
requires only the acceptance that the data
might arise by a random (or random walk) pro
cess with spectrum features such as can be
produced by a low order ARMA {or ARIMA) model
- although some might reject this proposal.
In the example undex consideration a series
was simulated from the ARMA (2,2) model as
fitted to Xy
When subjected tc the same modelling proce-

without discrete components.

dures as above, very similar results were
obtained, the likelihood ratio test statis-
tic being 31.8, Une might conclude that the

discrete components are spurious, but be un-

easy about the use and reliability of like
lihood inference in such examples. Having
looked further at this problem, I believe

that marginal likelihood inference can be
used to improve the statistical assessment,
as described in Tunnicliffe-Wilson /24/. In
essence this makes inferences about the ARMA
structure of the error, on information in
the data which is not corrupted by the fit-

ting of discrete components.

The search for cycles is therefore fraught
with problems, and the subject has become
notoricus for spurious results. This is not
because scientists are unaware cof the pro-
blems, see for example the discerning arti
cle by Burroughs /4/. There are some very
strongly cyclic series, such as the sunspot
reccord, and it is natural to look for the
reflection of such cycles in terrestial cli
matic variables. Thus in another example
presented by Dicke /9/, the deuterium/hydro-
gen (L/R) ratio is measured in a set of 10
yr samples of material obtained from two
bristle cone pines that cover 1000 yr of
time without gaps.This is supposed to re-

flect climatic variation. His spectral

analysis of inic data reveals a high peak in
the raw spectrum corresponding to a period
of 22.36 vyears, coinciding remarkably well

with the period of ihe sclar magnetic field
(twice the sunspot period). Besides the ques
tion of statistical significance of spectral
peaks, there is also the question of whether
the coincidence of peak frequencies in two
series can be taken as evidence of a rela-
tionship. For a precisely defined frequency

no statistical comment can be made, because
the coherency cannct be estimated except
over a frequency band. In

of his article, Dicke /10/

another version
concludes in a
sceptical vein, but asks 'would nature be so
malicious as to produce the close correspon-
dence shown in the two freqguency peaks as a

statistical fluke?'

Success in prediction does of course add con
siderably to the credibility of cyclical mo-
dels. Although this is nct very relevant to
series sampled at 3KY intervals, it is inte~
resting to note for example that the 7€ year
period detected by Gilliland /12/ in low
quality historical measurements of‘the so0lar
radius, appears to be confirmed by recent,
higher precision measurements of Parkinson
/23/. The recent volcanic activity of Mt.St.
Helens and Chichon might be expected to con
firm relationships between the volcanic dust
veils and the climate, such as are discussed

by Kelly /21/, who also engages in the search
for cycles.

3, THE USE OF REGRESION.

We have mentioned regression as applied to
the fitting of sinusoids by least squares.
It is known in that context that the fitted
coefficients are unaffected by the assumed
error model, although incorrect standard
errors are given if the wrong error model
is used. In other contexts it becomes more
important for inference to allow for any
autocorrelation in the error process. In the
earlier part of his paper, Dicke /9/ is con-
cerned with estimating the period of the
sunspot cycle and its stability. He selects
the times Ti of peak sunspot activity and
carries out a linear regression

Ti =Cc + pi + bNi ey, i=1...25 (3.1)

12
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where i is the index of the peak, p is the
period between peaks, Ni is the sunspot num
ber of peak i, which in part explains varia
tion in the occurrence of peak times, and e,
is the error. The precision of estimation of
the period p is of concern. Some theories
suggest that the error ey is a random walk,
i.e. delays in the cycles are cumulative and
passed on to subsequent cycles. This would
imply differencing of (3.1) before carrying
out regression and leads to a much larger
estimated standard error for the period.

Dicke attempts to discriminate between the

two possibilities, that ey is a random
series, . or 1s a random walk. Perhaps
surprisingly, this is a challenging task,

because in small .samples much of the

evidence for a random walk error is lost by
fitting the regression. This is well appre
ciated by Dicke, who compares the variance

of the residuals gi with that of Véi. The
ratio of the second of these to the first
is found to be 1.15. This increase is not
as great as would be expected (i.e. 2.17),
but appears to be in the right direction,

especially since one might suppose that if
the random walk error model was correct,

then a massive variance reduction would be

found. In fact the expected variance reduc-

tion in this latter case is only 0.58. The

observed value is almost (geometrically) the
mean of the two expected values! Using other
evidence from the residuals, Dicke prefers

to reject the random walk model.

COMMENT:

The use of residual sum of squares as a
criterion in selecting between different
regression error structures can be mis-
leading. Distributional properties should

be investigated (possibly by simulation).

SUGGESTION:

The use of marginal likelihood can again
aid inference in such examples. However,
in this case a more flexible error struc
ture could be used. An AR(1) error model
fits quite well, with parameter .625,
and provides an estimate of the preci-
-sion of the period (i.e. one S.E.=.085)
which is reasonable.

Another example which again reveal a cautious

and tnoughful statistical at*itude, is to be
found in a thesis by Gasquoire /11/. She re-
examines models of transoceanic geomagnetic
variations. Anomalies in the earth's magne-
tic fields are measured in an east-west di-
rection in parts of the oceans, giving spa-
tial series (magnetic anomaly profiles).
Theories of ocean floor formation and spread
ing; togethar with knowledge that the earth's
magnetic field undargoes reversals, suggsest
that the profiles are due to bands of rocks
of alternating magnetic polarity across the
ccean floor. Dates of magnetic reversals nay
be gleaned from continental volcanic rocks,
so that the profiles mat be predicted for
assumed values of the origin and time scale
of ocean floor spreading. By matching the
observed and predicted anomalies, this origin
and time scale - particularly the ocean floor
Both ob
served and predicted anomalies show a succes-—

spreading rate - may be estimated.
sion of somewhat irregular positive and nega-
find
apparently good matches for a variety of pa-

tive peaks, so it is guite possible to

rameter values. The criterion generally used
to select the best parameters, was the sample
correlation r between observed and predicted
profile. The deficiency of this was recognis-
ed by Gascoigne as I summarise in the fcllow-
ing comments: Plots of r against the spread-

ing rate showed several peaks. Possibly more

serious, the significance of r could not be

assessed. The data were got by sampling a con
tinuous trace. If the sampling interval is de
creased, the number of data points n increases
but it is evidently inapropriate to use this
to extract from statistical tables an ever

smaller critical value for r. The value of r
itself stabilizes, and no new information is

being gained by increasing n.

SUGGESTION:

The problem arises from autocorrelation
of the data. Regression of the observed
profile on the predicted should be carried
out with an ARMA error structure.

This was in fact done, with an ARMA (2,1)
error model. Reduction in the sampling in
terval below a certain threshold, although
increasing the ARMA parameters, left thé
regression coefficient and its standard
error almost unchanged.

13
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The spreading rate was determined as
that which gave the highesti 't' value
for the regression coefficient, a quite
reasonable procedure. Thus in oue exam-
ple a rate of 4.48 cm/yr gave t = 5.61,
but this dropped to 2.75 at a rate of
4.60 cm/yr. In general the conclusions
from this analysis were highly satisfac

tory.

The use of regression for matching curves is
widespread. The error is commonly highly
autocorrelated. This 1is probably because

there are scme unknown component curves
which have been omitted from the regression
and thus have to be treated as part of the
error. Although these absent components may
be of well determined form, our ignorance
demands that we treat them stochastically -
usually as a sample from an ARMA or ARIMA
process. I can see no way to avoid this ar-
gument, although its application may bring
into question some common scientific models.
An area which is currently surrounded by
controversy is the interpretation of ob~-
served infra-red spectra of galactic sources
as discussed for example by Hoyle and Wick-
ramasinghe /17/. To attach statistical sig-
nificance to a match between an observed
spectrum and a theoretical spectrum selected
from a large emsemble of possible materials
is a difficult challenge, but I suspect that
the use of ARMA error models may be Jjusti-
fied in such circunstances.

SFER FUNCTI G,

In models of climatic response; e.g. to va-
riations in the amounts of solar radiation
which reach the earth, the response takes
place over widely varying time scales. The
system of the earth's atmosphere, oceans and
continents is dynamic, with time constants

which may be measured in terms of days,
weeks, years, centuries, or even longer.

Equilibrium can only be considered relative
to a given time span - in the very long run
equilibrium is never attained. In their ana
Hays et al /16/ avoid detailed model

ling of the transfer functions of the res-

lysis
ponses to orbital variations, by noting

that the sinusoidal inputs which are charac
teristic of these variations, will have si-

nusoidal responses of the same frequencies -

provided only that the response is reasona-
bly linear. In situations where the input is
much more irregular, some attempt must be
made at modelling the transfer functions in-
volved.

The only serious example I have found of

this, is given by Gilliland /13/, who models
annual measurements of climatic variation
over the last 100 years or so. He uses mean
Northern Hemisphere Temperatures to measure
the climate. His 'forcing functions' or in-

puts are:

(a) A cycle of period 76 years extracted
from radius measurements and used as an

indicator of solar radiation flux.

(b) A measure of atmospheric volvanic aero-
sols from Greenland ice sheet impurities
as provided by Hammer /15/. This is used
as an indicator for volcanism which is
supposed to affect the earth's climate
by veiling the sun. It is a fairly irre-
gular series, though with some longer
term trends.

(c) An exponential increase in atmospheric
CO2 due to human activity, at a rate
which leads to a projected doubling in
the level from 1925 to 2045. Via the
greenhouse effect on solar radiation
this will increase atmospheric tempera-
tures.

Gilliland uses a two-compartment model of

the ocean with time constants taken from phy
sical considerations, to represent the most
important part of the system controlling the
earth's temperature on this time scale. The
above inputs are used as forcing functions
in his differential equations, and the out-

put is matched to observed temperatures.

He also introduces a time lag for the solar
cycle, to represent an expected delay between
solar radius and radiation variation, and a
negative time lag for the aerosols which are
of course trapped in the ice sheed after they

have circulated in the atmosphere.

COMMENT :

(a) The model used by Gilliland can be shown
to follow the formulation of Beox and Jen

14
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kins rather than the alternative ARMAX

model, and in their notation becomes

{1 =
v o= 1-wB)__ <
— (axl £tbx,

- +CX, L)t
(1"6TB—623‘) !

, t 3,t

tey (4.1)
where y is the observed temperature and
Xl’x2’X3 the inputs. The only fitted
coefficients are a,b,c, ordinary least
squares being applied to e, . In particu-
lar w, 61 and 62 are not estimated, but
follow from assumed physical constants

and dimensions.

Examination of the constants used by
Gilliland lead me to believe that the
transfer function would be well approxi
meted by a lower order. form, 1/(1-68B),
with § = .974. Tt became apparent though
that I must have misinterpreted his
equations, because it was only through
using a value § = .7 that I was able to
reproduce his graphical results with rea

sonable accuracy.

The author examined the residuals from
his model fit and concluded that they
were far from random. His error analysis
detected cycles with periods of 24 and
12 years, plausibly close to those asso
ciated with sunspots. The data had how-
ever been smoothed with a seven point
moving average formula, which would in

any case induce autocorrelation.

The author is well aware that 'One could,
with some validity, argue that fitting

11 least squares parameters to a climate
record of 95 yr after smoothing with a

low pass filter is a case of over-deter-
mination'. He says ‘I am not attempting
to argue the statistical significance of
the above models, but merely that all of
the included external forcing are plausi
ble'. The plausibility derives very much
from the fact that the estimated magni-

tudes of the effects of the forcings are

consistent with theoretical expectation.

SUGGESTIONS :

The statistician feels obliged to make

some attempt to assess significance, and

(£)

insorar as I was able to duplicate the

results of the analysis, I found that:

Fitting the model (4.1) with ordinary
least squares applied to the errvors, hkut
with the transfer function replaced by
1/(176B), gave apparently highly signi-
ficant coefficients for a, b and ¢ with
t values of 9.8, 6.7 and 6.1. These were
slightly improved when, following the
author's example, sinuscidal terms of
periods 22 and 12.4 years were added to
the model. The validity and significance
of these t values should be strongly ques
tioned in the knowledge of the error auto

correlation still remaining.

In view of the data smoothing which had
been applied, a MA(7) error model was in
troduced into the previous regression.
The MA coefficients were found to bLe
large and reflected closely the weights
used in thevsmoothing. The coefficients
a, b, ¢ of the inputs did not however
change very much, though their t values
were halved. The residuals had relative-
ly little remaining autocorrelation,
though what was left appeared to be due
to low freguency components. The sinusoi
dal terms of periods 22 and 12.4 were
clearly no longer significant. Halting
the analysis at this point would leave
one with appreciable confidence in the
conclusion that the inputs adequately
modelled the output.

The transfer function having been taken

as fixed, I experimented with estimating
its dynamic coefficient §, and elaborating
in other ways. When the OLS error model
was used, I found a much better fit with

a value of § close to 1, but the estimated
coefficients of the inputs changed marked-
ly. In fact the volcanic effect became po-

sitive rather than negative.

For the purpose of comparison, a univa-
riate ARMA (1,8) model was fitted to the
output series. An autoregressive term was
included to allow representation of the
low frequency behaviour which had other=~
wise been modelled by the inputé. The fit,
as measured by the residual variance, was
almost as geood as that ‘given by any of the

previous models, casting serious doubt on
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their validity . My conclusion was that
much more effort needed to be spent on
this data set to establish useful rela-
tionships. It was the author's hope, I
believe, that the solar cycle and CO2
effect would account for the longer term
(lower frequency) patterns in the data,
whilst the volcanic index would mainly
explain shorter term features. In prac-
tice, the solar cycle and volcanic index
{especially after passing through the
transfer functicon) show considerable cor
relation, which explains the instability
I found in the coefficient of the volca-
nic index. This leads us teo consider in
what components of the data the required

informaticn might reside.

5. THE USE OF FILTERING.

In the examples referenced above, filtering
is widely used. Thus Dicke /9/ uses a high
pass filter to remove the trend from the

(D/H) ratio series, before calculating its
spectrum. Gilliiand /13/ uses a low pass f£il-
ter to remove noiae from two ¢f his series,
the *temperature record and the Volcanic Aero
s0l measurements. He also uses a very narrow
handpass filter to extract the 76 year period
cycle from sclar radius measurements. Luoc et
al /22/ alsc smooth their data, with moving
avarage filters of varying widths (o allow
for improvement in the quality of data over

the 150 year record.

Hays et al /17/ use bandpass filters to ex~
tract components of their series associated
with the peaks in their spectrum estimates.
The same technique is used by Currie /7/to
examine variations in the amplitude of the
11 year solar coycle which he had vprevicusly
detected in the earth's rotation rate - see

Currie /6/.

Apart from the use of a prewhitening filter
by Hays et al /16/ and the transfer function
filter in the model of Gilliland /13/, the
usa of filtering as reviewed above, 1is
treated by statisticians with great suspi-
cicn in the context of ARMA and transfer
function modelling. This 1s because filter-
ing is viewed as imposing structure on the
data which then complicates any modelling

procedure. Seasonal adjustment has an Iden-

tical effect in economic time series analysis.
The current view, I believe, is that it is far
better to let the data dictate the filters,

i.e. ARMA and Function

Trancsfer operators

which are necessary in the model. When the mo-
del has been fitted, then filters can be cons-
tructed in an optimal fashion for applications

to signal extraction.

I would however like to argue that the use of
filtering can be justified as a preprocessing
procedure in parametric time series modelling,
although it may ke difficult to integrate the

theory and practice.

Take for example the use of smoothing to re-
duce noise in a univariate analysis. The
noise is essentilally undesirable, particular
1y at high frequencies. A reasonably good pic
ture of the underlying signal may be obtain-
ed even if the noise varies in amplitude over
the data span as in the example of Luo et al.
/22/ If however, an ARMA model is fitted to
the filtered series in the (by now) classical
manner of Box and Jenkins /3/ with the aim
of achieving white residuals, the smocthing
filter is undone and the noise recreated.The
following example does I believe provide a
context in which this classical modelling of
the filtered series sheould

not be carried

out.

Suppose the cbserved data Z_ is the sum of

t

£ and Nt’

signal Xt is AR{1l) and Nt is white noise,i.e.

unobserved components X where the

(5.1)

are white noise with variances

o, GB . It is well known that Z_ follows

an ARMA (1,1) model

t

By = 0%py A A,

where the parameter 6 and variance c; are

given by
- - = g%/0* =R = 2
(9-0) (1-69) /8 = o’ /0p = R ; of = (¢/8)0g

Moreover the optimal smoothing to extract an
estimate Qt of Xt from Zt is a two-sided ex-

ponentially weighted average,

16



Qiiestié - V. 8, n.> 1 {marc 1984)

. 2,2 _n2y—l !
X (Oa/aa)(l 8°) Lo yxtBeg) ]

(5.2)

T Lk
{Zt + g 07 (

Given a finite sample Zl"'Zn' forecasts and
back forecasts of Zt should be used in this

formula for t outside the observed range.

Suppose further that we are only supvlied
with §t , for th= l...n and wish to forecast
Xt' The series Xt’ apart from end effects,
does in fact follow an AR(2) model with ope-
rator (1-¢B) (1-6B). Treating gt as the
series of interest, would lead to the identi
fication of this model and its application to
forecasting. This does not however produce
optimal forecasts of X, . These are obtained

t

by using the AR(1) model for Xt
tl
diate consequence of least squares projec-—

with para~
meter ¢, and applying this to § an imme-

tion theory.

This lends substance to the idea that if
smoothing is applied to extract a signal,
and it is a forecast of this signal (not of
its estimate) which is required, than the
assumed model of the signal (not that of its
estimate) should be applied to the estimate

in forecasting.

What if the model for the signal requires es
timating?. Can this be done from ﬁt ? . The
E-M algorithm of Denpster et al /8/ may be

applied to show that Qt can be used in place
of Xt to estimate the AR(1)
If X

t
¢ = r, (lag 1 acf) would be asymptotocally

model for Xt.
vere available +the estimate

efficient. Using Xt in place of X one must

t
however allow for bias, and should use ins-

tead:
¢ + 8(1=-0%) (1-0¢) = r

Thus knowledge of the smoothing parameter,
and the smoothed series allows the estimation
of the signal model which can be applied in
prediction. Note that the residuals from this
process of filtering the AR(1l) model to ¥
would not be white, but would themselves

£
follow an AR(1) model with parameter 61!

The foregoing exploration of possible justi-
fication of smoothing practices, would hard-
ly tempt the Box-Jenkins practioner from seek
ing first an ARMA model for the unsmoothed

data, and pursuing any applications to fore-

casting from that point. When we consider the
context of relating one time series to an-
other, we may however have to concede some

shortcomings in our transfer function model
formulations unless we are prepared to admit
smoothing. The simplest illustration arises

when we have a direct regression between two
variables Xt and Yt with errors in the obser

vation of both, e.qg.

1 a = o 7 = ¥
but we observe Vt Yt ooy and " Xt + B

The error series e, and noise series oy Bt

t
are taken to be white noise. If our aim is

g

to establish a predictive relationship for

Vt given Zt then the correlation structure

of Xt Lecomes important. 1If for example Xt
is AR(i) as in (5.1), then the bes: predic-

~ ~
tor of Vt given Z_ is just aXt, where X, is

t
as in (5.2). In model-

t
given by filtering Zt
ling Vt in terms of Zt we would therefore re
which

this filter defines. It does ceem mors appeal

guire the two-sided transfer function

ing though, rather than estimating a two
sided transfer function for Vt o? Zt, that we
should instead smooth Zt to get Xt andﬁthen
estimate a simple regression of Vt on Xt‘

The next question is, having smoothed Z+, why
not smcoth Vt to estimate §t and then régress

Qt upon §t' This is quite a common practice
in science and engineering. There is some jus
tification for this to be found in the E-M
algorithm, but the situation is much more COm
plicated than for univariate modeliing., I
would though, like tc present an argument

from spectral analysis.

The spectral estimation of transfer functions
is just regression in the frequency domain.

At a given frequency, or more precisely, over
4 given frequency band, this is equivalent to
applying the corresponding band pass filter
to the series and carrying out a simple lag-
ged regression between the extracted compo-

nents in the time domain, i.e.

V, (W) = a(w)3(w)

t t-b(w) T (W

where Vt(w) etc. are the extracted fregquency

components. The error component: will of
course also belong to the designated fre-
quency band. It will not be white, but will

be a combination of independent frequency

17
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compcenents within this band. The S.E. for the

coefficient a(w) as supplied by this regres-

zion should however be scaled by 1/ (bandwidth
of the

I

filter) .

We might be persuaded that in circunstances

where we have signals Y_ and Xt which are pre

t
dominantly in & low freguency band, uexcept
for contamination by white noise at, Bt, then
low pass filtering (i.e. smoothing) followed

by OLS regression (possibly with a lag) is co

vered by the above argument. One

important
point is that it excuses us from using ARMA
error models, which simply tends to undo the

filtering.

6. CONCLUSION,

I have considered mostly the field of clima-
tology and the related area of geophysics. I
find it interesting possibly because it seeks
to relate so many variables such as the solar
constant (sic ), volcanism, orbital and rota
tional variations of the earth to our climate
It is beset by problems of availability and
quality of data. Spectral analysis is applied
with some sophistication, and regression with
somewhat less confidence. The sought for cy-
cles and other effects are tantalisingly
close to the borderlines of significance., I
believe that there is a real challenge to the
statistician in aplying the more recent tech-
nigques of parametric time series modelling to
will

some of the conjectured relationship.

this subject. Hopefully this confirm

The subject raises problems of statistical in
ference which may stimulate further research
into time series model building. I would

courage others to examine carefully the

en-
pa=
pers which I have referenced with a view to

solving some of these problems.
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