ZERO OR NEAR-TO-ZERO LAGRANGE MULTIPLIERS
IN LINEARLY CONSTRAINED NONLINEAR PROGRAMMING
L. F. ESCUDERO

We discuss in this work the using of Lagrange multipliers estimates in linearly constrained
nonlinear programming algorithms and the implication of zero or mear—to~zero Lagrange multi-
pliers. Some methods for estimating the tendency of the multipliers are proposed in the con-
text of a given algorithm.

1. INTRODUCTION

The linearly constrained nonlinear program-- Hessian matrix G(X)=G as the symmetric matrix
ming (LCNP) problem is whose (i,j)—th element is 62F(X)/6Xidxj.
minimize F eFcRD (1.1)
+ (X) XercR The algorithm /2/ concerned with this paper -
where
- is assumed to generate a sequence of feasible
F A{X|b2axzb, U>X>1} (1.2)

estimates {X(k)} of X (weak local minimum) by

where A is an m.n matrix, m<n, and F(X) is a

- : . (k)
general nonlinear twice continuously diffe-- obtaining a stepdirection d and a step~---
renciable function, at least, for feasible - length o (K such that x(k)=x(k'l)+d(k)a(k)
points such that for all XeF the level sets (k)

and lim X =X for k-», where F(Q)sF(i) for -
L(X)A{XeF, F(X)<F(X)} (1.3) T 5 =

= ! (%) <F ( X,XeF and ||X-X|]<o being ¢ small enough to -
are bnunded. Let M be the set of constraints, define the neighbourhood of ¥,
E be the set of equality constraints (such -

that i€E if b;=b;), and J be the set of va- Note that AX-Y=b, b-b»Y>0 <+ H»AXyb; then i€W

riables. Let A be the t.n matrix of active =~ for §i=°VEi'?i' The X-variables are termed --

constraints at a local optimal point, say X structural; the Y-variables are termed siack.

and b the t-vector of right-hand-side corres
} x Sk X FRE Because the constraints are a linear system,
ponding to A (i.e., AX=b), such that t=|W| - )
. the properties of linear subspaces make it —-
where W is the set of active constraints and possible to state a simple characterization -

*

b_:E,Vbi for igﬁ_ Let 3 be the set of active of all feasible moves from a feasible point.
i vi=

. * A Consider the move between two feasible points
variables at X, such that jeV if Xj=Ujvlj -

% * * ) ) X and X along the manifold defined by the ---
and r=|V|. Let I be the r.n matrix of active

% o . ) sets W an V; by linearity A(X-X)=0 and ------
bounds at X, such that it is the n.n identi-

. I1(X-X)=0 since AX=b, AX=b and X.=X. vjfEG and,
ty matrix I from where the row related to va J 3]

\ L L X then,
riable j¢V has been deleted.

Ad=0, Id=0 (1.4).
We shall define vector g(X)=g as the vector
whose j-th element is 6F(X)/8X and the -----

where d is the stepdirection from X to X such

that i=§+ad. Any vector d for which (l1.4) ---

- L.F. Escudero, Centro de Investigacidn UAM~IBM. P) Castellana, 4 - Madrid-1
-~ Article rebut el Juny de 1982.

Qiiestiié - V. 6, n°o 2 (juny 1982) 193



holds is a feasible stepdirection from X ---
with respect to the above manifold; it is al

so termed active stepdirection; it will be

descent if F(X)<F(X). Steplength o is requi-
red to be 0<ugam, where % defines the maxi-
mum allowed steplength such that X is still

feasible and F(X) is descent.

Let us define a non-active stepdirection d -

as the feasible stepdirection such that some

constraint or bound is removed from the sets
ﬁ and 6, respectively; a feasible stepdirec-
tion d is non-active if die M-EnW for which
N A ks - . * % 3z &
Aid 0 if Yi 0, Aid<0 if Yi bi bi’ or ij €V

for which d.>0 if X.=1., d.<0 if %.=U..
3 S A DS B

The paper is organized as follows. Sec 2 des
cribes the optimality conditions for § being

a weak local optimum in (1.1)-(1.2), so that
the degenerate sets of active constraints --
and bounds are defined. Sec. 3 motivates the
analysis of these sets, such that it states

the reasons for analyzing the zero or near-

to-zero Lagrange multipliers estimates. Sec.
4, briefly, describes the formulas that are

being used in a given algorithm to obtain —--
Lagrange multipliers estimates. Sec. 5 out--
lines the deactivating process in that algo

rithm. Sec. 6, finally, is devoted to some -

procedures that are proposed to get some in-

sight on the tendency of zero or near-to-ze-

ro Lagrange multipliers estimates for optimal
or 'quasi-optimal' solutions in the manifold

defined by sets ﬁ and %.

2. OPTIMALITY CONDITIONS

The necessary optimality conditions for § -
being a weak local minimum are as follows. -
See equivalent conditions in /12/, /9/, /11/
and /8/ among others. As we state them below,
they help to analyze the risk of using Lagran
ge multipliers estimates of nonbasic (struc--
tural and slack) variables, mainly when they
are zero or near-to-zero, at a given optimal
or 'quasi-optimal' point § in the manifold
defined by ﬁ and 6.

(i) XerF (feasible)

(ii) The reduced gradient vector, say h

of F(X) vanishes, such that
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hz5%5=0 (2.1)

where % is a n.(n—é-%) full column rank ma--
trix, whose columns form the null basis of -
the range of matrix (it, %t) and, then,
Af=0, Ti=0 (2.2)
Based on (1.4) and (2.2), we may note that
any linear combination of the columns of %
give an active stepdirection 4,

a=fag (2.3)

where ds is a (n—%—%)—vector termed reduced

stepdirection (or superbasic stepdirection),

such that a vector d that cannot be expressed
by (2.3) is not an active stepdirection in -

the manifold defined by W an 6.

Any point at which the reduced gradient h va
nishes (2.1) is termed constrained stationa-
ry point. To see that, let us examine the --

Taylor-series expanéion of F(X) about X along

an active stepdirection d in the manifold de-
fined by ﬁ an $
F(§+ad) = F(%) + adgﬁtg

+ 1/20%a%"

G(§+eua>§as so(]ldll,) (2.0

where 6 satisfies 0<6gl. Suppose that § is a
local minimum, but d;ﬁtg<0; then, there must
exist a>0 such that ad;Etg + e m——mm—m——e
1/20%a5%% (k+00a) Bag<o for all 0<aga and, -
then, F(§+u§ds)<F(§). Similarly, it can be -
shown that % is non-optimal if d§§t§>0. The-
refore, d;ﬁtg must be zero in order for § to
be a minimum. Thus, a necessary condition --
for § to be a local minimum in the manifold

defined by # and V is that d;ﬁtg must vanish

for every ds, which implies (2.1) must hold.

The result (2.1) implies that 3 must be a 1li

near combination of the rows of A and I,

g = &% + i (2.5)

K"

for some vectors j and X; they are termed -

the Lagrange multipliers of the active cons-

traints and bounds, respectively. Note that
(2.5) is equivalent to {(2.1) since any n-vec

tor can be expressed as a linear combination

194



of the columns of matrices (At, it) and E, -
and hence

g = Ath + 1% + igz

KX

for some vectors 1, A and 9y Premultiplying
a by %t and using (2.1) and (2.2), it results
0=zt g = ZtAtu + 7Y . ZtZg = Etigz (2.7)

Since E is a full column rank matrix, %té is
nonsingular énd, then, (2.7) only holds for

gZ=O such that, by using (2.2), it finally -
results that (2.5) holds. By simple substitu
tion, and using (2.2), we may see that (2.5)
also implies (2.1).

(iii) Uniqueness of the Lagrange multi---
pliers.

Let us partition matrix A and gradient a ---

such that A—(BS N) and g (gBS,gN)t, where N
is a t.r matrix defined by sets W and V and

éN is the gradient of set 6. Based in (2.5),

X can be written,
x _ & _ Xtk
A= gy = N (2.8)

such that ﬁ satisfies the linear system

ggg = (B5) % (2.9)

Point X does not require A to be a full row
rank matrix, but the uniqueness of vectors ﬂ

and A require BS to have that property.

Assume that ﬁl and ﬁz satisfy (2.9). Then,

* _ xh . bx _ R ot LN _* _
gpg = (BS)“uy = (BS)“u,, (BS) (i -u,)=0 (2.10)

1f the rows of BS are linearly independent,

(ﬁl—ﬁ2)=o and then,

111=U2-
In any case, computational stability in the
algorithms that obtain the seguence {X(k)}+§

requires {Ai} to be linearly independent for

ie M.

There are several ways to characterize matrix
Z /9/1 /13/I /ll/l /3/1 /5/r /6/; depending -
on how big t and r are expected, the most ---

atractive ways to obtain it are based —-—=-~--
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(although it is not explicitly calculated) -~
on variable-reduction and QR-factorization -

of matrix (BS)t.

(iv) The sign of Lagrange multipliers ---
must be as follows:

0 for i€ E (equality constraint).

i Tk
-

1 AV

(]

for i¢ W (non-active inequality cons

traint).

=%
\V
(=]

for i€ M-Er\% such that §i=0 (active
inequality constraint whose associa--

ted slack -variable has the value zero)

T
N
o

for ieM-EnW such that §i=5i—§i tac
tive inequality constraint whose asso
ciated slack variable takes its upper
bound) .

§.=0 for j¢ 6 (non—-active variablei.

i.;o for je 6 such that §j=1j (active va--

riable at its lower bound).
§.<0 for jes% such that §j=Uj

(active va--

riable at its upper bound).

The set D, u D,, where Dlé{ie M-EN#W for ---—-

ﬁi = 0} and Dzé{je v for Xj = 0} is termed --
degeneréte set of active constraints and ----

bounds.

The reason for condition (iv)
llows: Since a non-active stepdirection is --
also feasible, point § will not be a local mi
nimum if F(X)<F(X) such that X=X+od and 4 is
a non-active stepdirection; to avoid this ---
possibility we must add a condition that ensu
res étdxo for every non-active stepdirection
and, then, F(i){F(%) where F(X) can be ----—-
written

F(¥+ad) = PO + agtd + 0([]a|])  (2.11)
such that for gtd<0 there is always a small
scalar a>0 for which

F(%+od) <F (%) .

Note that the optimality of X requires that
(2.5) holds; then, it results,

it Ttk

gd=1u"Ad + A Id (2.12)



Since A,d=0 for i€E (see that ﬁi is not reg

£
tricted in sign), gtd can be written,

it _ * %
g'd =5 uAd -+ i:j‘jdj > 0

5

(2.13)

ieM-ENW jev

Condition (2.13 holds if ﬁi>0 for §i=o, M, <0

for ¥,=b,-b,, X.%0 for X,=1,, and A.<0 for -
S B R S| 3

Xj=Uj since, otherwise, it is always possible

to find a stepdirection d such that Aid=0’ -

fa=o0, B,@>0 if §£=0 for ieW, feM-EnW, iZf,

or A.,d=0, 1d=0, A,d<0 if ¥.=b.-b, for ieW, -
1 1 1 =1

£
LEM-En W, i#¢, or Ad=0, a;=0, d,>0 for 3,kev,
k =1, 3%k, or Ad=o, 4;=0, d, <0 for j ke ¥, -
§k=Uk, j#k. If A is regular (its rows are li-
nearly independent) then the above non-active
stepdirection could be very easily found by -
using its pseudo-inverse matrix; the sign of

the Lagrange multipliers may be also proved -
by using the Farkas'lemma by without requi---
ring the regularity assumption on matrix K --

(see /8/).

(v) Positive semi-definiteness of the —---

Hessian matrix.

The reduced Hessian matrix H must be positi-

ve semi-definite, where

7z 2%z (2.14)

To see that, let us examine the Taylor-series
expansion of F(X) about X along an active ---
stepdirection d such that, by using (2.1) and

(2.3), it can be written

F(X+ad) = F(X) + 1/2a2d§§tc(§+ead)ﬁds +

+ocllalty (2.15)

If G is indefinite, by continuity é will be
indefinite for 0>0 being small enough, such
that by definition 3ds for which ----------—-
déEtG(§+ead)§dS<0 and, then, § is not a local

minimum.

Note that the above

to require that matrix G be positive semi-de-

condition is equivalent

- finite but only for the active stepdirections
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in the manifold defined by % and G.

If the degenerate set DlUD2 is not empty --
then the positive semi-definiteness property
of G must be extended to the non-active step
direction 'd for which it holds

A.d>0AY.=0Ai€ D, or A,d<OAY.=b.-b.AieD., -
i i 1 i i 7i -i 1

or dj>0A§j=1jAje D,, or dj<0A§j=UjAje:D2 . -
To see that, recall that étd (2.12) vanishes
for active stepdirections d (where £d=0, -—=
fd=0), but also for non-active stepdirections
d where the operators vector p in deo, fdpo
includes the feasible inequality in the cons-
traints and bounds whose Lagrange multipliers

L "
U, and A, are zexo.
i i

Conditions (i)-(ii) and (iv)-(v) are necessa-
ry conditions for local optimality; if -----=
Hessian matrix is required in (v) to be posi-

tive definite then they are sufficient condi-

tions.

3.M0 -10- -
MULTI S SIS.

Point X is a local minumum in the manifold de

fined by W and V if conditions (1) -(ii) are -
%

satisfied and matrix H (2.14) is positive de-

finite for all d To test if § is also the -

5"
solution of problem (1.1)-(1.2), it is requi-
red to analyze the sign of the active cons—---
traints and bounds Lagrange multipliers, such
that if i, for vieM-En¥ (or ij for vije V) -
have not the apropiate signs then constraint
i (or bound j) must be deactivated (that is,

a non-active stepdirection must be obtained).

Note that e.g. if §i<0 for ie M—Er\% and §i=0,
the feasible stepdirection d that deactivates
constraint i {(and, then, Aid>0 such that cons-
traint i is delected from ﬁ) is descent (see

(2.11) and (2.13)); viceversa, a descent step-
direction is also non-active (and, then, fea-

sible). On the other hand, e.g. if ﬁi>0 for -

% *
i€M-ENnW and Yi=0, any non-active stepdirec-
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tion is non-descent; viceversa, a descent —-
stepdirection is non-feasible (and, then, --
A,d<0).

i

Note that the Lagrange multipliers take the
first-order rate of change in the objective
function (1.1) due toc a change in the right-
hand-side of the related constraint or bound;
see (2.13). A caution has to be made since -
the magnitude of the Lagrange multipliers is

not invariant to scaling changes.

We may see that the sign is more important -
than the magnitude of the Lagrange multi----
pliers. Note that if they are not obtained -
with exact arithmetic, the 'computed' value

of e.qg. ﬁi for ie M—Er\% and §i=0 may be ---
'sligthly’ negative when the 'exact' value -
is positive and, then, once the constraint -
is chosen to be deactivated , the related --
non-active stepdirection is non-descent; if

the 'computed' value is positive when the --
exact value is negative, then a premature --
termination of the algorithm may occur -----
without reaching the optimum §. Any computer
algorithm works, by its own nature, with fi-
nite precision and the results are subject -
to unstabilities due to cancellation and ---
rounding errors in intermediate operations -

/11/.

An additional difficulty arises in the pre--
sence of zero computed value of some Lagrange
multiplier since, in that case, there is more
uncertainty on the sign of its exact value., -
Recall that if it is zero, the positive defi-~
niteness property of matrix ﬁ is not enough -
to guarantee'(together with the other condi--

tions) that X is a local minimum.

Some algorithms deactivate constraints and -
bounds even before the local optimum in a gi-
ven manifold is reached such that, once a ---
'quasi-optimal' sclution is obtained, estima-
tes of the Lagrange multipliers are calcula--
ted and, based on them, the desactivating pro
cess is executed; see /13/ among others. —-—--
These estimations introduce a new uncertainty
on the sign of the 'exact' Lagrange multi----
pliers.
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4, LAG I S ESTIM .

See in /10/, /3/, several methods to obtain

Lagrange multipliers estimates. We use two -
types of formulas, the so-termed first-order
estimates, see in /3/ the motivation for not

using second-order estimates.

Following a traditional approach /13/, let -
the active constraints matrix, say A be par-
titioned as

dB
ad = (B,5,N) dg =0 (4.1)

dN
where the basic stepdirection dB is used to
satisfy the constraints set, the superbasic
stepdirection dS is allowed to vary to mini-
mize F(X) (1.1) and the nonbasic stepdirec--
tion dN is zero, such that set V is fixed at
any of their bounds. Here §§E(§,§) and B is
a t.t nonsingular matrix. At each iteration,
the problem then becomes determining vector
a=(af,af,af)* so that it is feasible-descent.
Since dN=0 and dS is allowed to be free, it
results

——1=

dB = -B SdS

such that the variable-reduction characteri-

zation of matrix Z can be written

(4.3)
so that (2.3) holds.

The cuadratic approximation of the uncons---
trained reduced problem of minimizing F(X) -
in the manifold W and V as a function of the

current superbasic set of variables d_. can -

S
be written

Cs s =t + t=
minimize h ds l/2dSHdS (4.4)

where h and # are given by (2.1) and (2.14),

respectively. Note that h can also be written
h=g.- 5%

h = 9g ~ B (4.5)
where ﬁB solves the linear system
g = E%B » (4.6)
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such that §B55<§§,§§)t where éB and §S are -
the basic and superbasic gradients, respecti
vely. Theoretically, the algorithm continues
till|lﬁll =0 or the superbasic set is empty

and, then, the deactivating process is exe-
cuted by analyzing the Lagrange multipliers

(except if it has been decided to do so in -
the presence of 'quasi-optimal' solutions so
that Lagrange multipliers estimates are ob--

tained).

Let assume that § is an optimal point in the
manifold % and 6. Then, the Lagrange multi--
pliers vector ﬁ is obtained by solving sys--
tem (2.9); let ﬁBS be the solution. Since --
l]ﬁ]|=0 or the superbasic set is émpty, it -
is clear that ﬁBS=SB(4.6). Thus, it is not -
required to solve (2.9) since ﬁB is updated

at each iteration to solve problem (4.4) ---
(see /12/, /2/). Note also that SB is the ne
gative of the LP simplex multipliers. The =--
Lagrange multipliers vector i of the active

(nonbasic) structural variables is obtained

by using formula (2.8); note also that i and
ﬁ are the negative of the LP reduced cost --
vectors related to the 'nonbasic' and 'super
basic' associated LP subproblems, respective

ly.

When a 'quasi-optimal' solution, say X is ob
tained in a given manifold defined by W and
v, UBS%“B and ABS#AB. Let us term Ug and AB
as basic-based active constraints and bounds
Lagrange multipliers estimates, respectively

and ﬁBS and st as basic-superbasic-based ac

tive constraints and bounds Lagrange multi--
pliers estimates, respectively. Of course, -
estimates based on the basic-superbasic set
are generally more accurate than those based
in the basic set; see in /11/ a good discus-

sion on the subject.

The motivation for obtaining 'quasi-optimal’
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solutions and, then, interrupting the mini-
mization of the unconstrained reduced nonli
near problem is based on the assumption that

it is likely that current sets W and V are -

t

not the optimal sets W and 6 in problem —----
(1.1)-(1.2) and, then, it could be benefi---
cial to analyze if it is worthy to delete so
me active constraint or bound before reaching
the optimum in the reduced problem, but after

reaching a solution close to that optimum.

Note that estimation ﬁB is already obtained.
Estimation aBS is based on the QR-factoriza-
tion of matrix BS. While solving the uncons-
trained reduced problem, eihter a basic or a
superbasic variable may strike a bound during
the search. If a superbasic variable strikes
a bound, it is made nonbasic, the dimension
of the manifold is reduced by one, and the -
search continues. If a basic variable strikes
a bound, the basic variable is exchanged with
an appropiate superbasic variable and the re-
sulting superbasic variable is made nonbasic.
The estimation ﬁB is updated at each itera--
tion since h (4.5) requires it; but EBS is -
only obtained when it is required to execute

the deactivating process.

Estimation GBS is obtained by minimizing the
square of the euclidean length

= st
[lagg = (BS) Tupgll, (4.7)

For obtaining ﬂBS (minimal linear least squa-

re solution) we use an implementation of the

Gram-Schmidt QR-factorization of a matrix --
where the number of rows is greater than the
number of columns; see the motivation and de
tails in /1/, /4/, but the matrices involved

are as follows.

Let Q be a (n-t-r).t orthogonal matrix and R
a t.t nonsingular upper triangular matrix --
with identity diagonal such that

(Eg)t - 5R (4.8}
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It can be shown that the vector ﬁBS that mi

nimize problem (4.7) is also the vector that
satisfies the system
Rupg = 6t§Bs (4.9)

Then, it is required to calculate Q and R --

for obtaining ﬂBS; they are updated each time
a basic-superbasic (structural or slack) va-

riable is made-nonbasic or a nonbasic (struc

tural or slack) variable is deactivated ; -~

they are calculated anew the first time that

uBS is used, or after a given number of upda

tings so that some unstability due to too-ma

ny intermediate operations is avoided /1/, -

/4/.

5, DEACTIVATING PROCESS.

Assume that § is an 'optimal' or ‘'quasi-opti
mal' solution in the manifold defined by % -
and %; assume also that the given algorithm
selects, at each time, only one candidate --
nonbasic (structural or slack) variable to -
be deactivated . Note that not all nonbasic

variables are candidates for being desactiva
ted; e.g. if § is only 'quasi-optimal', ‘'un-
safe' nonbasic variables do not belong to the
candidate set if an anti-zigzagging strategy

is to be used. 5ee /2/,/5/. Let C, and C, be

1 2
candidate sets of structural nonbasic varia-
bles and active inequality constraints, res-

pectively. Note that each slack variable is

associated with an inequality constraint.

Let Y be an indicator such that y=1 means --

the basic superbasic-based estimate ﬁBS (4.6)

is allowed for X; otherwise (y=0), only the ba

sic~based estimate ﬂB (4.9) can be used.

Since “BS=uBS for X being optimal in the ma
L3 %

nifold W and V, indicator is set to zero -

for the given iteration even if basic-super-

basic-based Lagrange multipliers estimates -
are allowed.
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Case y=0.

The structural nonbasic variable to be deac—
tivated is the variable, say k€ 6 with the
most favorable basic-based Lagrange multi---

X

plier estimate A

Apk such that

IXBkl= max{lej[ XBj<—elA§j=

=1j, xBj>e2ij=Uj jE cl}

(5.1)
where € is a given small positive tolerance
(tipically, €,=10"%) that is intended to gi-

ve lower priority to variables with zero or

near-to-zero Lagrange multipliers estimates.

If k=0 then the active inequality constraint,
say keM-EnW with the most favorable basic-ba
sed Lagrange multiplier estimate SB is to -
be deactivated , such that

1

IﬁBkl = max {[up |lup <-e,
1 1

=0, uBi>eiAyi=bi—§i ie c2} (5.2)

for the same tolerance €y

Assume that k=0. If the following condition

does not hold
(ﬁjl-elskBjsel jecl)v(ai|—elgﬁBi<el iec,)

(5.3)
the action to be taken depends on the charac
ter of point i: if it is a 'quasi~optimal' -
solution in the manifold ﬁ and 6, the next -
iteration obtains the related superbasic ---
stepdirection; btherwise, it is assumed that
§ is also an optimal solution in problem =---
(1.1)-(1.2).

If (5.3) holds, let us redefine

sets Dl and D2 (see sec. 2) such that D, ta-

1

kes the subset of Cy for which the first ---
part of (5.3) holds and D, takes the subset
of c, for which the second part of (5.3) ---
holds. Thus,

set DluD2 defines the zero or

near-to-zero Lagrange multipliers estimates.

Case y=1l,
Note that estimates ;BS and ﬁB (and, then, -

XBS and XB) are to be used. Generally,

¥Bs
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is more accurate than ﬁB since it uses more
information; but, it makes sense to select a

candidate nonbasic (structural or slack) va-

riable if among other requirements /5/, both

estimates agree in the appropiate sign. In -

any'case, note that the reduced gradient ---

(with structural and, although provisiona--

1ly. slack elements) onlv uses the basic-ba-

sed estimate; see (4.5).

The structural nonbasic variable to be deac-

tivated is the variable, say keV with the

most favorable basic-superbasic-based Lagran

ge multiplier estimate XBS whose basic-ba--
2 k
sed estimate XB agrees in sign or, at least,
k
is zero or near-to-zero, such that

|KBSk|= max{|A o [|% <—€1A§B e AX. =1,
j :

BS. 1
3 5 J 3

ABSj>ElAAB.2_€lAXj=Uj jecl}

J
(5.4)
If k=0 the active inequality constraint to
be desactivated is the constraint, say =----~
kCM—Em% with the most favorable basic-super
pasic—based Lagrange mgltiplier estimate ---

whose estimation ﬁB agrees in sign or,

5
BSk

at least, is zero or near-to-zero, such that

lupg, = max{lugg |lugg <meqnup <eqA¥ =0,
k i i i

ﬂ >e A* >~ $,=_ - i
Bsi 1 UBi/ eNY bi bi 1€c2}

(5.5)
for the same tolerance el used above.

When using (5.4) and (5.5) it is suggested
to give the lowest priority to the candidate
nonbasic (structural ér slack) variables for
which the basic-based Lagrange multipliers

estimates are zero or near-to-zero.

When a candidate nonbasic (structural or --—-
slack) variable is deactivated with zero or
near-to-zero basic-based Lagrange multiplier
estimate, its related element in the new re-

duced gradient h (4.5) will be €1 *+ gy if --
Xj=Uj or Y,=b;-b, respectively, and —(el+€2)
if ﬁjzlj or §i=0, respectively. Note that h

will be used for obtaining the superbasic --

stepdirection of the next iteration. €, is a
given small positive tolerance (typically, -

€ = 10'4)

5 used for the required perturba--
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tion in the apropiate sign of the zero or --

near-to-zero basic-based Lagrange multipliers
estimates.

Assume that k=0. If the following condition
does not hold

* x
34 - : s R
(331 elstsjsel jec)v(3i]| £1SVgg <8 iec,}

(5.6)

the next iteration obtains the superbasic --
stepdirection; note that X is guasi optimal.

Let DluD2 define the set of zero or near-to-

zero basic-superbasic-based Lagrange multi--
pliers estimates as it was defined for y=0,
such that their related basic-based estima--
tes are favorable or, at least, zero or near-

to-zero.

6. ESTIMATING THE TENDENCY OF THE | AGRANGE
MULTIPLIERS ESTIMATES.

When conditions (5.3) for y=0 and (5.6) for
yY=1 hold, the ambiguity on the Lagrange mul-
tipliers estimates does not allow to select

a variable from set D1UD2

except if some perturbation on the active --

to be deactivated, ,

bounds of the X- and Y-variables is produced;
in this way, an estimation on the tendency of
the zero or near-to-zero Lagrange multipliers
estimates could be obtained.

Before describing the procedure and since --
the structural variables may be classified -
according to the linearity of the terms of -
the objective function, let us make the fo--
llowing partition of these variables in pure
linear, linear with variable-coefficient and
nonlinear; see in /7/ how to use, in a given
algorithm, this and other types of variables
partition . A variable is pure linear if its
coefficient is constant in all terms; a va--

riable is linear with-variable-coefficient -

if, for a given value of the other variables
that are used in the same term, it is a 1li -
near function of the given variable; and a -
variable is nonlinear if, for algiven value
of the other variables in the same term, it
is a nonlinear function of the given varia--
ble. An example is as follows: F(X) =

4X1+~ leogXB; variable X1 is pure linear,

X2 is linear with wvariablc-coefficient, and

X3 is nonlinear. Let L define the set of 1li-
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near variables and P the set of pure linear
variables.

The estimation of the tendency of the zero -
or near-to-zero Lagrange multipliers estima-
tes is only obtained for the basic-superba--

sic-based estimates; but, note that ﬁBS=ﬂB

%

(and, then, X KB) for y=0.

BS~
The tests to select a variable to be deacti-
vated from set DlUDZ could be as follows.

Test 1. Select a (structural) variable from

set Dl'
It is only performed if J/6=P; i.e., the who
le basic and superbasic set of variables is

pure linear; then, estimation ﬁBS will not -

be modified by the perturbation tc be produ-
ced in test 1.

Let us produce an small perturbation on the
active bound of variable, say j for —--——----

ieD N (J/L); let §. be the element in the ob-
jeny 3

jective function gradient related to variable
j evaluated at the perturbed solution X, such

that X£=ﬂ£ for Leg, £#j, Xj=ij+52 if §j=lj -

and X.-e., if i.:U.. Note that only element J.
372 373 Y 95

is required at each perturbation, being un--
changed the other elements of S. Note also -
that variable j is nonlinear, since the gra-
dient elements of linear variables are cons-
tant (and then, the solution perturbation --
has not any effect).

The perturbed basic-superbasic-based estima-

te A

BS can be written (see (2.8))
]

X =3 - S. + g.
BS. BS.
i 3 J J

(6.1)
If the following condition holds, variable j

is to be deactivated (and,then, set k=j).

. )

(XBSj—xBSj<_€3|ijlj)V(XBS. “Apg YeqlX,=UL)

3 J -

(6.2)

Otherwise, it seems that the tendencv of iBS.
is not favorable and then, variable j is notj

to be deactivated . €5 is a given small posi

tive tolerance, such that anv number with --

magnitude less than €4 will be discarded (i.e.
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set to zero) as being insignificance in any -

circunstance; tvpically, €3=10—12

The first variable jEDln(J/L) that satisfies

(6.2) is the variable, sav k to be deactiva-
ted.

Test 2. Select a (structural) variable from
set Dl'
If k=0 ( i.e., test 1 did not select any va-

riable) test 2 will be used; it is not per--
formed if J/6=P; i.e., the whole basic and -
superbasic set of variables is pure linear -
since, otherwise, the results would be very

similar to those obtained in test 1.

Let us perturb simultaneously the active ---
bounds of the whole set Dlﬁ(J/L) with the sa
me criterion used in test 1; gradients aB --

for y=0 and &BS for y=1 are, alternatively,

evaluated at the perturbed solution X and, -
then, the perturbed basic-based estimate ﬁB
is obtained for y=0 by solving system (4.6)
with éB being substituted by §B and the per-
turbed basic-superbasic-based estimate ﬁBS
is obtained for Y=1 by solving problem (4.7)
being aBS substituted by Jp.-
The scope of this work does not cover the --
procedures for solving system (4.6), nor pro
blem (4.7); in anv case, inverse matrix E_l
is not obtained in the first case and system
(4.9) is not explicitly solved in the second
case. The updated E% and éﬁ factorizations -
of matrices ﬁ and (ﬁé)t

used; see /1,2,4/.

, respectively are -

The perturbed estimate XBS for jGDlﬁ(J/L) -

J
is obtained bv using in (2.8) the perturbed
element §j evaluated at the perturbed solu--

tion X and the perturbed estimate ﬁBS; note

that ﬁBS=ﬁB for y=0.

The first variable jeDlﬁ(J/L) that satisfies
(6.2) is the variable, say k to be deactiva-
ted.

Test 3. Select an (active inequality) cons--

traint from set D2.

We will obtain directly, in test t3, the ba-

sic-superbasic-based estimate ﬁBS of the ---
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constraints set W that solves the problem --

. ~ g AN of 2
mln]quS - (BS) uBSI‘Z (6.3)
for y=1, or solves the system
~ _ %t
dg B IS (6.4)

for y=0, where ﬁBs=ﬁ for y=0,

B

xx ot x % ~ ks - _ 3
(BS) - =0R, gB:q(xB+aB) and ng:g(xBS+aBs),

B and XBS

quasi-optimal values of the basic set and ba

such that X take the optimal or -

sic and superbasic set of variables, respec-

tively, and éB and EBS are the related devia

and % .

tions from points XB BS

Deviations dBS satisfies the right-hand-side

perturbed original problem, where the nonba-

sic variables are fixed to their values XN

and only the active constraints set W is con
sidered, such that

sk K ~ =

BS(XBS+dBS) = b—NxN+e2I8

&

= bBS+EZIs (6.5)

where §j=1.vU. for j€6, and Bi=5iv§i for ieﬁ

J
Note that BBS takes the right-hand-side vec-

tor to be perturbed in system (6.5), where -
BS takes the constraints matrix such that --
éérc takes the (r,c)~-th element of matrix BS

for r=1,...,§ and'c=1,...,n—§—§. Let i(x)
define the constraint ie% related to index
r in (6.5); similarly, j(c) defines the ba-
sic or superbasic variable jeJ/§ related to

index ¢ in (6.5). I€ defines a t-vector such

that I_ =-1 for r such that i(r)eD,AY.=b,-b.,

€y . 271 7L =i

I€ =+1 for r such that i(r)GDZAYi=0, and ---
r

I€ =0 for r such that i(r)éDz.
r

In a similar way, deviation dB solves the --
problem

%% +~ - koEm R +
B(XB dB) b SXS NXN €216

(6.6)

such that ﬁrc takes the (r,c)-th element of

matri§ g for r=1,...,g and c=1,...,€. Let --
i(r)ea define the constraint related to in--
dex r in (6.6); similarly, j(c) defines the

basic variable related to index ¢ in (6.6).

Vector I in (6.6) is defined as in (6.5).
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Note that constraint ieM-EnW will be only

perturbed if its Lagrange multiplier estima-

te ﬂB is zero or near-to-zero for Y=0, or
i *

its Lagrange multiplier estimate UBS is ze-
i

%
ro or near-to-zero and ¥, is not non-favora

i
ble (i.e., it is favorable or, at least, ze-

ro or near-to-zero) for Y=1.

For obtaining the perturbed gradient éB in -

(6.4) and g g in (6.3) such that the above -

approach be practical, it is required a fast

procedure for obtaining dB in (6.6) and éBS

in (6.5).

Case v=0.
The deviation dB that satisfies (6.6) for --

perturbation 92 in BB for i(r)eD2 is such -
r
that

dB = ezB

1
IE

E::::::::::::*—l
= -—
€2 ( N Br

rli(r)GDzAYi=0

- = )

_ (6.7)
r]i(r)EDz/\Yi=bi—1_3i

where ﬁ;l takes the r-th column in matrix --

B™!, such that aB takes the deviation from
N ¢ .

the solution X,

j(e)” Note that inverse basic -

o

matrix B! is not explicitly calculated, sin-
ce its triangular factors L (lower) and o —
(upper) are fresh anew or kept updateduin the
previous iterations /2/. In any case, 87l s
postmultiplied by a vector for solving (6.7)
and premultiplied by a vector for solving ---
(6.4).

Case v=1

The deviation HBS that satisfies (6.5) for an
small enough perturbation €, in BBS for ----

i(r)ED2 can be written

~ _ k% ++

dBS = €, (BS) I, (6.8)
where

BS)* = (BsBS)Y) 7! BS (6.9)

is the E.(n-E—f) pseudo-inverse matrix of the

(n-t-r).t matrix (ﬁé)t.
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In effect /4,2/, from (6.5) it results

BS(X BS) =b

+
BS €2%¢

= b *€ BS(BS) tEsEaH Tl 1

BS £
_x o Ex ks
bpg*BSE, (Bs)*
- BS(X_* (Eé) T (6.10)
' 7BS € :
and,finally,
% _ X o+t
dBS =€, (> (BS)r
r|1(r)€D2AYi=O
- S — BEHH  (6.11)

r|1(r)€D2AYi=bi—§i

xk 4+
where (BS)r takes the r-th row in matrix --

fdk 4 ~
(BS) , such that dBS takes the deviation
% C x
from the soclution xj(c) for j(c)ed/v.

(4.8) ana (B&)*
pressed by (6.9), it results

Since (B8)F = OR can be ex-

R(BS)* = 8t (6.12)
such that the t-vector (§§%: for
c=1,...,n-t-r can be written

7’.:7':;[; =~.’:*

(Ds)tc Qct (6.13a)

E3
B -8, - S A L,dh?
cr EZ::: e e POT
L=r+1
r=t-1,...,1 (6.13b)

Note that not all rows (ﬁé%: are required, -

but only rows r=1,...,% such that i(r)eD

then, it could be possible that matrix (BS)+
is not required to be completely calculated.

Y=0 and X._.+d

Once obtained Xp+d, for BS °UBS

for y=1, perturbed estimates ﬁB and ﬁBS are

obtained from (6.4) and (6.3), respectively.
Setting ﬁBS=ﬁB for y=0, the first active ---

inequality constraint i D, for which the ---

2

following condition holds is to be deactiva-

ted (and, then, set k=i).

(“Bsi'“Bsi<'€3lYi=°)V("Bs.f“Bs.>eaIYi=bi"§i’
i i

(6.14)

Qtlestiié - V. 6, no 2 (juny 1982)

such that a priority is given for y=1 to the
constraint with the maximum absolute value in

its estimate ﬂB if it is favorable.

4

If k=0 it seems that the tendency on SBS is

not favorable; the actlon to be taken depends
on the character of X If it 1s a qua51 -opti
mal' solution in the manifold W and V the --
next iteration obtalns the related superbasic

stepdirection. If X is an optimal point in --

that manifold, it is also assumed that it is
an optimal point in problem (1.1)-(1.2).

/. _COECLUS

The influence of the degenerate sets of acti
ve inequality constraints and bounds in the
optimality conditions has been analyzed for
local optimal points in linearly constrained
nonlinear programming (LCNP) problems. Some
procedures have been described to get some
insight on the tendency of zero or near-to-
zero Lagrange multipliers estimates for non-
basic (structural and slack) variables in --

the frame of a given LCNP algorithm.
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