ESTIMATION OF RANDOM SURVIVAL FUNCTION:
A LINEAR APPROACH
VICENTE QUESADA PALOMA, ALFONSO GARCIA PEREZ

In the first part of this work, a Survival function is considered which is supposed to be -
an Exponential Gamma Process. The main statistical and probability proporties of this pro—
cess and its Bayesian interpretation are considered.

In the second part, the problem to estimate, from a Bayesian view point, the Survival fune-—
tion is considered, looking for the Bayes rule enside the set of linear combinations of a -

given set of sample funetions.

We finish with an estimation, in the same situation like before, of the survival mean time,
and the 1th moment about the origin of the Survival function.

Key words: Exponential Gamma Process, linear approach, Survival function, Bayesian nonpara
metric estimation, Survival mean time.:

1. INTRODUCTION.

The application of the Bayesian method to --
the resolution of some statistical problems,
has been made with enough success in parame-
tric situations, but in nonparametric ones -
the application has not been so broad. The -
principal obstacule to do this has been to

find workable priors on the set of all proba

bility distributions on a given sample space

/3/ and /2/, with Dirichlet processes and --
processes neutral to the right respectively,
showed that these could be used to solve -—-

different nonparametric Bayesian decision --
problems.

/6/ presented an alternative method to the -
treatment of Bayesian nonparametric problems
approximating the solution of the original -
problem, when the decision space is restric-
ted to be the set of linear combinations of

some given set of sample functions.

Here we present a linear approach to the Sur
vival function after to study the main sta--
tistical and probability properties, under -
the hypothesis the prior distribution over -

the space of probability distributions defi-
ned over a determinated sample space, is an

Exponential Gamma Process.

2. THE SURVIVAL FUNCTION.

Let T be a nonnegative random variable, which
we suppose indicates the failure time of a --
system or the time death of a live thing. The
survival function of this random variable T -

is defined like the probability of T>t, i.e.,
S(t) = Pr {T>t} , vt20

Let F(t) be the distribution function of the
random variable T, then

S(t) = 1-F(t)

and so, the main properties of the Survival
function will be,

a) 0<S(t)<1.
b) S(t) is a noncreasing function.
c) S{(t) is a right-continuous function.

d) 1lim S(t) =1
t+0
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e) lim S(t) =0

Tt
The survival function can depend on one or -
more parameters; in this situation, we will
write S(t/d#) to mean a Survival function con

ditional to the parameter o

In the parametric Bayesian situation, the pa
rameter ¢ is a random variable with prior --
distribution function G(4).

2 URVIV CTION: DEFINITION.,

A stochastic process S(t), te[O,m) is called

a random Survival fuction if

a) S(t) is a noncreasing function, a.s.
b) S(t) is right-continuous in probability.

c) lim S(t) =1 a.s.
t=+o

d) lim S(t)

+->00

i
(=

aA.S. .

5, EXPONENTIAL GAMMA PROCESSES.

Let be the random Survival function,

S(t/AO) = exp [—Ao(tﬁ , 320

which means S(t/Ao) = Pr{T>t/Ao} , where ---

Ao(t) is a stochastic process which we will
define through the definition of the random

Survival function. We have that,

lim Ao(t) =0 a.s. , to be b) satisfied.
t>0 v

lim A _(t) = ® a.s. , to be c¢) satisfied.
t->w o

Ao(t) -~ Ao(s) >0 a.s. if t>s, to be a) sa
tisfied.
Let be a partition of [O,W) in a finite num

ber of disjointed intervals

k, al] y (al,az] s eaey (?k—l' ak = f).

Let us see that the first interval is closed

and last one open. If we write

= > i

q; Pr {Ts(%i—l’ ai] / T aj_qr Ao} if
>

Pr {T>ai_l/ Ao} 0 and

g, = 1 elsewhere. i=1,...,k

1
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3.1 0PQSITI

i i
~
Ao(ai) = E -log (1 - qj) = j; rj R
j=1 j=1
i=1,...k
i.e., in each point asy i=1,...,k, Ao(ai)

is the sum of i nonnegative variables.
Proof:

qi = Pr

Te(ai—l’ai] /T>ai—1’1\o€

Pr{Te(ai_l,ail N T>ai—l/ AO}
Pr {T>ai_1/ Ao}

Pr{T ela; ;. ay] /‘\o}

Pr {T>ai_1/ Ao}

Sta;_,/ A) - S(a;/ A )

Sla; 4/ 4.)

and if we change the survival function for -

its wvalue, then

i
exp [— A (a.)] = (1 - g.)
o' i =1 3
so i
AO(aJ) = E : r.
j=1 J
where rj = - log (1—qj), j=1,...,k.

To specify a distribution over the trajecto-
ry space of the process S(t/ Ao) is, by a --
hand, the same that to specify a distribu---
tion over the trajectory space of the pro---
cess Ao(t) and in the other hand, because -
the proposition proved, the same that to spe
cify the finite dimensional distribution of

the random variables Tyse.. Ty OvVer each par

k

tition (ai_l,ai] i=1l,...,k such that some

consistence condition are satisfied.

So the problem is to specify a process, which
according to the before proposition must be -
with independent increments and nondecreasing
and in the other hand the distributions of --
the random variables ri, must be the same ---
that the got one by aplication of the rules -

to the combined interval (ai_l, ai+1] .
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3,2, DEFINITION.

Let c¢>0  and Ax(t) be a function of t, ---
such that exp [— Ah(t)J is a nonrandom Survi
val function. We say tuat the random Survi--

val function
S(t/ A)) = exp [— .\O(t)] , t20

is an Exponential gamma process with parame-
ters ( A (t), c), if for each finite parti--

tion (ai—l’ ai] , i=1,...,k of [O,W), the

random variables TpeeenrTy (the increments -

of the process) we saw before, are distribu-
ted independently like gamma with parameters
(cl A"(ay)- A (a;_)), @)y i=1,...,k. We -
mean,

r.za(c( A" (a)~ A% (a; 1)), ©)

A“(t) is called shape parameter and c scale

parameter.
3.5, PROPOSITION,

Let S(t/ Ao) be an ?xponential Gamma Process
with parameters ( A (t), c). Then there —----
exists a probability measure iver the trajec
tory space of the Ao(t) process, and so —---
over the trajectory space of the S(t/ Ao) -

process; so, over the parametric space % .

Proof:

r, = 6le( A(a)- A"a,_ 1)), o

N i-1 i=1,...,k

for each partition (a; ;, a;] and because -

the gamma distribution is reproductive in -~

the first parameter,

v, ot 56 (el Ay, A" @), o

i.e., the same if we consider the interval -

(@0 3]
tions are satisfied and the proposition ----

; and so the consistency condi--~

shown.

PRO S OF
PROCESS.

E EXPONENTIAL GAMMA

Let S(t/zmo) be an Exponential Gamma Process

with parameters ( A (t), c), then the mean of

A (e e

this process is (c/(c+l)) i.e.,
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E [S(t/A o)] = E [exp (- Ao(t))} =

= (c/(cr1)) N (e

where the expectation is taken with respect
2P, the prior probability over‘§71

Proof:

Let be the partition [O,t] , (t,»). In ---

this situation,

AyE) 26 (AT (), o

and so,
c /\x(*).c
E |exp (-4 (t))] = ([ — =8 _(t)
[ °© . c+1 ©
where the last equality is taken like nota--
tion.
4,2 0SITI

The function So(t) = E [S(t)/ Ao ] is non--
random Survival function. The proof of the -
proposition is easy and we only need to veri
fy the properties of a nonrandom Survival --
function.
Because So(t) is a nonrandom Survival func-
tion, in a Bayesian situation, it can be con
sidered like the "prior" Survival function.
In another way, the parameter ¢ of a pro--
cess can be considered like one that show --
the belief in our prior knowledge. So, when

c+» then Var (/\O(t))+0, i.e., the random va
riable Ao(t) for each t 1is degenerate in

the real number A (t) and the random Survi--
val function S(t//xo) is the nonrandom Survi
val function So(t). Our prior knowledge is -

maximum.

If c¢»0 , then Var ( Ao(t))+w , and the —----

prior information over S(t/ AO) will null.

The other parameter A (t) shows us the prior
knowledge.

4,3, PROPOSITION.

Let S(t/ AO) be an Exponential Gamma Process

with parameters ( A" (t), c¢) and with prior --
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Survival function So(t). Then if x>y

[S(y) S(x)] =

E
= (c/(e+1)N ) ((er1) /(ev2)) SN V)
= s, (x) [So(y)] tie)
where lic) = (log((c+2)/(c+l))/log((c+l)/c))
Proof:
o 1
E Ls(x) S(y)J = E [exp (- ( Ao(x) +Ao(y))]
and if we call Y, = Ao(x) - Ao(y)

It

Y2 Ao(y)

we are be able to calculate the density func
tion of the vector (Yl’YZ) because the inde-
pendent increment property of the process Ao’
and so Y

- cA” (%) cA" ()
E lé(x) S(y)] = <_E_> (Eil)
c+l c+2

4.4, COVARIANCE FUNCTION OF THE EXPONENTIAL
GAMMA_PROCESS.

The covariance function of the Exponential -

Gamma Process with parameters (A (t), <), is

1

ri{x,y) E [(S(x)—So(x)).(S(y)—So(y))] =

E [S(x).S(y)] - So(x).So(y)

and so, because the proposition 4.3,

cA*(x) ZCA*(X)

c c
r(x,x) = < ) - )
c+2 c+1l

function that is continuous if it isA“(x).

6 v ITY CUADR 0 -
A MMA PRO .

Let S(t/AO) be an Exponential Gamma Process

with parameters (A (t), c). Then, ifA (t) --
has continuous derivate in t, the process is

derivable in cuadratic mean.

Proof:

It is enough to show that S/AO) has derivate

and that the mixed derivete of r(x,y) exists
and it is continuous; but these depend on the
first derivate of A*(t), so we have the re---
sult.

7 GR UADRATIC -=
EXPONENTIAL GAMMA PROCESS.

Let S(t/AO) be an Exponential Gamma Process

with parameters (Ah(t), c) and let us suppose
that A" (t) is a continuous function in t, so

S(t/Ao) will be continuous in cuadratic mean

and it will exist all the moments of S(t/AO).

[od
Let Y f/ﬂ S(t) dt the random variable which -
o

means the integral in cuadratic mean of the -

process S(t/Ao)-

c cA*(x) ( c 1 cA*(y)_ <
c+l c+2

¢\ CAW [/ oA
C+1 c+2

. A (y)
» 1f xpy
c+1

o cA (%)
, if x<y
c+1l

4,5, CONTINUITY IN CUADRATIC MEAN OF THE EX-
PONENTIAL GAMMA PROCESS.

Let S(t/Ao) be an Exponential Gamma Process

% ) 0 .
with parameters (A (t},c). Then, 1fAf(t) is
continuous in t, the process is continuous -

in cuadratic mean.

Proof:

The covariance function in the diagonal is
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THEOREM; Let S(t/AO) be an Exponential Gamma

Process with parameters (A*(t),c) and prior
distribution function Fo(t) = l—So(t). Let

gl(t): [O,w)—»lRa measurable function of the
random variable T, such that

f(folg(t)l dF(t)) aPE) < =
A\

Then, f(f_‘”g(t))dp(t) AZP(F) is the ex-
F (o]

pectation of g(T) respect the distribution -
F(t).

(4.7.1)

Proof:

Because (4.7.1) we can use Fubini's theorem
and get result after to see that Fo(t) is --
the parameter of the Process neutral to the
right S(t/A_).

THEOREM: Let S(t/Ao) be an Exponential Gamma
Process with parameters (A (t),c) being A (t)
a continuous function of t.
Let g;: [0,%)— R'ul0} and
+
gyt [0,9)— R'U{0} two measurables func-

tions, nonnegatives and such that for each -

neEWN is

n

n
fgl(s) ds < o« and f g2(s) ds <«
(o] o

Let us suppose that
f(fgi(t) S(t) dt> (f g (@ s<u)>du ¢ As),
F\Vo o
i=1,2, j=i, 2.

Then,

f(fgl(t)S(t)dt>(fgz(u)s(u)du)d,@}‘(s) =
F 7o o

-]

S ERCIRE “ g s, @ ®au) at

B 91 o gytutsytu u

o \”0

+fwg (t) {8 _(t) 1(e) fmg (u)s_(u)du} dt,
o 1 [} t 2 o

where So(t) is the prior Survival function.
Proof:

Because A (t) is continuous, V.Quesada and
A.Garcia Pérez (1.981),

f(fgl(t)s(t)dt) (f;z(u)s(u)du>d_@7(s) -
F\T° °
=f7°§1(t)g2(u) E [S(t) S(u)] dtdu

oY O

Qtiesttié - V. 6, no 2 (juny 1982)

and we get the result if we see the proposi-
tion 4.3.

5, PROBLEMS [
MATION,

ONPARAMETRIC BAYESIAN ESTI--

Let X be a random variable which takes real
values, with random distribution F. Given a

simple random sample (X .,Xn) of X, we -

17"
want to make estimations of a function g({(F),
where g is a function over the space ¥ , spa
ce of all probability distributions over ---
(R ,B) .

Let us suppose that over the measurable spa-
ce (5)05), where g4 is a ¢-field with res--
pect to which g is measurable, there exists

a probability measure &7,

If we want to make inferences about g(F), -~

working with a s.r.s. (Xl""'xn) using gqua-

dratic loss, we get the Bayes rule,
A f

- = F) 44 F
gix,, ,xn) 5_g( ) (;lel_ "’Xn( )

if this exists, but except 2 would bg the in
duced by a Dirichlet process in (R, g ) (Fer-
guson, 1.973), the posterior probability is
unhandle.

In this comunication, we will find Bayes ru-

les when,

a) 9 is induced by an Exponential Gamma Pro-

cess.
b) The loss function is quadratic.

c) We look for the Bayes rule inside the set
of linear combinations of some given set

of sample function.

0 E SURVIVAL FUNCTION.

Let S(t/Ao), t>0 , be an Exponential Gamma

Process with parameters (A*(t), c), and let
us make the next clasical Bayesian analysis:

1 and we

find the Bayes rule Sl(t), with quadratic --

we select a random sample of size n

loss, for S(t/Ao) inside the set of decision

rules like

a, S

£ 5n (t) + bt So(t)

1

where So(t) is the prior Survival function

and S, (t) the empirical Survival function.
1
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Then we select another sample, of size n, -
and again we look for the Bayes rule inside
the set of decision rules like

a, S_ (t) + bt S

¢ 5n, (t)

1
We continue with the process taking samples

of sizes n,,n,,...,n finding the respecti-
371 g p
A

kl
ve Bayes rules S3(t),S4(t),...,Sk(t), looking
respectively inside the set of decision rules
like

i=3,...,k

6.1, THEOREM,

In the process we described before, the Ba--
yes rule for the random Survival function --
S(t/AO) is

S_(x) 2-S- S(t/A)

n ) as n — o,

The proof is easy because pn(t)-—+0 as n—o,

A similar Bayes rule can be obteined if we -
consider censored data, using insteed the em
pirical Survival function, the estimate of -
Kaplan-Meier(1.958).

6.3, THEOREM,

The Bayes rule Sn(t) before obteined for ---
S(t/Ao) is such that,

lim Sn(t) = Sn(t) and,

c+0

lim s _(t) = exp [— A"‘(t)]

C >0

1(c) 1(c)
-~ n, (So(to - nkSO(t) 1 - (so(t»
s, (8) = / — Sp (£ e S, (8)
c c
(nk—l) <So(t)) —nkSo(t)+l (nk—l) <So(t)) —nkso(t)+1
and the Bayes risk is
1(c)*1 21(c)+1 1(c)+2 ) 2

@O(t» - <So(t)) + (So(t)) - (So(t)

Rmin = (c) ’
1(c
1+ (nk—l) (So(t)> - ony So(t)
Proof:
We get the result if we make the Bayes risk
2 ‘ .
/ f (S(t) -a, s, (1) - by Si_l(t)> dg(s  (t)) d &7 (s) , i=1l,...,k
F\"R t 1

minimum, where Q is the distribution of the

random variable Sn (t), and noting that ---

i

E [S(t/AO) ] = So(t) and that

B [Sz(t/Ao)] = (So(t)) tle)+l

We see that is unnecessary to make several -
samples and that is enough to get only one -
of size n.

If we call pn(t) the coefficient of So(t),

then the coefficient of Sn(t) is l—pn(t).

6.2. THEOREM.

The Bayes rule before obteined for S(t/Ao)

is such that, for every fixed t,

Qtiestiié - V. 6, no 2 (juny 1982)

Lo SURVIVAL MEAN TIME ESTIMATION,

Let F(t) be a random distribution function -
T>0, and let S(t/AO)
the random Survival function asociated which

of the random variable

is an Exponential Gamma Process with prior
[S(t/AO)]= So(t) known
and with all the moments.

Survival function E

We shall call survival mean time, if it is

exits to

u(F) =_/'®t dr (t) = —ftdS(t) =
[¢] [¢]

o G

- S(t).t]o+/S(t) dt =fS(t) dt = M(8)
(o] [o]

I
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M 0 S !

The Bayes rule with respect quadratic loss,
will be the expected value of u{S) with res
pect the distribution &~

2 S S0

If we loof for the Bayes rule inside the set
of decision rules that are linear combina-—-
tion of the sample mean x and the ué,

u(s) = a ué +b x (7.2.1)
we have the next result,

THEOREM: The values of a and b that they do

minimum (7.2.1), are

1 EQREM,

If we look for the Bayes rule of the ith mo-

ment inside the set of decision rules like

i
=§: 73 - i
ae bj “m bo uo
j=1

where
n
. L .
H = - (%) ] j=ll"'li
m n h=1 h
and

u(i) =f0 (x)idFo(x)

the parameters which make the Bayes rule mi-

nimum are got from the expresion

1
n(K., -~ u
b= — 11 o — . a=l-b
Mot (DK, =g
where,
2 2 _ 2
uy o= f(X) ar_(x) = /(x) as_ (x)
o o
and,

00 oo X
_ c
Kll__/_/<
oYo c+1

c(A" () -4 (y) ( .
)

cA*(y)
) dy dx +

T < \.C(/\“(y) SA)) L) A (K gy gy
odx c+l /] c+2

Corollary: If n—ow, then the estimate --~
A -

u(s) = x , i.e., the prior knowledge disap--
pear and the only information is the sample

one.

Corollary: The Bayes risk we reach, which --
goes to naught when n goes to naught when n

goes to , is

1,2 2
& - [Kll'(”o)J '[Mo_KllJ

min 2 1,2
pg + (n=1)K ;- n(k)

8 ith M I .

In the same situation like before, if we ---
want to find the Bayes rule for the ith mo--
ment about the origin of F(t), we have the -

next theoremn,

Qiestiiéo - V. 6, n°e 2 (juny 1982)
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-y p - r -
i,2 i1 i, 2 i,2
(g) Ho Mg cee () b )
i1 1 2 n-1 1 i+l, n-
Yo Mo n Mot Thm Kll AL P iy Kli b1 Kil
i,2 1 i+1 n~1 1 21 n-1
(o n Yo KoM oo Y TR Xy by K1
e p= = - hon -t
where
‘ © X * 3
. cA (%) cA (y)
_ . h-1 4-1{ ¢ c+l
Khj =h j ‘[oj(;x y ¥ > (-———c+ > dy dx +
oo g A;’:( ) A?':( )
c y c X
h-1 -1 ] c+1
f y? <a— <a~> dy dx
o X
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