AN INTRODUCTION TO MULTIPROCESSOR SCHEDULING

J.K. LENSTRA, A.H.G. RINNOOY KAN

This &8 a tutonial survey of recent nesults in the area o

scheduling. |
these nesulls ane presented.

new polynemial optimization algonithms,

04 the concept of NP-1I
mLEhms .

1. INTRODUCTION

Throughout recent years, the theory of multi
processor scheduling has been in rapid deve-
lopment. This is partly due to the spectacu
lar success of computational complexity —---
theory. Application of this theory has esta
blished a sharp borderline between two ----
classes of sheduling problems: the well-----
solved problems, for which polynomial-time -
algorithms exist, and the NP-hard problems,
which are probably intractable in the sense
that the existence of polynomial algorithms
is very unlikely. The former class has been
continually expanded by the development of -
new polynomial optimization algorithms. At
the same time, for problems in the latter -~
class many approximation algorithms have =---
been analyzed.

The outline of the paper is as follows. Sec
tion 2 gives a short introduction to the ---
theory of the computational complexity of --
combinatorial problems; a more detailed ----
treatment can be found in /23,24,11,and 31/.
The next three sections provide a brief sur-
vey of the results available for multivro---
cessor sheduling problems. Section 3 deals
with a number of basic models for scheduling
jobs on parallel machines. Section 4 consi-
ders the special case of unit processing -~
times and the influence of precedence cons ---
traints between the jobs. Section 5 is devo
ted to the case in which preemption (job ---
splitting) is allowed and varying job release
dates may be specified. Section 6 contains
some concluding remarks.

Lenestra, J.K.

Rinnooy Kan, A.H.G. Erasmus University,

Qtiestié —Vv. 5, n.° 1 (Marg 1981)

4 multiprocesson ---

Computational complexity theory provides the framework in which
They involve on the one hand the development o

and on the othen hand the application
handness as well as the analysis of approximation algo- .

2. COMPUTATIONAL COMPLEXITY OF COMBINATORIAL
PROBLEMS

The inherent computational complexity of a -
combinatorial problem obviously has to be --
related to the computational behavior of al-
This --

behavior is usually measured by the running

gorithms designed for its solution.

time of the algorithm (7Z.e., the number of -
elementary operations such as additions and

comparisons) as related to the size of the

problem (7Z.e., the number of bits occupied -
by the data).

If a problem of size n can be solved by an -
alooritlm with running time O(p(n))*where p -
is a polynomial function, then the algorithm
may be called good and the problem well ----
solved. These notions were introduced by --
Edmonds /8/ in the context of the matching -
problem; his algorithm can be implemented to
run in O(n3) time on graphs with n vertices.
Polynomial algorithms have been developed for
a wide variety of combinatorial optimization
problems /27/.

problems can only be solved by enumerative -

On the other hand, many such

methods which may require eaxponential time.

When encountering a combinatorial problem, one would

naturally like to know if a polynomial algorithm exis
exists or if, on the contrary, any solution -
method must require exponential time in the -
worst case. Results of the latter type are --
still rare, but it is often possible to show

that the existence of a polynomial algorithm is at the

very least extremely unlikely. One may arrive at such

* The notation "g{n)=0(p(n))" means that there exists
a constant ¢20 such that q(n)lSC.p(n) for all n>0.

Mathematisch Centrum, Amsterdam
Rotterdam

49

a result by proving that the problem in ----
question is NP-complete /7,23/. According -
the --

NP-complete problems are ecguivalent in the -

to the formal definition given below,

sense that none of them has been well solved
and that,
solved, then the same would ke true for all of
them.

if one of them would be well ~——-

Since all the classical problems that
are notorius for their computational intrac-
tability, such as traveling salesman, job --
shop scheduling and integer programming prop
lem , are known to be NP-complete, the poli
nomial~time solution of such a problem would
be very surprising indeed.
purposes, this implies that in solving those
problems one may just as well accept the ine
vitability of a bad (superpolynomial) optim?
gation algorithm or resort to using a good -
(polynomial) approximation algorithm.

The theory of NP-completeness deals primari-
ly with recognition problems, which require
a yes/no answer.

An example of a recogni---

tion problem is the following:

PARTITION:

instance: positive integers a
Y C

withzj=1aj = 2b;

does there exist a subset Se{1,.

..,t} such thatzjES aj= b?

1,....,at,b ———

question:

PARTITION can be solved by complete enumera-
tion in Q(2t-1)

in O(tb)

time or by dynamic program--—

time /1/, but both running --
‘times are exponential in the problem size,--
which is O(t log b).

ming

An instance of a recognition problem is feasible if
the cuestion Can be asnwered affirmativelyv.
Flexibility is usually equivalent to the ---
existence of an associated structure which -

satisfies a certain property.

A recognition problem belongs to the class P
if, for any instance of the problemn, its —--
feasibility or infeasibility can be deter---
mined by a polynomial algorithm. It belongs to

the class NP if, for any instance, one can -
determine in polynomial time whether a given
structure affirms its feasibility. For ----
PARTITION is a member of NP,

for any Sec{1i,

example, since

...,t} one can test whether ---
ges a5= b in O(t) time.
Pe NP,

It is obvious that

Problem' P' is said to be reducible to prob-

Qiiesti'dé - V.5, n.° 1 (Marg 1981}

For practical ---

lem P
of P'

(notation: P'« P) if for any instance
an instance of P can be constructed in
polynomial time such that solving the ins-

tance of P will solve the instance of P' as
well.

P implies that P'

Informally, the reducibility of P' to
can be considered as a ---
special case of P, so that P is at least as

hard as P'.

P is called NP-hard if P'
NP,

any problem in NP.

« P for every P'
In that case, P is at least as hard as
P is called NP-complete
if P es NP-hard and Pe NP. Thus, the NP-com

plete are the most difficult problems in NP.

A polynomial algorithm for an NP-complete --
problem P could be used to solve all problems
in NP in polynomial time, since for any ins-
tance of such a problem the construction of

the corresponding instance of P and its solu
tion can be both effected in polynomial time
We note the following two important consequences.

(i) It is very unlikely that P = NP, since

NP contains manv notorious combinatorial

problems, for which in spite of a con--
siderable research effort no polynomial
algorithms have been found so far.

(ii) It is very unlikely that P¢ P for any -

NP~-complete P,

that P =

since this would imply -

NP by the earlier argument.

The first NP~completeness result is due to -
Cook /7/.
to prove that every problem in NP is reduc--
tible to the so-called SATISFIABILITY prob-

lem.

He designed a "master reduction"

Starting from this result, Karp /23/ -
and many others(see, e.g., /24, 11, 31/)iden
tified a large number of NP-complete problems
in the following way. One can establish NP-
completeness of some P ¢ NP by specifying a -
reduction P'« P with P' already known to be
P"«P' and P'

P then imply that P"«P as well.

NP-complete: for every P"NP,
In this way
PARTITION has been proved to be NP-complete

/23/.

As far as optimization problems are copm---
cerned one usually reformulates, say, a minimi-
zation problem as a recognition problem by

asking for the existence of a feasible solu-
tion with value at most equal to a given —---
threshold.

can be proved to be NP-complete,

When this recognition problem --
the corres-
ponding optimization problem micht be called

NP-hard in the sense that the existence of a

50

’

polynomial an algorithm for its solution ----
would imply that P = NP.

3, SOME BASIC MODELS

Suppose that n jobs or tasks Jj (3=1,..., n)
have to be processed on m parallel machines

or processors M, (i=1,...,m). Each machine

can handle at most one job at atime; each can
be executed on any one of the machines. The
problem types that will be dealt with in ---
this survey are characterized by a three- -~

field classification a|8|y/18/.

The first field a=0,a, specifies the machine

enviroment. Let S denote the time re---
guired to process J; on M;. Three possible va

Ilues ofay will be considered:

- D (Zdentical machines): 0i§=Pyr i.e., the
processing time of Jj on M, is equal to --
the execution requirement P of Jj, for --
all Mi;

- O (uniform machines) : Eﬁjzlﬁ/si’ Z.e., the

processing time of Jj on M; is equal to --

the execution requirement 8 of Jj divided
by the speed s; of M, ;

- R (unrelated machines): p.

15 is arbitrary.

If a, is a positive integer, them m is cons-
tant and equal to a,i if a, is empty, then m

is vartable.

The second field g indicates certain job cha

racteristics. In this section, g will be =--

empty, which implies the following:

- all Py 4 (oxr pj) are arbitrary nonnegative
integers;

- no precedence constraints between the jobs

are specified;
- no preemption (job splitting) is allowed;

- all jobs become available for processing -
at time 0.

The notation to indicate which of these ----
assumptions are not met will be defined in -
later sections.

The third field vy corresponds to the optima-

QUestt6 - V. 5, n.° 1 (Marg 1981)

lity eriterion chosen. Any feasible schedule
defines a completion time Cy of Jj(j=l,..
..,n). We will consider the minimization of

two criteria:

=max{C P

~ maximum completion time Cm pree

c };
n

ax

- total completion timeZﬁCj=C1+...+Cn

The optimal value of vy will be denoted by vy*,
the value produced by an (approximation) al-
gorithm A by y(a).

Examples 1, 2 and 3 illustrate this problem
classification. Gantt charts are used to re

present schedules in an obvious way.

Example 1. P2||ZCj

preblem: minimize total completion time on -
two identical machines.

instance: n = 6; Py = J(j=1,...,6).

optimal schedule:

Mal T Iy I6 1
0 1 2 4 6 9 12
ch = 34

Example 2. O31[C
max

problem: minimize maximum completion time on
three uniform machines.

itnstance: s,1=4, s,=2, s3=1; n=7; Pj=4(j=l,..
ver 7).

optimal schedule:

« pj/s1 =1

M2 JS J6 <« pj/s2 = 2

Example 3. R]]Cmax

problem: minimize maximium completion time

on m unrelated machines.

instance: m = 3; n = 8
Py = L Py = 13 =2,....7) s pyg = 8
Py = 1 Py = 2(3=2,....70 Ppg = 9
Py = L Pyy = 33 =2,...47, Pyg = 9.

51

optimal schedule:

My Tg
Ml N ~ I3 74 J Is
My J11 Is 75
0o 1 2 3 4 5 6 7 8
Chax =~ 8

Let us survey the results available for ----
these basic models. It will turn out that -
the ZCj problems are gquite easy, while the -
Cmax problems are very difficult.
The shortest processing time (SPT) rule ---
solves PHZC,in O(n log n) time in the follow-
ing way /6/.
jobs with zero processing times are added if

not), renumber the jobs such that P.< ...<Pn,

Assume that n = £m (dummy ---

and schedule the m jobs J(k—l)m+1’J(k—1)m+2'
«Jkm in the k-th position on the m machi-
nes (k=1,...,£). Example 1 illustrates this
rule. An optimality proof is straicht for -
ward; in the criterion value ZC., the proces
sing time of a job in the k—thjposition on
a machine is counted £+1-k times, and hence
ij is equal to the inner product of two n-
vectors (£,..., &8, L T,...,8-1,...,1,...,1) —-
and (py,..-,P,); since the multipliers in --
the former vector are nonincreasing, ij is
minimal if the processing times in the lat--

ter one are nondecreasing.

This algerithm has been generalized to solve

Q||ZCj in O(n log n) time as well /6/; /21/.

The most general case R||ZCj can be formula-
ted and solved as an mxn linear transporta--

tzon problem in O(n3) time /19/; /3/. Let

1 if Jj is in the k-th last position on Mi'

*i9x”
J 0 otherwise.

Then the problem is to minimize

m n n
zi=1zj=1zk=1 kP, 5% 4%
subjet to
m n =1 L
i=1lk=1 ¥i5x~1 35le-..n),
Zn
‘o X, . .
j=1 "ijk < 1 (i=1,...,m; k=1,...,n),
X5 £°0 (i=1,...,m; j=1,...,n; k=1,...,n).

Qtiesti 6 —v. 5, n.° 1 (Marg 1981)

Thus, the minimization onCj reguires polyno
mial time, even on m unrelated machines. In
constrast, the minimization of CmaX is NP- -
hard, even on two identical machines.

1'he NP-hardness proof for PZHCmaX is tri---
vial. CGiven any instance of PARTITION, de _.
fined by positive integers at,...,a;,b (see-
Section 2), we construct an instance of P||
max

Clearly, there exists a subset 8§ {1,...,t} --

C by defining n=t and Pj =aj(j=1,...,n).

with Zjes aj=b if and only if there exists a
schedule with cmaxf-b' It follows that PAR-
TITION is reductible to lelcmax’ and since

PARTITION is NP-complete /23/, PZlICm is -

ax
NP-hard. This implies that all generaliza--

tions of lelcmax’ such as P3[|Cmax,...P||—f
Crax’ Ozllcmax""’RlICmax’ are NP-hard as -
well.

As a consequence, it seems unavoidable that

optimization algorithms for these problems -
will be of an enumerative nature. A general
dynamic programming scheme /34/; /29/ has --
wide applicability.

For P||C , the scheme

max
is as follows. Let

true 1if Jl""’Jj can be -

scheduled on M1,...,Mp

Byity, ..., ty) = such that M; is busy

from 0 to ty(i=1,...,
m),

false otherwise,
with

true if t. =0 (i =1,...,m),
i
false otherwise.

Then the recursive equation is

m
B.(t ..., t =V, B PR -
OO ety = Vg By g (Bt TR

”tmL

Let C be an upper bound on the optimal value

o

;ax' For 3 = 0,1,...,n, compute Bj(tl,...,

t, for t; = 0,1,...,c(i=l(...,m), and deter
mine

¢ = min{max{ '

max = Min{max tl,...,tm}[Bn(tl,...,pm) = truel}.

This procedure solves Pllcm in 0({nCY) time.

ax

52

For large values of C, a branch~and-bound me
thod may be preferable. All these optimiza-
tion methods, however, reguire prohibitive -

running times in the worst case.

As argued before, the NP-hardness of P]|CmaX
also justifies the use of fast approximation
algorithms. It has become fashionable to --
subjet such an algorithm to a worst-case ana
lysis in order to derive a guarantee on its

relative perfomance. One of the earliest re
sults of this type concerns the solution of

P[|CmaX by list scheduling (LS), whereby a -
priority list of the jobs is given and at --
each step the first available machine is se-
lected to process the first available job on

the list /16/:

% 1
Chax (P8 /Cpax 22 ~
For the longest processing time (LPT) rule, -
whereby the list contains the jobs in order

of nonincreasing Pj, the bound improves con-
siderably /17/:

1

% é____
Cmax(LPT)/C 3 3m

max

Examples 4 and 5 demonstrate that these —----
bounds are the best possible ones.

Example 4. P||CmaX(LS)

worst problem instance:

n = (m-1)m+l;

(pl,---,pn) = (1,...,1,m.
approximate schedule:

Y171 95 |9 T13 }

Mo192 196 [T10

M3 J3 J7 Jll

optimal schedule:

1171 4 7 10

2] 2 5 8| 11

3| 3 6 91712

Qiiesttdé — V. 5, n.° 1 (Marg 1981)

Example 5. P|IC (LPT)
- max
worst problem Iinstance:

n = 2m+i;

(Pl,-..,pn) = (2m-1,2m-1,2m-2,2m-2,...,
m+l,m+1l,m,m,m) .

approximate schedule:

Ml Jl J7 J9
M2 J2 JB
My 7, I
My T4 s
0 6 7 11 15
C (LPT) = 4m-1
max

optimal schedule:

My Iy Is
My Io I
My I3 Iy
J
Map Iy Ig 9
0 4 678 12
*
C = 3m
max

4, UNIT PROCESSING TIMES AND THE INFLUENCE -
QF PRECEDENCE CONSTRAINTS

The results of Section 3 suggest that addi--
tional simplifying assumptions are necessary
to solve P]]CmaX optimally in polynomial ---
time. In this section, we assume that all -
jobs have unit processing times, which will
be indicated in the second field of our pro-
blem classification by P.=1. This assumption
also allows us to investigate the influence
of precedence constraints between the jobs.
It turns out to be useful to distinguish ---

between two types of precedence constraints:

- prec (arbitrary precedence constraints): a
directed acyclic graph G with vertices 1,.
..,n is given; if G contains a directed ~--
path from j to k, we write Jj+Jkand require

that Jj is cqmpleted before J, can ----
start;

- tree (tree-like precedence constraints): G
is a rooted tree with outdegree at most one

for each vertex.

Examples 6 and 7 below will illustrate these
concepts.

One of the oldest results in this problem ca-

tegory is the solution of Pltree,P.=1|C in
3 max

53

o(n) time /22/.
tical path scheduling: define the level lj -

Hu's algorithm involves crz

of Jj as the number of vertices on the unique

path from j to the root of the tree, and
apply list scheduling to a list which con---
tains the jobs in order of nonincreasing Kj.

Example 6 illustrates this algorithm.

Example 6. P]tree,pj=llcmax
instance: m = 2; n = 6; G:

The second basic result is the solution of -

leprec,Pj =1|cC in polynomial time. An -

0(n3) algorithmmig/ is as follows: construct
an undirected graph H with vertices 1,...,n
and edges j,k whenever neither Jj—»-Jk nor
Jk—+Jj, and derive an optimal schedule from
a maximum cardinality matching (Z.e., a set
of vertex-disjoint edges) in H. Example 7 --
illustrates this algorithm. We note that --
problem can still be solved in O(n3) time if,
in addition, each job is constrained to be -
processed between its release date and its -
due date /10/.

Example 7. P2lprec,pj=1 Cﬁax

instance: n = 6;

For any constant m »3, the complexity of Pm

|pree,P =1|C is an open guestion. Howe--

max
ver, Ppprec,P_=l|CmaX

/37/;:/30/.

is know to be NP-hard
The latter proof implies that no

Qiiestté — V.5, n.° 1 (Marg 1981)

polynomial approximation algorithm for P |---

prec,Pj=1\C could ever achieve a yprst-case

max 4
bound better than 3 unless P=NP.
eritical path scheduting (CP), it has been -

shown /4/;/5/, that

For --

4
% 3 for m = 2,
C (cp)/C <
max max 2

- — >
" for m 2.3,

and these bounds are tight.

5, PREEMPTION AND THE INFLUENCE OF RELEASE -
DATES

We now consider a second modification of the
multiprocessor scheduling models that will -
lead to several polynomial optimization algo
rithms.

unlimited preemption is allowed: the proces-

More specifically, we assume that -

sing of any job may arbitrarily often be in-
terrupted and resumed at the same time on a
different machine or at a later time on any
machine. This will be indicated in the se--
cond field of our problem classification by

pmtn.

It has been shown that for P|pmtn|ZC, there
is no advantage to preemption at all /33/.
Hence, the nonpreemptive SPT rule of Section
3 can be applied to solve the problem in O -
(n log n) time.

A preemptive version of the SPT rule solves
Otpmtn]C, in O(n log n+ mn) time /12/: ----
place the jobs in SPT order, and schedule --
each successive job preemptively so as to mi
nimize its completion time. The resulting -
schedule contains at most (m-1) (n- %) preemp
tions. Example 8 illustrates this rule.
Very little is know about R|pmtn|2C5. This
is one of the more intriguing open problems
in the area of multiprocessor scheduling.

Example 8. QIpmtn‘ZCj

instance: m = 3; 51 = 3, 52 = 2, s3 = 1; n = 4;
p1=3' p2=p3=8, P4— 10
optimal schedule:
Mil9i T2 |73 s
MylJa] I3 [Ya
Myl93] T4
0 1 34 6 Jci =14

54

P|pmtn|CmaX % are distinguished -

because in both cases there is a simple

and O{pmtn'Cma

closed form expression which is an obvious -
lower bound on C;ax where-as a schedule meet
ing this bound can be constructed in poly--~
nomial time.

For P|pmtn|C , we have
max
. ~ f p1+...+pn
Cmax = maxlpl, ... 'pr\'T}'

The wrap-around rules solve the problem in

0(n) time /33/: fill the machines successive
ly, scheduling the jobs in any order and --
splitting a job whenever the above time ----
bound is met. There will be at most m-1 preempr-

tions. Example 9 illustrates this rule.

E le 9. P

xample |pmtn|Cmax

instance: m = 3; n = 6; pj =j (G =1,...,6) =
*

21
Cmax = max{6,??} = 7,

optimal schedule:

For lemtn‘cm , we have

ax

* Ipl p1+pz P1+...

C = maxyi—, oot 3
max s, §,+s S,+t...+s s,+...+s
1 171 72 1 m-1 "1 m

If the ma---
chines and jobs are ordered in this way, a com
plicated algorithm solves the problem in O--
(n) time /15/.
preemptions.

where s >...>s and e .
1— ~m plz 2»pn

It generates at most 2(m-1)

R|pmtn|Cmax can be formulated as a linear —--

programming problem /28/. Let

Xiy = time spent by Jj on M,.

Qiiestié — V. 5, n.° 1 (Marg 1981)

Then the problem is to minimize
max
subjet to

m 3 =
Lisg %5/P55 =1 G = 1,..om),

mn s o=

Zi=1 %5 5 Cpaye G = Leeeom),

Zn X <C (i =1 m)

j=1 "ij max A

X 2 0 (i=1,...,m;j 3 =1,...,n).

ij

Khachian has shown that linear programs can
be solved in polynomial time /25/. Given --
solution (xjj), a feasible schedule can be -
constructed in polynomial time as well /14/.
There will be no more than about Zmz preemp-

2
tions.

We may extend the preemptive scheduling mo--
dels by assuming that Jj becomes available

for processing at a given integer release —-
date ry (j=1,...,n). This will be indicated
in the second field of the classification by
ry - The resulting models are far from tri-
vial, and we restrict ourselves to mention--

ing the most important results.

When scheduling subjets to release dates, --
one can distinguish between three types of -
algorithms. An algorithm is on-l<ne if at

any time only information about the availa--
ble jobs is reguired. It is nearly on-line
if in addition the next release date has to
be known. It is off-line if all information

is available in advance.

Pipmtn,r | C, and Q|pmtn,r | C, are very ---
much open. All we know about these problems
is that no on-line algorithm exists, even --
for the case of two identical machines /26/.

P|pmtn,rj|C can be solved by an O(mn) on-

max
line algorithm /20/;/13/. and Q|pmtn,rj|CmaX
by an 0(n?) nearly on-line algorithm /36;---

/26/.

Finally, we assume that in addition Jj has -
to be completed not later than a given due -
date dj(j=l,...,n), and we replace the objec
tive of minimizing Cmax by testing for the -
existence of a feasible preemptive schedule
with respect to release dates and due dates
It has been shown that no nearly on-line al-

gorithm exists, even for the case of two ~--

55

identical machines /35/. However, off-line
algorithms are still available: P]pmtn,rj,

dj| is solvable by an O(n3) network flow --
computation /20/, and Q|pmtn,rj, dj|— by ---
means of an O(n6) "generalized" network flow

model /32/.

6. CONCLUDING REMARKS

We have surveyed a few of the many recent re
sults in the area of multiprocessor schedul-

ing. There are several topics that we have
not dealt with;

the extension of the model to include addi--

in particular, we mention --

tional resource constraints, for which many
The -

development of increasingly sophisticated --

results are now available /18/; / 2/.

algorithmic techniques combined with a fur--
ther application of the tools from computa--
tional complexitiy theory should continue to
render the area of multiprocessor scheduling
an interesting one to theoreticians and prac

titioners alike.

£, ACKNOWLEDGMENT

This research was partially supported by NA-
TO Special Research Grant 9.2.02 (SRG.7).

8, REFERENCES

/1/ BELLMAN, R.E. and DREYFUS,

Dynamic Programming",

S.E.: "Applied
Princeton University
N.J., 1962.

Press, Princeton,

/2/ BLAZEWICZ, J.K.LENSTRA, A.H.G. KINNOOY KAN; ——
"Scheduling subject to resource cons----
traints: classification and complexity",
Report, Mathematisch Centrum, Amsterdam,
1980.

/3/ BRUNO, J., COFFMAN, E.G. and SETHI, R.:

"Scheduling independent task to reduce -

mean finishing time", Comm. ACM, v. 17,-
1974, pp.382-387.

/4/ CHEN, N.F.: "An analysis of scheduling -

algorithms in multiprocessing computing

systems",Technical Report UIUCDCS-R-75--

724, Department of Computer Science, ---

University of Illinois at Urbana-Champaign,

1975.

Qtiestiié - V.5, n.° 1 (Marg 1981)

/5/

/6/

/77

/8/

/9/

/10/

/11/

/12/

/13/

/14/

/15/

CHEN, N.F., and LIU, C.L.: "On a class
of scheduling algorithms for multipro--
T.Y.--

(ed.) Parallell Processing, Lecture

cessors computing systems".
FENG

In:

Notes in Computer Science 24,
Berlin, 1975, 1-16.

Springer,

pp-.

CONWAY, R.W.,
L.W.:

MAXWELL, W.L. and MILLER,
"Theory of Scheduling", Addison--
Wesley, Reading, Mass. 1967.
COOK, S.A.: "The complexity of theorem-
3rd Annual -

1971, pp.

proving procedures", Proc.
ACM Symp. Theory of Computing,
151-158.

EDMONDS, J.:"Paths,
Cand. J. Math., v.

trees,
17,

and flowers.
1965, pp. 449-467.

FUJII, M., KASAMI, T. and NINOMIYA, K.:
"Optimal sequencing of two eguivalent --
SIAM J. Appl. Math. v.17,

784-789; v.20,

processors",
1969,1971,
pp.141.

pp. Erratum,

GAREY, M.R. and JOHNSON, D.S.:

cessor scheduling with start-times and -~

"Two pro-

deadlines", SIAM J. Comput. v. 6, 1977,
pp. 416-426.
GAREY, M.R. and JOHNSON, D.S.: "Computers

and Intractability : a Guide to the ----

Theory of NP-Completeness", Freeman, San
Francisco, 1979.
GONZALEZ, T.: "Optimal mean finish time

preemptive schedules", Technical Report
220, Computer Science Department, Penn--

sylvania State University, 1977.

GONZALEZ, T. and JOHNSON, D.B.: "A

algorithm for preemptive scheduling of -

new

trees", Technical Report 222, Computer

Science Department, Pennsylvania State -

Unviersity, 1977.

GONZALEZ, T. and SAHNI, S.: "Open shop -
scheduling to minimize finish time", J.

Assoc. Comp. Mach. v. 23, 1976, pp. 665~
679.

GONZALEZ, T. and SAHNI, S.: "Preemptive

scheduling of uniform processor system",
J. Assoc. 25,1978,

92-101'.

Comput. Mach. v. PP.

56

/16/

/11/

/18/

/19/

/20/

/21/

722/

/23/

/24/

GRAHAM, R.L.: "Bounds for certain multi
Bell System Tech.
1536-1581.

processing anomalies”,

J. v. 45, 1966,

pPp.
GRAHAM, R.L.: "Bounds on multiprocessing
SIAM J. Appl. Math.
263-269.

timing anomalies"”,
v. 17, 1969, pp.

GRAHAM, R.L., LAWLER, E.L.,
K. and RINNOOY KAN, A.H.G.:

LENSTRA, J.
"Optimiza--
tion and approximation in deterministic
sequencing and scheduling: a survey",--
Ann. 1979, 287

-326.

Discrete Math. v. 5, pp.

HORN, W.A.: "Minimizing average flow
time with parallell machines", Operations

Res. v. 21, 1973, 846-847.

pp.
HORN, W.A.: "Some simple séheduling al-
gorithms", Naval Res. Logist. Quart. v.
21, 1974, pp. 177-185.

HOROWITZ, E. and SAHNI, S.:

approximate algorithms for scheduling -

"Exact and
nonidentical processors", J. Assoc. -—-—

Comput. Mach. v. 23, 1976, 317-327.

pp.
HU, T.C.: "Parallel sequencing and ----
assembly line problems"”, Operations Res.
v. 9, 1961, pp. 841-848.

KARP, R.M.: "Reducibility among combina
torial problems", R.E. MILLER, J.W.
THATCHER (eds.), Complexity of Computer
Computations,
1972,

In:

Plenum Press,
85-103.

New York, -
Pp.

KARP, R.M.: "On the computational com--

_ plexity of combinatorial problems", Net

/25/

/26/

/21/

-Dokl. v.

works v.5, 1975, pp. 45-68.

KHACHIAN, L.G.: "A polynomial algorithm
in linear programming”, Soviet Math. --
20, 1979, pp. 191-194.
LABETOULLE, J.,

J.K.

LAWLER, E.L.,
and RINNOOY KAN, A.H.G.:

LENSTRA,

"Prremp--
tive scheduling of uniform machineés ---
subject to release dates", Report BW 99,

Mathematisch Centrum, Amsterdam, 1979,

LAWLER, E.L.: "Combinatorial Optimiza--
tion: Network and Matroids", Holt, —----

Rinehart and Winston, New York, 1976.

Qtiestié - v. 5, n.° 1 (Marg 1981)

/28/

/29/

/30/

/3%/

/32/

/33/

/34/

/35/

/36/

/31/

LAWLER, E.L. and LABETOULLE, J.: "On --
preemptive scheduling of unrelated para
llel processor by linear programming",

J. Assoc. 25, 1978,

612-619.

Comput. Mach. v. PDR.

LAWLER, E.L, and MOORE, J.M.:

tional eguation and its

"A func--
application to

resource allocation and sequencing pro-
blems", Management Sci. v. 16, 1969, —--

pp. 77-84.

LENSTRA, J.K. and RINNOOY KAN, A.H.G.:
"Complexity of scheduling under prece--
dence constraints",
26, 1978, 22-35.

Operations Res. v.

pp.

LENSTRA, J.K.and RINNOOY KAN, A,H.G.:
"Computational complexity of discrete -
optimization problems", Ann. Discrete =
Math. v. 4, 1979, pp. 121-140.

MARTEL, C.: "Generalized network flows
with an application to multiprocessor
scheduling", Computer Science Division,
University of California, Berkeley,1979.
McNAUGHTON, R.: "Scheduling with dead--
lines and loss functions",
1959, i-12.

Management -

Sci. v. 6, pPpP.

ROTHKOPF, M.H.:
tasks on parallel processors", Manage-—-
12, 1966, pp. 437-447.

"Scheduling independent

ment Sci. v.

SAHNI, S.:
due dates", Operation Res. v.

pp. 925-934.

"Preemptive scheduling with
27, 1979,

SAHNI, S. and CHO, Y.: "Nearly on line
scheduling of a uniform processor system
SIAM, J. Comput. -

v. 8, 1979, pp. 275-285.

with release times",

ULLMAN, J.D.: "NP-complete scheduling -

problems", 10,

1975, pp.

J. Comput.
384-393.

System Sci. v.

57

58

	
	
	
	
	
	
	
	
	
	

