AN IMPLEMENTATION OF THE QR FACTORIZATION FOR SOLVING
OVERDETERMINED SYSTEMS OF LINEAR EQUATIONS

L. F. ESCUDERO

Differnent procedunes forn solving an overndetermined system of Linean equations
are revisdited and new technical details in Ltfs computer implementations are
descndibed. The new procedures produce more stable sofutions than the implemen
tation of the direct theoretical approaches.

. _INTRODUCTION AND MOTIVATION

In this paper we describe an implementation

of a procedure to factorize a nxt full rank

matrix A so that we may solve with the maxi-
mum accuracy an overdetermined system of 1i-
near equations. In this paper maximum accura
Ccy means maximum accuracy in today available

computers. Consider the problem
Au = g (1.1)

where -.g is an n-column vector, u is the un-
known t-column vector and n>t. If the system
is not compatible, vector u has to minimize
the norm ||b|]?

[Ip[1% = |lg-nul|* (1.2)

If the system is compatible, vector u that -
satisfies (l1.1), say Hy is termed minimal
least square solution,

The algorithms described in this paper calcu
late least sguare solutions to overdetermin-
ed systems of linear equations through the
use of modified Gram-Schmidt orthogonaliza-
tion with iterative refinement. The least -
square problem is a very general one which
arises in a variety of contexts in many -
scientific disciplines. Frequently, least -
squares problems are ill-conditioned, and
not all algorithms for computing solutions
are numerically stable. See Escudero /1/. -
Among the variety of cases in which this pro
blem arise, there are two very important ca-
ses; one is the multiple linear regression

in which the data are the n observed values

(vector g) of a dependent variable and the
observed wvalues (matrix A) in the same n
experiments corresponding to t independent
variables; the problem consists in obtaining
the vector y of the regression coefficients
such that the residual ||b||? in eq. (1.2)
is to be minimized. (In this case the par-
tial regression coefficient My takes the in-
fluence of independent variable, say Xi on
the dependent variable, say Y).

The other important case with direct applica
bility of this work is the general non-li-
near constrained problem: min f(x) subject
to c(X)iO, where f(X) and c(X) are differen-
ciable non-linear functions. The point X is
stationary (see Escudero /1/) if ||bl|Z2 =0
in eq. (1.2), where A is the Jacobian matrix
of the active constraints (c(X)=0), g is the
gradient vector of objective function f£(X) -
evaluated at point X and p is the correspond
ing vector of Lagrange multipliers. At an in
termediate iteration of the algorithm for -
solving the problem, point X needs that, at
least, ||b|]? = 0 for satisfying the optima-
lity conditions. If ||b||? # 0, that means
that the vector y; for which |Ib]]? is mini-
mized is the so-called first-order estimate

of the Lagrange multipliers. See /1/.

The necessary and sufficient condition /3 p.
309/ for the minimal least square solution
Uy, is that

t =
A (g-Au) =0 (1.3)

where At is the transpose of matrix A.
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Sufficient

Suppose At(g-Au) = 0. The residual r(e) co-
rresponding to any other vector u+e, where
¢ 1s a vector, is

Hece)l]® = ||g-au-ne||?

Ha-aul|? + [l2el? -2(g-a0)® ac

[lg-aul 1% + ||ac]|? (1.4)

Since ||Ac||? is non-negative, the residual
||g-Au||* is a minimum. Unless Ae = 0, the
residual corresponding to p+e is greater -
than the residual corresponding to u; the -
only other vectors with minimum residual are
those vectors u+e for which Ae = 0. But sin-
ce A is a full rank matrix, Ae # 0.

Suppose p has a residual (1.2) that is mini-
mum, but

ab(g-ap) = s # 0 (1.5)

The residual corresponding to pt+es where ¢
is a scalar, is

| lg-Au-aes||?* = ||g-Bu||* -

- ZEStAt(g—Au) + e?||ns||? (1.6)

For sufficiently small positive e, the right
hand~side of (1.6) is less than ||g-aAu]]|?; -
but it contradicts the hypothesis that the

residual of uy is a minimum.

Then the vector U, that satisfies eq. (1.3)
is

u, = a'g (1.7)

where A" is the pseudoinverse of matrix A.
There are several computational methods to
calculate matrix AT. A well known method -
computes A such that

u, = (a%2)7'a% (1.8)

assuming that (AtA) is non-singular; it will
be non-singular if A is a full rank matrix.
But‘from a practical point of view even in
this case (since the computer has finite pre
cision) the rounding errors produce a solu-
tion uy, that does not satisfy eqg. (1.3).
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In order to avoid the computation of matrix
+
A , we may factorize matrix A such that

:) (1.9)

where Qt is a nxn non-symmetric orthogonal
(QtQ=I) matrix and R is a txt upper triangu
lar matrix (not necessarily with identity
diagonal). Matrix Q may be partitioned so
that

Q= (Q;:0,) (1.10)
where Q; is a nxt matrix and Q, is a nx(n-t)
matrix, so that

A= QR (1.11)

Since A is a full rank matrix, it results

(a) R is a non-singular matrix

t
. Q1
(b) 1=00%=(0,0,) =0:0%+ o o} (1.12)
o¥
1=0%; o%0:=1; oF0.=0; o%oi=0; o¥n,=1
() (R) ot ot a=r
- Az (1.13)
0 of of a=0 '

(d) The minimal least square solution ug, is

found by solving

Ru, = 0rg (1.14)

In fact, considering egs. (1.2) and (1.9)-

(1.4), and in a similar way to eq. (1.4), it
results

-1
b=g-Au =g-Q1RR  0}g=g-0107g=

=(1~0:0%) 9=0,0%g (1.15)

being
Bu =010%g

(1.16)

where u is calculated by formula (1.14). -
For any other vector, say uL+e (where ¢ is
a vector) its norm ||b:|]? is greater than
l[bllz. In effect,

b1=g—A(uL+e)=b-Aa (1.17)

I1b:]12=11b-2e ]| 2= |b] | 2+] |ac] | *-2b%ae
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= |b]|*+] |ae] [2-29%0.0FA¢

=[[p||*+[|ae|[?>]|b]|* (1.18)
since Q§A=O, and being A a full rank matrix
it results that Ac#0 for any e.

For the rest of the paper we will not use -
matrix Q,. In order to simplify notation -
let substitute Q; by Q. Then the new nota-
tion is A=QR and it is termed QR-factoriza-
tion of matrix A. Formula (1.14) is more -
stable than formula (1.8), since from (1.14)
it results

ot
ML, "% 9/ Ree

t
H
LRy L)/Ryy

t
u, =(Q/g-
L (1.19)

for i=t-1, ...l

where Qi is the i~-th column of matrix Q. -
Then formula (1.19) is not losing precision
if the computation of th is correctly made.
It is interesting to point out that in this
computation it is implicit the orthogonality
of matrix Q (in this case it means that QtQ=
I, but QQt#Ih if while obtaining matrix Q -
there are rounding errors, formula (1.19) is

also unstable although it is better than for
mula (1.8).

Then the goal is to calculate the orthogonal
matrix Q and the upper triangular matrix R

(Sec.2), the minimum residual vector b (Sec.
uL (Sec.4) with -

the maximum accuracy that it i1s possible in

3) and the unknown vector

the computer. We will use the Modified Gram-
Schmidt QR factorization. See e.g. /2 pp. -
381-385/, /3 p. 313/, /4/ and /5/, although
the technical details make a strong diffe-

rence in the performance of any procedure.

2, CALCULATION OF MATRICES @ AND R

Matrix Q (dimension nxt) is calculated in t

iterations in a recurrence way, so that at

iteration 0 we assign Q(0)=A and at the end

of iteration k, matrix Q(k) has the follow~
ing expression
Q(k)

=(q1 r ewny qk 7 e sz

[ a al®) (2.1)

where q; is the i-th column vector of matrix
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(k)

Q, so that vectors qi (k)

to g take the de
finitive vectors ql(qut)) to qk(Eq(t% of -

k
matrix Q(EQ(t)).

In succesive iterations (from k+l to t) vec
(k) (t)
k+1 ®° 9 )
the definitive vectors qk+1(:qk+l) to -

tors g will be transformed in -

qt(Eqét)) of matrix Q. Then at iteration k,

(k) (k)
k

vectors qi to g are orthonormals, that

is

t 1 i=j
0 i#j

for i,5 =1, 2, ..., k

Matrix R is calculated in a similar way, so
that Rij =0 for i>j and i, =1, 2, ..., t.
The row vector R of matrix R is obtained -
at the same iteration k where vector Qe is

obtained. At iteration k the procedure is -

as follows.

(1) obtain norms

n 2
w3 g7 172

h=1 hi

(2.3)
for i=k, k+1, ..., t

Note that the square root is not calculated
in an exact way because of the limited re-
presentation of floating-point numbers in
the computer. See below a slightly modifica
tion that avoids this possible inestability.

(2) Let Né¥) be the maximum of norms (2.3).
If there are several norms with the same ma
ximum value, we arbitrarily take the norm -
with the first subscript. Since we assume
that A is a full rank matrix, NéE)#O.

(3) If k'>k, the k'-th columns of matrix ¢¥)
are interchanged. Also we interchange the

elements R.,, and R, of row vectors R, (for
ik i 1

k
i=1, 2, ..., k-1). After the interchange we

§k) to the i-th co-
and Ri to the i-th row

will continue calling g
lumn of matrix Q(k)

of matrix R.
(4) Obtain vector Iy for the iteration k+1

(it will be the definitive vector e of ma-
trix Q).
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gFH =gl®) /W (2.4)
(5) Obtain elements Rki (i=k, k+1, ..., t)
of row vector Rk
t t
k <

Rkk=qék+l) qé )=(q£k) qéy)) /

(k)_ (k)

/ Nk = Nk (2.5a)

k+1)E 0, T (k) ()

R 79 gy =g gy ) /N (2.5b)

for i=k+1, ..., t

(6) Calculate vectors g for iteration k+1

(k+1) __(k)

_ (k+1) .
q; a; Rkiqk for i=k+1l,...,t (2.6)

The orthogonality (2.2) implies that column

(k)

vectors aj (i=1, 2, ..., k) are theoretica-

1lly normalized at the end of iteration k -

2
(i.e. % q (k)

h=1 ni

should be equal to 1), but

eq. (2.4) is not very stable since the calcu
ik) (2.3) are not exact. And -

this inestability is augmented while calcula
ting q£k+l)(2.6). In order to avoid it we mo

dify the above algorithm mainly by not execu

lations of N

ting step (4) and storing in scalar dk the

2
norm Nék) that was calculated in steps (2)-

(3); at the end of the new algorithm, the t-
column vector d storages the norms of vec-

tors q:, g2,
malized. Then the expression of the orthogo-

nality of matrix Q will be

-7 9y that are no longer nor-

OBV T IS 2.7a)
gq; g. N.N.})= 2.7a
1 ] 1 j O, l#j

for i, 3 =1, 2, ..., t; that is

otosts = 1 (2.7b)

where the i-th element of the t~column vec-
tor § is 1/aL/?2

i .

At iteration k of the new algorithm:

(1) Obtain elements di (i=k, k+1, ..., t) of
vector d

(2.8)

(2) -(3) as in NQA
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(4) Assign directly

q)£k+l)=q}(<k) (2.9)

(5) As in NQA, but normalizing the row vec-

tor Ry with Nék). See eq. (2.12).

Then,
R, =(( (k) © )y Ky oy (2.10a)
ck- Clay g ) /Ny K = .
-t
k K

Rki=((qék) qék))/Né ))/Né )=

0 (x) s xk+D ' (x)
=(q " a; /4 =gy a; /4 (2.10b)

(6) Obtain vectors g for iteration k+l. We
use formula (2.6), but considering that vec-
is not normalized. Note that now
element Rki is normalized in formula (2.10b)
Then, we have the same result

\(k+1)=q£k)

a! _RkiNék)(qék+l)/Nék)):

o0 (k+1)

i Rkiqk (2.11)

for i=k+1, ., t. Note that since NNQA is

not using Nék), but dk {and it is used only
at the last calculations), there are fewer
rounding errors. Although in NNQA we calcu-
late Q and R without normalizing the columns
of matrix O and normalizing thé rows of ma-
trix R, the OR factorization is the same. In
fact, we have reduced the rounding errors by
affecting the norm of each column only once
to the whole column vector (see eg. (2.10)).
If we consider that Q and R are the matrices
calculated by NNQA, and Q' and R' are the ma
trices calculated by NQA, theoretically -
Q'R"'=QR. In efﬁect, element Aij of matrix A
can be written

J 3
= T 1 — -
Ri37 5 %n Bng ko (O5n/Np) (Rpgiy) =

Q; R ..
1 J

I e

(2.12)

where Rjj=l (eq. (2.10a)). Then A=QR=Q'R'.
We may see that when Q is a non-normalized
matrix and R is a normalized matrix with the
identity diagonal, the procedure is more sta
ble than when Q is normalized and R is non-
normalized.

5, _CALCULATION OF RESIDUAL VECTOR B=g-Au

Since A=QR (being Q and R calculated by NNQA)
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it is possible to obtain uy with formula --
(1.19). But it is based on the orthogonality
of matrix Q (Au=g; Au=00%g: o%an=0footq; mu=
th); then if while calculating matrix Q the
re are some rounding errors, it is possible
that Q is not orthogonal and u may be unsta-
ble. Alternatively, it is better the algo-
rithm described below. The main idea is to
avoid any possibility of rounding errors by
substituting any intermediate operation --
qtiqj for i#j by zero (where zero is its theo
retical value). Firstly we obtain the resi-
dual b and second the unknown vector y is ob
tained. The n-column vector b is obtained in
t iterations (recall that Q is a nxt matrix)
in recurrence way, so that at iteration 0 we

assign b(0)=g, and at the end of iteration t

vector b(t) takes the residual vector b.

The justification of the procedure is as fol
lows. Consider egs. (1.15) and (1.16); note
that Q' and R' is the notation of the matri-
ces calculated by NQOA and Q and R is the no-
tation of matrices calculated by NNQA. Egs.
(1.15) and (1.16) assume the orthogonality
Q'tQ'=I (or QtQ6t6=I). Then

: t
b=g-0'0'*g=g- 1 (q]%q)q]
i=1
t=1
=9- L ({g{9)/d;)q;
i=1
- (lagg)/d da, (3.1)
Defining
t-1
bV og-"s ((afg1/a))q, (3.2)
i=1
results
(=,
b=b ((qtg)/dt)qt (3.3)

Similarly we may substitute eq. (3.2) by

(k) _y (k-1) _ t
b =b ((qu)/dk)qk (3.4a)
for k=1, 2, ..., t
where by definition
k-1
(k-1) ___ t
b =g iEl((qig)/di)qi (3.4Db)

where b(k) for k=t is the residual vector b
(3.3).

The stability of procedure (3.4) depends on
the accuracy of matrix Q calculated by NNOA.
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In effect, if we premultiply qtk/Nk by eq.
(3.4b), it results

(qp * 7 N = (afe) /N, -

t kol
(a/Ny) L ((gy9) /N (q,/N))
i=1
t kol b t
=lay9) /Ny - T ((q/9)/N)(qq,)/(N,N)) (3.5a)
<2 k

1

The calculation (qig)/dk (where dkENi) of -
formula (3.4a) will be as precise as it is
eq. (3.5a); if in this eq., qpq#0 (i=1, 2,
.+vs k=1, then 1#k), (gjg) will not be --
exact and b(k)calculated by formula (3.4a)
will be unstable. Since we know that without
rounding errors, qiqizo, it is substituted

by zero and ea. (3.5a) gives

t, (k-1) _ ., t .
q;b(k-l)=q;g (3.5Db)
Then the final formula to calculate b(k) is
(k) _, (k=1) _ t, (k-1)
b =b ((ayb )/4,) ay (3.6)
for k=1, 2, ..., t; and b(% =g, pzp ()

4, CALCULATION OF THE_UNKNOWN VECTOR u

With the same notation Q', r', 9 and R used in
the previous sections, the vector pu that mi-
nimizes norm |[b||? (1.2) is found by solv-

ing egs. (1.14): R‘u=Q'tg, that for element

uy gives
£ t
R'pu + I R' _u.=ql g (4.1a)
kMR, T kit
for k = 1, 2, ..., t-1
vy =gt T 4.1b
ttPe 9 9 ( )

By using matrices Q and R calculated by NNQA
(see Sec. 2), egs. (4.1) give

Nk“kz(q;g)/Nk_i=§+lNkRkiui (4.2a)
for k=1, 2, ..., t-1

N, = (ape) /N, (4.2b)
since afg=qrb* 1) (eq. 3.5p), egs. (4.2)give
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ut=(q§b(t_l))/dt (4.3a) Transactions on Mathematical Software 5, --

(k1) £ 1979, pp. 457-465.
t, (k-

W, =(q,/b y/d, - T R .u. (4.3b)

k k k i=k+l ki“i

for k=1, 2, ..., t-1; where d,=N].

We may note that formulae (3.6) and (4.3) -~
use the same intermediate operations; then
we may avoid to repeat these calculations.
Also note that square root calculations are
avoided (this operation produces the most

of the rounding errors in alternate procedu-
res).

CONCLUSIO

A procedure for solving an overdetermined -
system of linear equations is revisited and
some new technical details are introduced. -
It calculates the orthogonal matrix Q (NNQA
in Sec. 2), the residual vector b (3.6) and
the unknown vector u (4.6) with the maximum
accuracy. It is much more stable than proce-
dures that use the pseudoinverse of the sys-
tem matrix.
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