OPTIMAL JOINT ADAPTIVE ESTIMATION
OF PARAMETER AND STATE OF A LINEAR
STOCHASTIC SYSTEM WITH APPLICATION TO TRACKING

G. SALUT J. AGUILAR G. FAVIER G. ALENGRIN

An extension is described in this paper of the optimal joint estimation of -
parametres and state in stochastic linear systems, to the single input-sin--
gle output situation, which is the kind of system that appears in the trac-
king of the position of an unknown flying object in one direction if interac
tion between coordinates is neglected. An application to radar tracking fol-=
lows, with special emphasis on the description of the discrete filtering al-
gorithm that processes the data given by a.radar. Some results of the compu-
ter program with simulated and with real data, are disclosed.

1. INTRODUCTION with

The present paper starts with an abridged ex n i
position of the joint optimal estimation of N(s) = izo bi s
parameters and state in stochastic linear --

systems; an extensive reading of these - to-- and

pics can be found in /5 and 6/. The particu-

lar description given here concerns the sin- n )
gle input single output situation. This is - D(s) = -20 a; st

i=

the class of systems that appear in the trac

king of the position of an unknown flying ob

. . . . . . i t i iven by the block diagram --
ject in one direction if interaction between This system is giv Y g

-1 . . .
i ig. 1 here D is the integration
coordinates is neglected. shown in fig W gr
operator.

In a second part the application to radar --

. I tate ace representation I is given b
tracking is described with special emphasis h state sp p g 4

for the description of the discrete filtering equations (1)

algorithm that processes the data given by a

radar. The computer program is previously -- F a, ] I~ b;
. e - - b -a —_—
tested with simulated data, and finally some 0 0 a, 0 0 a,
results with real data are given. a,
%% = |- 0 - a  |x+ u (1)
a__, bn
2. JOINT OPTIMAL ESTIMATION OF STATE AND PA- 0 ...1 - 2 bn-1 _an-1 a__}
n
RAMETERS OF LINEAR DYNAMICAL SYSTEMS — = —
b
y = [} ... 0 é;] X + [... 0 Eé}u
2.1 Canonical form n n
Let us consider a linear system I given by - that can be written as
its transfer function T (s)
g-—’é- =A, x+B, u
N(s)

T(s) =

= +
y AO X BO u
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Those equations are obviously eguivalent to

equations (2) in the case where an=l.

N 0 aO bO
X = 1... 0|lx - a1 y + b1 u (2)
0...1 0 an—1 bn—1

0=[@...0 fx - [1]y + BJu

The essential quality of this canonical form
(2) is the separation between the state and
the parameters.

Let us define the "parametric" vector that -
conveys all the internal parametric informa-

tion

T
r'=[a, ... a _ by ... b, b]

and the "external information" vector

The instantaneous relation between those two

vectors can be written by equations (3)

%% =E, x + G, (z) = r
(3)
[A0]z=©E x + Go(z) . r
with
1 ...... 0
E, = . E,= [0 ... 0 1] (4
0...1 0

. I

Fig.

r: ! |

Ly-In puI
| ]

Co...0 u7]

G, (2)

O:I dimensidn n {(2n+l)

Go(z) dimensién 1 (2n+l)
The state x appears as the dynamical link --
between z and r whereas matrices Ex and EO,

that are the only to multiply the state, gi-
ve structural information but not parametric
information, as they are made uniquely of —--
'¢' and '1' 's.

2.2 Identification problem

Let us look at the parametric identification
problem and let us gather all unknown varia-

bles into a unique vector

sT(t) = EcT(t) : rT(t):[
|

Vector s{t) is the state of a non linear sys
tem equivalent to .

The adaptive identification problem can then
be stated as to find a system f such that --
its state §(t) is as close as possible to --
s(t). The error between I and ﬁ will be found

in 4 different places:

- E4 = error in the dynamical equation
e (0 = - (®, 26 + o, (2) £(6)) (5)
a dt * *

- g, = error in the measurement equation
em(t) = y(t) - (E0 x(t) + GO(Z) r(t)) (6)

- ep = error in the variation of the parame-

ters

n.1 Qp

n.1 n

J J

1

Block diagram of single input single output system
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e (1) = & (7

- S(to) - S(to) = error in the initialisa--

tion
composed of x(to)—ﬁ(to) for the initial -
state and of r(to)—ﬁ(to) for the a priori

values of the parameters.

A quadratic penalty can be imposed as follows

- _ ST
Ty, t) = (s(t)) - 8(t)))
. QO(S(tu) = s(t))) +
+ [t T T 8
+
to(sdeed éQOam+€prep) dat (8)
where Q. , Q., O and Q are assumed non sin-
[¢] d m P

gular weighting matrices given a priori.

THEOREM 1: The trajectory of the optimal adap
tive estimator of s(t), conditionnally to --
the past observation of the external informa
tion vector z(t) with respect of the cost --
function J(to,t) is given by the following -
filtering equations (9)

%% = F(z) 8 + P #%(2) Q_(y-H(z)8)

(9)

dp T T,
E—F(z) P+ P F'(z) - P H(z) QmH(z)P+Qd

with initial conditions

-1
s(to) and P(to)—QO
and where F(z), H(z) and Q are defined with

respect to equations (3) and (8) as follows

E, Gefz)] H(z) = [0...0 1, G (2]]
F(z) = '

0 T = By i Gl

Proof: Let us replace the functions of z by
its actual realizations as functions of time

for a given past realization of the observed
variable z(t).

F(z(t)) becomes F(t)
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H(z(t)) becomes H(t)

Let us define w(t) as a gaussian white noise
such that

Ew(t) wi(r) = §(t-1) 0,

and similarly v(t) such that
T -1
E v(t) vi(1) = §(t-1) Qo

and let us call g, @ gaussian random varia-

ble such that

E Oy = s(to)

and

-1

E(o, - 8(t))) (o N

L8 oW T

0 " s(to)) =.Q
In that situation equations (9) are the opti
mal linear filtering equations for the esti-
mation of the state o(t) of the time varying

linear system of equation (10)

== = F(t) o0 + w

o(t ) =o¢ (10)
y = H(t) o + v

It is therefore well known that this gives -
the optimal trajectory with respect to the -
cost function stated in (8) where s(t) will
be replaced by o(t). At this stage we must -
only notice that system (10) is identical to
system (9) for all past values of t.

2.3 Identifiability

Similarly to the condition of observability
for the stability of linear filters, we may
give here the general identifiability condi-
tion.

THEOREM 2: /4/. A completely observable 1i-

near system I is completely identifiable in

the time interval
B, tel
if and only if there exists

t e [§0 té]
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such that the matrix I(Q),t) is definite po-
sitive:

t - —
I(t,,t) (t ¥ (e, iz [T, E])
0

HT (z(t)) H(z(t))
W(t,r;zt{ﬁé) dr (11)

where z[r,t] stands for {z(c) | c€[r,t] and
¥ is given by the matrix equation

D ¥(t, ) _
2L - Rlz(e)) it ) (12)

Y(t,7) =1
Proof:

- Sufficiency: if condition (11) holds we ha
ve

t —_—
S(t) = 17 (¢ ©) J vT e,z [,E])
to .

B (z(1)) y(1) A (13)

and therefore

y (1) H(z(t)) s(1) =

H(z (1)) ¥(t,tiz[7,€]) s(t)

If we premultiply the second equation by V¥
and integrate it from t0 to t we get

t —_—
I WT(t,T;z[E,ﬁj) T (z (1)) y(1) dt =
to

= I(t, t) s(t) (14)

And if I(tO t)})>0 it is inversible and s(t)
can be reconstructed, and the system iden-
tified.

- Necessity: let us assume now that I(t0 t) -

is never definite positive in the interval

Eto t]'

That means that there exist v(t)#0 such --
that

vee [B, €] vi(t) T(t, £) v(t) =

il
o

0
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or equivalently that

t —_—
[T @) v,z vol? =0 15
Jto

We may then replace s(t) by v(t) in equa--
tions (13) and we get

y, (t) = H(z(t)) v(t,t;2z[7,€]) v(t) =0
for
vr € [t,,t] and vt e [E, t;] (16)

That contradicts the observability hypothe
sis for 1 as (16) means that two trajecto-
ries s(t)=0 and v(t)#0 for Te[}o té] give
the same null output.

The result of this theorem is even more po
werful, as it has been proved in /5/ that
only completely observable linear systems
with known structure can be completely --
identifiable.

2.4 Identification algorithm for discrete 1i

near stochastic gaussian systems

We shall give here the discrete version of -
theorem 1 for stochastic gaussian systems, -
because it gives straightforward access to -

the computer program.

By analogy we will consider the following mo
del:

x(t+l) = E, x(t) - a, y(t) +

+ b, u(t) + w,(t)

.

17)
0 = Eq x(t) - 1. y(t) + bn u(t) + wn(t)

with:

~T . T T
r(t+l) = r(t) + () , (r=[a, by b 1)
It will be assumed that m(.), wg(.), wn(.) -
are white gaussian noises characterized by -

their joint covariance, with strictly positi

ve variance for W

Note that, if the initial probability distri

bution P(xto) of the state x is assumed to -
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be gaussian, the output process y(t), tzto,

can be considered as-a compound gaussian pro
cess {(with respect to r). If, besides, the -
initial distribution P(rt ) of parameter r -
is also gaussian, the y(.) process can be --

viewed as a doubly gaussian compound process.

Defining again matrices G, and G, as in (3)

we get
X(E+1) = B, x(8) + Gy (z ) T(E) + w, (£)
r(t+l) = I r(t) + w(t) (18)

y(t) = Ej x(t) + Gy(u) r(t) + w (t)

Setting

as a generalized state of the system, as well
as

T _T47T
£ = [we 7]
one may write the global representation:

s(t+l) = F(zt) s(t) + £(t)

y(t) = H(ut) s(t) + yx(t) (19)
x(t) = wn(t)
with
E, G*(zt)
F(zt) =
0 I

H(u) = [E, G, (u 1]

(), (.) are white gaussian noises descri-

bed by their covariances:

B [E(e) £7(x)0] = a(t) « g
E R xT(0] =st) - s, o
E [x(t) x* (1] = R(£) « §_ _ (with R(£)>0,¥)

From this model we may derive an optimal --
adaptive estimation for the following opti--

mal joint state and parameter estimation pro
blem:
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PROBLEM

Let ZEO be the minimum ¢ algebra induced by
y(1), u{t+l) on a compact time-interval -
togrit. Find among all Zt measurable func--
tionals, the optimal one (S(t+1/t)) such ~--—

that the mean sguared error:

E [ §(t+1/t)2]

is minimized for all covectors A* with
S(t+1/t)= s(t+1) - S(t+1/t)

As it is well known, the solution to that --
problem is given by the conditional expecta-
tion

t
E [s(t+1)/zto‘_].

THEOREM 3: Let the initial probability densi
ty p(sto) of the generalized state s be gaus
sian with mean §O and covariance P . The con
ditional probability density P(s(t+1)/zto) -

) . . A~
remains gaussian and its mean s and co-

t+1/t

variance P are given by the following -

t+1/t
set of recursive equations:

A

Sevrye T F(E 5 0t
* Kt@t_H(ut)St/t-D ’
~ _ 2 0
Sﬁo/to ER (20)
T
= + -
Piyrje = FJP FT (2 o]
- K.T KT, P =p
£ t/t-1 "t Ttg/to 0
with

-1

T
K = [F(z) P Ho(u) + 8. ] Ty 0,

t/t-1

T
T eo1 = Huy Poie-q BU) o+ R.]

Proof:
It suffices to apply the optimal linear fil-

ter to the time varying system (19) as it --

was done for the continuous case (10).
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3. APPLICATION TO RADAR TRACKING

3.1 Modelisation

We shall now apply the theoretical results -
given in section 1 to the particular case of
a flying object characterized for a single -
coordinate by its position X, and its speed
XZ and controlled by an unknown force or ac-
celeration X3. The basic equation is then

dX1
at SES 0
= + X,
dX2
| O U

the control variable X3 is considered as a -
random variable whose correlation function -
is

o(1) = q eIl

where g represents its dispersion and 1/a --
the mean time between manoeuvres. We may the

refore add a dynamic equation for X3

dX3

_E= -0 X3 + wi(t)

with w(t): white gaussian noise such that
E[w(t) w(t)] = 8(t-1) q

The discretization of that model gives for

i+1 i
1 & —12-(-1+aA+e_0‘A]ﬂ
o
x(e+41) = fo 1 1 (1 - e‘“A] X (t)+e (t)
o o e %t _

The random variable e(t) is given by the sto
chastic integral:

t+A 610
0 0 0| (T-t)
e(t) = e0 0a 1 w(t) 4t

t 1

o

It has been show in /3/ that for oA small we
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get

0, = B(t) "(x)]] =6

=5 4 3
L 4 g

§ 6
A a?

B I e 2
A

The parameters g and o are evaluated before-
hand by the admissible characteristics of --
the aircraft taken as target.

We shall therefore identify such a system --

using a canonical model:

0 ao do
x{t+1) = 1 0 0| x(t) - [aq| y(t) + d1v(ﬂ
0 1 0 la, d}

y(t) = [0 0 I] x(t) + d3 v(t)

do' 1 2’
are known and directly related to Qe and to

the error attached to the radar.

d, d d3 and the covariance of v(t) --

3.2 Simulated tests of the algorithm

A first study of the computer algorithm im--
plementing equation (2) is made for different
vélues of the noise characteristics allowing
differences between the correct values and -

the ones used in the program.

The characteristics of the simulated system

are:

- dynamical parameters

al = 24, -1.18, 1.9]

- noise parameters (true values)
at = [=.056, .5,

-1.9]

The initial values of parameter state estima

tes are null.

1st test: 4 is fixed at its true value

4T(1000) = (.18, -1.05, 1.83]
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the state components are all well estimated.

2nd test: d is taken very far from its true
value

T

ar = [L5, .06, .5]

The two first components of the state are ~-
poorly estimated the estimator 8 does not --
settle to a
nent of the

fixed value. The position compo-

state is nevertheless well esti-

mated, this is because of the filtering ef-
fect of the system.
3rd test: d is taken closer to the true va-

lues than in the precedent test

a® = [F.125, .75, -1.5]
then
4%(1000) = [33, -1.39, 2.0Z]

and all components of state are well estima-
ted.

4th test: or-

the identification by a lower
der system has been attempted d has been re-

placed by

at = [C25, -1
The estimation of the position is always good
whereas the estimators of the parameters do

not stop fluctuating.

5th test: estimation of a deterministic sys-
Km T 1 1 7 T T T 1 | T

- -

- -

040 | .

- .

- -

- -

035 |- -

~ -

11 S (S (N N N TR SN N |

1
0 20 40

nb of measurements
Fig. 2
Real noisy radar measurements
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tem is experienced setting d=0 but using non

zero initial state conditions
Tt ) = [=5, 2, 10]
0 r I

Then, in a finite number of steps we reach

a(10) = 19, -1.01, 1.77]

this is the best estimator as after that ti-
me the algorithm amplifies round off errors.
fth test: estimation of a deterministic --
unstable system has been done in the same si
tuation as in the precedent test. The dyna--
mical parameters are now:

-1.19,

a® = [24, .484]

and as previously, in a finite number of -

steps we get

aT(10) = [Z225,

-1.19, .48{]
Those test enable us to evaluate the robust-
ness of the estimators reached with this al-

gorithm.

3.3 Real data experiment

Fig. 2 represents real data radar measurements

of the position (coordinate Z) of an aircraft,

for a short period of 50 sample times.

The joint state and dynamical parameter fil-

tering was applied to it, in place of a tra-

Km r 1T 17T 1T T 7T T 79

040

035

1 | 4 1 1 | N N S S N |
0 20 40 60 80
nb of observations

Fig. 3
Estimate of the position
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ditionnal linear filtering with arbitrarily
fixed dynamical parameters, for a model of -

order n=3.

Fig. 3 shows how fast the adaptive filtering
works for the useful component E, X.

Fig. 4-6 give the values to which parameter

estimates 50, al, 8, converge shen they have

2
been assumed constant.

:? 2 T T T T
X
<C
[+ 4
&
096"k
0 | 1 1 1
0 10 20 30 40 50
nb of measurements
Fig.4
Estimate of the a, parameter
1 T \J T T
-0 -
«
p = 1 1
<— = -
[+ 4
a_2| i
~29640 1 ——

0 10 20 30 40 SO

nb of measurements

Fig. 5
Estimate of the a, parameter

4
T T T T
2963
o~
< 21! 4
x
& 1 _
&
0 1 1 1 1
0 10 20 30 40 50
nb of measurements
Fig. 6
Estimate of the a, parameter
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It should be noticed that convergence rate -
for the parameter estimates is particularly
fast.

4. CONCLUSIONS

Getting to a joint optimal estimation of pa-
rameters and state when the state equations

are expressed in canonical form, has allowed
the estimation of the state and of the three
parameters of the system dynamics in the ra-

dar tracking problem.

The results obtained in simulated tests and
real experiments show that the algorithm con
verges even with unstable systems provided -
that the characteristics of the noise are --

well known.

Besides, the filtering behaviour in front of
real data is quite good. The convergence in
the parameter estimation is very fast, and a

correct state tracking is thus possible.
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