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THE USE OF THIRD-ORDER MOMENTS IN
STRUCTURAL MODELS

ERIK MEIJER.and AB MOQIJAART

Leiden University

Structural models are usually estimated using only second order mo-
ments (covariances or correlations). When variables are not mul-
tivariate normally distributed, however, methods that also fit higher
order moments, such as skewnesses, are theoretically asymptotically
preferable. This article reports results from a Monte Carlo simula-
tion study in which estimators that fit both second-order moments
and third-order moments are compared with estimators that fit only
second-order moments.
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1. INTRODUCTION

Structural models, as most other statistical and data-analytical models and
techniques, are usually estimated by fitting only covariances or correlations (e.g.
Joreskog, 1967; Joreskog & Goldberger, 1972; Bentler, 1983; Browne, 1982,
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1984). The reason for this stems from the classical normal theory: if the varia-
bles are multivariate normally distributed then all information from the sample
—assuming that the means are of no interest— is contained in its covariance
matrix.

In practice, however, variables are often not normally distributed and more
information can be extracted from the higher-order moments. This implies, for
example, that otherwise unidentified models may be identified by fitting hig-
her order moments (see, e.g., Van Montfort, Mooijaart, & De Leeuw, 1987;
Mooijaart & Bentler, 1986), and it implies that estimators that use higher or-
der moments are generally asymptotically more efficient (see Kano, Bentler, &
Mooijaart, 1993). In particular, Mooijaart (1985) showed that the exploratory
factor analysis model is identified if the factors are independent, whereas
the usual factor analysis estimators all have the well-known rotation
problem.

On the other hand, it is well-known that higher order moments are estimated
with considerably less precision than covariances, and it may be questionable,
particularly in small samples, whether the use of higher order moments leads
to better estimates because of the extra information that is used, or to worse
estimates because sample statisticis are used that may not be good estimates of
their population counterparts.

Besides identification and precision, correctness of inference is a third aspect.
If one tests whether a model must be rejected by using a test statistic that is
based on strong assumptions regarding the distribution of the variables then the
test statistic may reject the (structural) model too often or not often enough,
depending on the specific (wrong) assumptions that are made and the specific
(correct) distribution of the variables. This applies also to confidence intervals
that are used to test whether a parameter may be equal to a certain value
(typically 0 or 1). This problem of robustness of statistical inference is discussed
by several authors; see, for example, Browne & Shapiro (1988), Mooijaart &
Bentler (1991), and the references therein. Their results are quite positive in
this respect: test statistics of normal theory based estimators are asymptotically
correct within a broad range of models, and confidence intervals concerning some
classes of parameters in structural models are asymptotically correct, but other
confidence intervals are not.

In this article, the focus of attention is on the precision of estimators and
correctness of statistical inference, rather than on the identification problem.
Estimators that fit third-order moments as well as second-order moments are
compared with estimators that fit only second-order moments in a Monte-Carlo
simulation study.

76



2. METHOD

To compare the properties of estimators that use higher-order moments with
the properties of estimators that use only second-order moments, a Monte Carlo
simulation study was conducted. Samples were generated from a 4-variable, 1-
factor, factor analysis model, with loadings 0.8, 0.8, 0.6, and 0.6, respectively.
Sample sizes varied from 300 to 10,000. The nonnormalities in the data were
generated by drawing the factor from a lognormal distribution and then correc-
ting it to have mean zero, variance one, and prespecified skewness, which was
varied between 0.1 and 4.0. The errors were generated from a normal distri-
bution with mean zero and variances 0.36, 0.36, 0.64, and 0.64, respectively.
Consequently, the variables all had expectations zero and variances one, and the
skewnesses varied —between variables and samples— from 0.02 to 2.0. With

each combination of sample size and factor skewness, 300 independent samples
were drawn.

The parameters were estimated by Generalized Least Squares (GLS) estima-
tors, and by Linearized Generalized Least Squares (LGLS) estimators. LGLS esti-
mators are asymptotically equivalent to GLS estimators, but are computationally
more efficient. See Bentler & Dijkstra (1985) for a discussion of GLS and LGLS.
Maximum Likelihood estimators were not used, because these estimators apply
only when normality is assumed, and in this study the focus is on methods that
fit higher-order moments, which implies that nonnormality is assumed.

The estimators that fit higher-order moments that were used in this study
were introduced by Mooijaart (1985). These estimators fit second-order and
third-order moments, which implies that they are based on the assumption that
the variables are nonsymmetrically (skewly) distributed, which is not a very res-
trictive assumption. The discrepancy function that is minimized is based on the
Asymptotically Distribution-free (ADF) theory of Browne (1984). These estima-
tors will therefore be called ADF3. The ADF3 estimators were compared with
estimators that fit only second-order moments, namely Normal theory (NorRM),
Elliptical theory (ELL), and Asymptotically Distribution-free (ADF2) estima-
tors. The NORM estimators were described by Joreskog & Goldberger (1972),
and these estimators are asymptotically equivalent to normal theory maximum
likelihood estimators. The ELL estimators were described by Bentler (1983), and
use the assumption that the variables are elliptically distributed, which is a re-
laxation of the normality assumption. The ADF2 estimators were described by
Browne (1982, 1984), and use no specific assumptions about the distributions of
the variables. Their asymptotic properties are independent of the distribution
of the variables. The NORM, ELL, and ADF2 estimators are implemented in the
program EQS (Bentler, 1989).
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The discrepancy function (loss function) that had to be minimized has the
following form:

F(6) = (s = o(6)) W (s~ o(6)),

where s contains sample statistics, o(f) is the (asymptotic) expectation of s
according to the model, 6 is the parameter vector that has to be estimated,
and W is the weight matriz. For the second-order estimators, s consists of
the nonduplicated elements of the sample covariance matrix, and for the ADF3
estimators, s consists of all nonduplicated second and third-order moments. The
vector o(f) reflects the structural model that has to be estimated. It is well-
known (e.g., Bentler & Dijkstra, 1985) that W is optimal if plim(W) = ',
where I'is the asymptotic covariance matrix of v/ N (s—o), and N is the sample
size. Therefore, W was chosen in such a way that W is a consistent estimator
of I'"!. But the elements of I, and consequently the elements of W, depend
on the distributions of the variables. Therefore, W reflects the distributional

assumptions. In LGLS, () is linearized around an initial consistent estimate 6,
of .

The structural model o(f) can be tested by the chi-square test statistic
NF((:’), where F() is the minimum of F(8), and 6 is the argument for which
the minimum is attained. This test statistic follows an asymptotic chi-square
distribution if o and W are correctly specified.

The asymptotic covariance matrix of vN(6—8) can be consistently estimated
. A\ -1
by (A(a)'WA(e)) , where

A(9) = 97 (0)

and confidence intervals for the elements of  can be easily obtained from the
(diagonal) elements hereof and the (consistent) estimates § of 6.

The model that had to be estimated was equal to the model with which the
data were generated, that is, a one-factor model with a skewly distributed factor
and symmetrically distributed errors. The variance of the factor was fixed to
one and the factor loadings were free parameters.

Based on the results of robustness studies (e.g., Browne, 1987), it was expec-
ted that the NORM, ADF2, and ADF3 test statistics would perform well, but that
the ELL test statistic would not perform well. Furthermore, it was expected that
the confidence intervals of the ADF3 and ADF2 methods would be approxima-
tely correct and that the confidence intervals of the error standard deviations of
the NORM estimators would be approximately correct, but that the confidence
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intervals of the loadings of the NORM estimators would be incorrect, and that
the confidence intervals of the ELL estimators would be incorrect. If the model
had been specified with one factor loading fixed to one and unspecified factor
variance, which would have rendered a model that is statistically indistinguis-
hable from the one used, the confidence intervals of the loadings would have
been consistently estimated by the NORM estimators. On the other hand, this
would have implied that the factor variance is a free parameter that had to be
estimated, and the confidence interval of the factor variance would be inconsis-
tently estimated, so the problem of inconsistency is only shifted from one set of
parameters to another. We have chosen the first parametrization, because we
think that this is the most exploratory one. In confirmatory factor analysis, the
second parametrization is often used.

From the results of Kano, Bentler, & Mooijaart (1993), it was expected that
the ADF3 estimators would be more efficient than the second-order estimators,
and from the results of robustness studies (e.g., Mooijaart & Bentler, 1991),

it was expected that the ADF2, NORM, and ELL estimators would be equally
efficient.

3. RESULTS

Test statistic

Some results on the properties of the test statistics are given in Tables 1a and
1b. The ADF3 test statistic performed well with sample sizes 1000 and larger,
and its performance was independent of factor skewness. The ADF2 and NORM
test statistics accepted the model in all cases about 95% of the replications,
independent of sample size or skewness. The ELL test statistic nearly always
accepted the model if the factor skewness was 2.0 or larger, where the skewness
of the variables was 0.4 or larger. The GLS and LGLS test statistics generally
performed equally well, except in the ADF3 case: at relatively small sample sizes
the GLs test statistic performed better.

Parameter estimates

From Table 2 it can be seen that the ADF3 estimators were slightly biased
downward. The GLS estimators were more biased than the LGLS estimators. This
bias diminished at larger sample sizes, as expected because of the consistency of
the estimators. The second order estimators were practically unbiased.
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Table 1.

Percentage of times the model was accepted (o = .05).

(a) Factor skewness = 2.0.

sample ADF3 ADF2 NORM ELL
size GLS LGLS GLS LGLS GLS LGLS GLS LGLS
300 84 76 91 91 93 93 100 100
500 89 87 95 95 95 95 99 99
700 89 86 93 93 94 94 98 98
1000 94 93 95 95 95 95 99 99
2000 95 94 95 95 95 95 100 100
10000 90 90 95 95 95 95 100 100
(b) Sample size = 10000.
factor ADF3 ADF2 NORM ELL
skewness GLS LGLS GLS LGLS GLS LGLS GLS LGLS
0.1 95 95 97 97 97 97 97 97
0.25 97 97 95 95 95 95 95 95
0.5 95 95 96 96 96 96 96 96
1.0 97 97 95 95 95 95 96 96
2.0 90 90 95 95 95 95 100 100
3.0 96 96 97 97 97 97 100 100
4.0 96 94 92 92 92 92 100 100
Table 2.
Average bias of the loadings estimates. (Factor skewness = 2.0.)
sample ADF3 ADF2 NORM ELL
size GLS LGLS GLS LGLS GLS LGLS GLS LGLS
300 -0.04 -0.02 -0.01
500 -0.04 -0.03 -0.01 -0.01 -0.01 -0.01 -0.01 -o0.01
700 -0.02 -0.01
1000 -0.02 -0.01
2000 -0.01 -0.01
10000

Note. Blank means absolute value of bias was less than 0.005.
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From Table 3 it can be seen that the ADF3 estimators had indeed slightly
smaller standard deviations (were more efficient) than the second order estima-
tors. The differences, however, were very small. At smaller sample sizes LGLS
estimators were better than GLS estimators for the ADF methods.

Table 3.
Average standard deviation of the loadings estimates. (Factor skewness = 2.0.)
sample ADF3 ADF2 NORM ELL
size GLS LGLS GLS .LGLS GLS -L.GLS GLS .LGLS

300 0.085 0.078 0.127 0.082 0.081 0.081 0.081 0.081
500 0.0568 0.058 0.069 0.063 0.063 0.063 0.063 0.063
700 0.060 0.050 0.065 0.052 0.052 0.052 0.052 0.052
1000 0.042 0.041 0.065 0.044 0.043 0.043 0.043 0.043
2000 0.030 0.030 0.031 0.031 0.031 0.031 0.031 0.031
10000 0.013 0.013 0.014 0.014 0.014 0.014 0.014 0.014

Note. Figures were calculated as follows: In each of 300 replications with the same
skewness and sample size, factor loadings were estimated by each of the eight
methods. For each of the four loadings, the standard deviation was calculated
per method. These four standard deviations were averaged.

Table 4.

Percentage of times the confidence intervals for the loadings covered the true
value. (Factor skewness = 2.0; a = .05)

sample ADF3 ADF2 NORM ELL

size GLS LGLS GLS LGLS GLS LGLS GLS LGLS

300 74 82 91 93 81 81 94 94
500 81 85 91 92 83 83 93 93
700 85 88 94 94 85 85 95 95
1000 88 90 93 94 84 84 94 94
2000 88 90 94 94 82 82 95 95
10000 94 94 94 94 83 83 95 95

Confidence intervals

The ADF3 confidence intervals were correct only in very large samples (see
Table 4). This result was independent of factor skewness (Table 5), but strongly
related to bias (cf. Table 2). The ADF2 confidence intervals were generally
satisfactory. At larger skewnesses (larger departure from symmetry), the NORM
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confidence intervals for the loadings and the ELL confidence intervals for the
error standard deviations were unreliable (see Tables 4 and 5), a result that
was independent of sample size, but due to the inconsistency of the estimated
asymptotic covariance matrix (cf. Browne, 1987, for the normal case). For the
ADF methods the LGLS confidence intervals were better than the GLS ones, most
probably because of the smaller bias of the LGLS estimators.

Table 5.

Percentage of times the confidence intervals for the error standard deviations
covered ‘the true value. (Sample size = 1000; o = .05.)

factor ADF3 ADF2 NORM ELL

skewness GLS LGLS GLS LGLS GLS LGLS GLS LGLS

0.1 90 90 96 96 97 97 97 97
0.25 88 89 95 95 95 96 96 96
0.5 89 90 96 96 96 96 96 96
1.0 88 89 94 94 94 94 97 97
2.0 90 89 95 95 96 96 99 99
3.0 88 88 94 94 95 95 100 100
4.0 89 88 96 96 96 96 100 100

4. DISCUSSION

The ADF3 method generally performed a little worse than the ADF2 and
NORM methods, although confidence intervals of the NORM estimators should be
corrected, for example by using the “robust covariance matrix of the estimator”
in EQS (Bentler, 1989). However, the differences in performance were small in
larger samples, and the advantages of the ADF3 method, such as identification
and information, may outweigh its somewhat worse performance. This may
particularly be the case if the ADF3 estimates are corrected for bias, for example
by using bootstrap or jackknife estimators (see, e.g., Efron, 1982).

The LGLs estimators generally did not perform worse than their GLS coun-
terparts, and they may be preferred because of their computational efficiency.

Although not the main focus of attention, the ELL estimators were also stu-
died, and because the test statistic and the confidence intervals performed so
badly, they cannot be recommended.

82



The results obtained here apply only to the relatively simple 4-variable, 1-
factor, factor analysis model with normal errors and a skewly distributed factor.
It is hoped that the conclusions generalize to more complicated models with
more variables and factors, but this remains to be investigated.
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