Pub. Mat. UAB
Vol. 27 No 1

AUTOMORPHISMS OF THE POLYNOMIAL RING IN TWO VARIABLES*

Warren Dicks

Let k be a field, $k[x, y]$ the polynomial ring in two variables, and Aut $k[x, y]$ the group of all its k-algebra automorphisms. Such an automorphism will be denoted by the ordered pair (p, q) where $p, q \in k[x, y]$ are the respective images of x, y.

THEOREM. The group Aut $k[x, y]$ is generated by $(y, x),\left(x, y-\mu x^{n}\right) \mu \epsilon k, n \geqslant 0$. Moreover Aut $k[x, y]=A{ }_{C} B$ where

$$
\begin{aligned}
& A=\left\{\left(\lambda_{11} x+\lambda_{12} y+\lambda_{1}, \lambda_{21} x+\lambda_{22} y+\lambda_{2}\right) \mid \lambda_{11} \lambda_{22} \neq \lambda_{21} \lambda_{12}\right\}, \\
& B=\left\{\left(\lambda_{11} x+\lambda_{1}, \lambda_{22} y+f(x)\right) \mid \lambda_{11} \lambda_{22} \neq 0, f(x) \in k[x]\right\}, \\
& C=A \cap B=\left\{\left(\lambda_{11} x+\lambda_{1}, \lambda_{21} x+\lambda_{22} y+\lambda_{2}\right) \mid \lambda_{11} \lambda_{22} \neq 0\right\} .
\end{aligned}
$$

The elements of A are called affine automorphisms, the elements of B de Jonquières automorphisms, and the elements of the subgroup generated by $A \cup B$ are called tame automorphisms. The fact that all k-algebra automorphisms of $k[x, y]$ are tame was proved by Jung [2] for char $k=0$, and then by Van der Kulk [8] in the general case. From their work the coproduct decomposition follows fairly easily, but it is not clear who first made the observation. (Kambayashi [3] gives the credit to Shafarevitch [7].)

Rentschler [5] gave a very simple proof of tameness for char $k=0$, and then along slightly different lines Makar-Limanov [4] gave a fairly simple proof for arbitrary characteristic. (News of Van der Kulk's result seems not to have reached Moscow at that time, for Makar-Limanov refers to the result as * Seminar given at Universitat Autōnoma de Barcelona, July 1981.
unpublished work of Shafarevitch.) In the spirit of Serre [6], Roger Alperin [1] gave an explicit example of a tree acted on by Aut $k[x, y]$ from which the coproduct decomposition can be read off.

In $\S 1$ below we give a modified version of Makar-Limanov's proof, and in 92 recall Alperin's example.

I am very grateful to P.M. Cohn for providing me with his translation of Makar-Limanov's thesis.

5i The support of a primitive element

Let (f, g) be an automorphism of $k[x, y]$. We can write $f=\sum \lambda_{i j} x^{i} y^{j}$, $\lambda_{i j} \in k$ and define $\operatorname{supp}(f)=\left\{x^{i} y^{j} \mid \lambda_{i j} \neq 0\right\} \subseteq\langle x, y>$, where $\langle x, y>$ is the free abelian group generated by x, y. Let $m=x-\operatorname{deg}(f), n=y-d e g(f)$, that is, m is the highest exponent of x occurring in supp(f), and similarly for n. Set $\Delta=\left\{x^{i} y^{j} \mid n i+m j \leqslant m n, i \geqslant 0, j \geqslant 0\right\} \subseteq\langle x, y\rangle$. Geometrically, supp(f) lies in the rectangle determined by $1, x^{m}, x^{m} y^{n}, y^{n}$ and Δ occupies the triangle determined by $1, x^{m}, y^{n}$.

The objective of this section is to show $x^{m}, y^{n} \in \operatorname{supp}(f) \subseteq \Delta$ and m|n or n|m.

If $m=0$ this is clear.
Thus we may assume mn $>{ }^{\circ} 0$. Let $m^{\prime}=m /(m, n), n^{\prime}=n /(m, n)$. These are coprime natural numbers, so we can choose natural numbers s, t such that smotn' $=1$. Let $u=x^{m^{\prime}} / y^{n^{\prime}}, v=y^{s} / x^{t}$ in $\langle x, y\rangle$ so $x=u^{s} v^{n^{\prime}}, y=u^{t} v^{m^{\prime}}$.

Thus $k[x, y] \subseteq k[u, v]$ and we can write $E=\sum \mu_{i j} u^{i} v^{j}$ so supp $(f)=\left\{u^{i} v^{j} \mid \mu_{i j} \neq 0\right\}$. We define the leading v-component of f to be $|f|=\left(\sum_{i} \mu_{i j} u^{i}\right) v^{j} \in k[u]^{x} \times\langle v>$ where $j=v$-deg (f). If then $u-\operatorname{deg}(|f|)=i$ we define $\|f\|=u^{i} v^{j} \epsilon\langle u, v\rangle$ called the leading term of f. This extends to a group homomorphism $\left\|\|: k(u, v)^{x} \rightarrow\langle u, v\rangle\right.$. (Notice the superscript ${ }^{x}$ is being used to denote the set of nonzero elements.) The following statement indicates the steps in Makar-Limanov's argument.

THEOREM 1, (i) There exist $\alpha, \beta \in k(u)^{x} \times\langle v\rangle \subseteq k(u, v)^{\times}$such that $|f|=\lambda \alpha^{a}\left(\lambda \in \mathbf{k}^{x}, a \in \mathbb{N}^{+}\right)$and $x, y \in k\left[\alpha^{ \pm 1}, \beta\right]$.
(ii) There then exist $w, z \in\langle u, v\rangle$ such that $\langle w\rangle=\langle | k d| \rangle$ or $\langle | \beta\||, \||\beta||\rangle$ and $x, y \in \operatorname{semigp}\left\langle w^{ \pm 1}, z\right\rangle$.
(iii) Then $x^{\text {mi }}, y^{n} \in \operatorname{supp}(f) \leq \Delta$ and $\|f\|=x^{\text {mi }}$ and $\langle w\rangle=\langle x\rangle$.
(iv) If $\langle w\rangle=\langle\| \alpha| p$ then $m \mid n$.
(v) If $\langle w\rangle=\langle\|a\||,\|\beta\| \beta$ then $n \mid m$.

PROOF. (i) Let $K=k(u)$ and consider the Laurent series field $k\left(\left(v^{-1}\right)\right)$. In a natural way $k(u, v) \subseteq K\left(\left(v^{-1}\right)\right)$ and there are maps $v-\operatorname{deg}: K\left(\left(v^{-1}\right)\right)^{x} \rightarrow \mathbb{Z}$, | $\mid: K\left(\left(v^{-1}\right)\right) \rightarrow K^{x} \times\langle v\rangle$ extending the corresponding maps on $k[u, v]$. We
 exists $\alpha \in K^{\times} \times\langle v\rangle$ such that the image of α in $\left(K^{x} \times\langle v\rangle\right) / k^{x}$ generates a maximal cyclic subgroup containing the image of $|f|$, say $|f|=\lambda \alpha^{a} \lambda \epsilon k^{x}$, a $\in \mathbb{N}^{+}$. By induction on a we shall show that for any $f, g \in K\left(\left(v^{-1}\right)\right)$ with $|\mathrm{F}|=\lambda \alpha^{\mathrm{a}} \quad \lambda \in \mathrm{k}^{x}, \mathrm{a} \in \mathbb{N}^{+}$there exists $B \in \mathbb{K}^{\times} \times\langle\mathrm{V}\rangle$ such that $\left|k\left[£^{ \pm 1}, g\right]\right| \subseteq k\left[\alpha^{ \pm 1}, \beta\right]$.

The case $a=0$ is vacuous.
Let us now define a (possibly finite) sequence inductively. Let $g_{1}=g$. Suppose we have g_{i} for some $i \geqslant 1$. If $\left|g_{i}\right|=\lambda \lambda_{1} \alpha_{0}^{a n_{i}}$ for some $\lambda_{i} \in k^{\times}, n_{i} \in \mathbb{Z}$ we set $g_{i+l}=g_{i}-\lambda_{i} f^{n_{i}}$; if $g_{i}=0$ or $g_{i} \neq 0$ and $\left|g_{i}\right|$ is not
of this form we let the sequence end at g_{i}. Since $v-\operatorname{deg}\left(g_{1}\right)>v-\operatorname{deg}\left(g_{2}\right)>\ldots$ the sequence g_{1}, g_{2}, \ldots has a limit g_{\star} in $K\left(\left(v^{-1}\right)\right), g_{\star}=g-\lambda_{1} f^{n} l_{-\lambda_{2}} f^{n_{2}}-\ldots$. If $g_{k}=0$ then $k\left[f^{ \pm 1}, g\right] \subseteq k\left(\left(f^{-1}\right)\right)$ so $\left|k\left[f^{ \pm 1}, g\right]^{x}\right| \subseteq\left|k\left(\left(f^{-l}\right)\right)^{x}\right|$ $\subseteq k\left[|f|^{ \pm 1}\right] \subseteq k\left[\alpha^{ \pm 1}\right]$ and we can take β arbitrary.

Thus we may assume $\mathrm{g}_{\mathrm{k}} \neq 0$ so the sequence is finite and $\mathrm{k}\left[\mathrm{f}^{ \pm 1}, \mathrm{~g}\right] \subseteq \mathrm{k}\left[\mathrm{f}^{ \pm 1}, \mathrm{~g}_{\star}\right]$.

If $|f|, \mid g_{\star}$ i are algebraically independent over k then it is easy to see $\left|k\left[f^{ \pm 1}, g_{\star}\right]^{x}\right| \subseteq k\left[|f|^{ \pm 1},\left|g_{*}\right|\right]$ and we can take $B=\left|g_{*}\right|$.

This leaves the case where $|f|,\left|g_{*}\right|$ are algebraically dependent over k. If $c=v-\operatorname{deg}(f), d=v-d e g\left(g_{*}\right)$ then $|f|^{d},\left|g_{*}\right|^{c}$ are algebraically dependent over k and are v-homogeneous with the same v-degree. It follows that $|f|^{d} /\left|g_{\star}\right|^{c}$ lies in K and is algebraic over k so lies in k. Thus $\left|g_{*}\right|^{c} \equiv|f|^{d} \equiv \alpha^{\text {ad }}\left(\bmod k^{x}\right)$. But $\left(K^{x} \times\langle v\rangle\right) / k^{x}$ is a torsion-free abelian group, and the image of a generates a maximal cyclic subgroup, so clad and $\left|g_{*}\right| \equiv \alpha^{b}\left(\bmod k^{x}\right)$ where $b=a d / c . \quad$ Say $\left|g_{\star}\right|=\mu \alpha^{b}, \mu \in k^{x} . \quad$ By the definition of g_{\star} we know $a \nmid b$, say $b=a q+r \quad 0<r<a$. Let $h=g_{\star} / f^{q}$. Then $|h| \equiv \alpha^{r}\left(\bmod k^{x}\right)$ and the induction hypothesis applies to the pair (h,f). Hence there exists $\beta \in K^{x} \times\langle v\rangle$ such that $\left|k\left[h^{ \pm 1}, f\right]^{x}\right| \subseteq k\left[\alpha^{\ddagger 1}, \beta\right]$. Now $\left|k\left[f^{ \pm 1}, g\right]^{x}\right| \subseteq\left|k\left[f^{ \pm 1}, h\right]^{x}\right| \subseteq\left|k[f, h]^{x}\right|\langle | f\left\rangle \subseteq k\left[\alpha^{ \pm 1}, \beta\right]\right.$. By induction $\left|k\left[f^{ \pm 1}, g\right]^{x}\right| \subseteq k\left[\alpha^{ \pm 1}, \beta\right]$ for some $\beta \in k(u)^{x} \times\langle v\rangle$, and (i) is proved since $x, y \in\left|k[f, g]^{x}\right|$.
(ii) Recall that two elements of $\langle u, v\rangle$ are said to be dependent if they generate a cyclic subgroup, and otherwise they are independent, that is, freely generate a free abelian subgroup. If $\|\alpha\|,\|\beta\|$ are independent then it is clear that $x, y \in\left\|k\left[\alpha^{ \pm 1}, \beta\right]^{x}\right\| \leq$ semigp $\|\alpha\|^{+1},\|\beta\| P$ and we can take $w=\|a\|, z=\|\beta\|$. This leaves the case where $\|\alpha\|$, $\|\beta\|$ are dependent. Let w be a generator of $\left\langle\alpha\|,\| \beta \|\right.$, say $\|\alpha\|=w^{i},\|\beta\|=w^{j}, w=\|\alpha\|\left\|_{\beta}\right\|^{d}$. Here
$\left\|\alpha^{j}\right\|=\left\|\beta^{i}\right\|=w^{i j}$ so there is a unique $\mu \in k^{x}$ such that $z=\left\|\alpha^{j}-\mu \beta^{i}\right\| \neq w^{i j}$. But z and $w^{i j}$ have the same v-degree so w, z are independent. Let $a^{\prime}=\alpha^{c} \beta^{d}$, $\beta^{\prime}=\alpha^{j} / \beta^{i}-\mu$. Then $\left\|k\left[\alpha^{ \pm 1}, \beta^{ \pm 1}\right]^{x}\right\|=\left\|k\left[\alpha^{\prime} \| 1,\left(\beta^{\prime}+\mu\right)^{ \pm 1}\right]^{x}\right\| \subseteq\left\|k\left[\alpha^{\prime}, \beta^{\prime}\right]^{x}\right\| \|_{w^{>}}$ \subseteq semigp $\left\langle{ }^{ \pm 1}, z\right\rangle$. Thus $x, y \in \operatorname{semigp}\left\langle{ }^{ \pm 1}, z\right\rangle$ and $\langle w\rangle=4\|\alpha\|,\|\beta\| p$. (iii) Geometrically $x, y \in \operatorname{semigp}\left\langle{ }^{〔 1}, z>\right.$ means that one of the two half-planes determined by w contains both x and y. Now by (ii) $\|\alpha\|=w^{i}$ for some integer i and on replacing w with w^{-1}, if necessary we may assume $i \geqslant 0$. By (i), $\|f\|=\|\alpha\|^{\beta}=w^{\text {ia }}$ and $\|f\| \epsilon$ semigp $\langle x, y>$ so $w \in \operatorname{semigp}<x, y>$. The only way this can happen is for w to lie along the x or y axis, that is, w is a power of x or y. But $\langle w, z\rangle \sum\langle x, y\rangle$ so w is x or y. Thus $\|f\|$ is a power of x or y. But the only place supp(f) meets the x or y axes is in Δ so $\|f\| \subset \Delta$ and this forces $\operatorname{supp}(f) \subseteq \Delta$. The only way $x-d e g(f)$ can be m is for x^{m} to be in $\operatorname{supp}(f)$, and similarly $y^{n} \epsilon \operatorname{supp}(f)$. Thus $\|f\|=x^{\text {m }}$ or y^{n}. But $u-\operatorname{deg}\left(x^{m}\right)=u-\operatorname{deg}\left(u^{m s} v^{\text {man' }}\right)=m s, u-\operatorname{deg}\left(y^{n}\right)=u-\operatorname{deg}\left(u^{n t} v^{m} n\right)=n t=m s-(m, n)$ $\left\langle\right.$ ms so $\|f\|=x^{\text {mi }}$. Hence $\langle w\rangle=\langle x\rangle$.
(iv) If $\left\langle\|\|\rangle=\langle w\rangle=\langle x\rangle\right.$ then $\|\alpha\|=x$. But by (i) $\|f\|=\|a\|^{a}=x^{a}$ and by (iii) $\|f\|=x^{m}$ so $a=$ m. Thus $|f|=\lambda \alpha^{m}$ in $k(x, y)$ so $y-\operatorname{deg}(|f|)=m(y-\operatorname{deg}(\alpha))$. And $y-d e g|f|=n$ since $y^{n} \in \operatorname{supp}|f|$, so $m \mid n$.
(v) If $\langle\|\|,\| \beta\|\rangle=\langle w\rangle=\left\langle x^{\rangle}\right.$then $n^{\prime} \mathbb{Z}=v-\operatorname{deg}(\langle x\rangle)=v-\operatorname{deg}(\langle\|\alpha\|,\|\beta\|$; $=v-\operatorname{deg}\left(<\alpha, B>\right.$). By (i) $y \in k\left[\alpha^{ \pm!}, \beta\right]$ and this is v-homogeneous so v - $\operatorname{deg}(y) \epsilon \mathrm{v}$ - $\operatorname{deg}\left(\langle\alpha, \beta>)\right.$, that $i s, m^{\prime}$ is a multiple of n^{\prime} so $n \mid m$.

\$2 The Automorphism Group

For any $p=\left\{\mu_{i j} x^{i} y^{j} \in k[x, y]^{x}\right.$ we define $\operatorname{deg}(p)=\max \left\{i+j \mid \mu_{i j} \neq 0\right\}$; if $\operatorname{deg} p=d$ we define $p_{0}=\sum_{i d-i} x^{i} y^{d-i}$ called the leading component of p. THEOREM 2 ([2], [8]). Let (p, q) be a k-aIgebra automorphism of $k[x, y]$ with $\operatorname{deg} p \leqslant \operatorname{deg} q$. Then, either (p, q) is affine or there is a unique $\mu \epsilon k^{x}$ and positive integer r such that $\operatorname{deg}\left(q-\mu p{ }^{r}\right)<\operatorname{deg}(q)$.

PROOF. Let (f, g) be the inverse of (p, q) and let f be as in $\S 1$. li $\operatorname{deg}\left(p^{\text {ma }}\right) \neq \operatorname{deg}\left(q^{n}\right)$ then $\operatorname{deg}(f(p, q))=\max \left\{\operatorname{deg}\left(p^{m}\right), \operatorname{deg}\left(q^{n}\right)\right\}$. But $f(p, q)=x$ so p or q is a polynomial in x of degree 1 and the desired conclusion follows easily. This leaves the case where $\operatorname{deg}\left(p^{m}\right)=\operatorname{deg}\left(q^{n}\right)$. Here $m \geqslant n$ so $n \mid m$ and $\operatorname{deg}\left(p^{r}\right)=\operatorname{deg}(q)$ for $r=\frac{m}{n}$. We may assume (p, q) is not affine so $\operatorname{deg} q>1$. Since $f(p, q)=x$ it follows that p_{0}, q_{0} are algebraically dependent over k. Hence q_{0} / p_{0}^{T} is algebraic over k so lies in k, say $q_{0} / p_{0}^{r}=\mu$. Then $\operatorname{deg}\left(q-\mu_{p}^{r}\right)<\operatorname{deg}(q)$ as desired.

By induction on deg(q) it follows easily from Theorem 2 chat all $k-a l g e b r a$ automorphisms of $k[x, y]$ are tame. It is even a simple matter to obtain the decomposition.

THEOREM 3. Aut $k[x, y]=A{ }^{*} C B$.
PROOF. Let r be the oriented graph whose vertices are the k-subspaces of $k[x, y]$ and whose edges are the inclusion maps. Then Aut $k[x, y]$ acts in a natural way on the graph r. Iot T be the orbit of $k+k x \rightarrow k+k x+k y$. we ciaim that T is a tree.

Any vertex of T is of the form $k+k p$ or $k+k p+k q$ where (p, q) is some automorphism. We define $\operatorname{deg}(k+k p)=\operatorname{deg}(p)$ and $\operatorname{deg}(k+k p+k q)=$ $\max \{\operatorname{deg}(p), \operatorname{deg}(q)\}-\frac{1}{2}$. It is easy to see these are well-defined.

Consider a vertex of the form $k+k p$. We can find an automorphism (p, q) with $\operatorname{deg}(q)$ minimal, so $\operatorname{deg}(q)<\operatorname{deg}(p)$ or (p, q) is affine. All the neighbours of $k+k p$ are of the form $k+k p+k$ ($q+h$) where $h \in k[p]$. The only neighbour of $k+k p$ with smaller degree is $k+k p+k q$; all the others have greater degree.

Consider a vertex of the form $k+k p+k q$ where $\operatorname{deg}(q)<\operatorname{deg}(p)$. The neighbours are of the form $k+k(\alpha p+\beta q)$ where $\alpha, \beta \in k^{x}$ are not both zero; only $\mathrm{k}+\mathrm{kq}$ has smaller degree, all the others have greater degree.

Finally, the vertex $k+k x+k y$ has smailer degree than all its neighbours. Thus every path from $k+k x+k y$ is strictly increasing (so T has no circuits) and from each vertex there is a strictly decreasing path which must necessarily arrive at $k+k x+k y$ (so T is connected). Hence T is a tree. Now $k+k x \rightarrow k+k x+k y$ is a transversal in T for the action of Aut $k[x, y]$ and the stabilizer of $k+k x$ is B while the stabilize: of $k+k x+k y$ is A. Thin implies $G=A{ }_{C} B$. $c x[6]$.

REFERENCES

1. R.C. ALPERIN, Homology of the group of automorphisms of $k[x, y]$, J. Pure and App1. Algebra 15 (1979) 109-115.
2. H.W.E. JUNG, Über ganze birationale transformationen der Ebene, J. reine angew. Math. 184 (1942) 161-174.
3. T. KAMBAYASHI, On the absence of nontrivial separable forms on the affine plane, J. Algebra 35 (1975) 449-456.
4. L.G. MAKAR-LIMANOV, On automorphisms of certain algebras (Russian), Ph.D. Thesis, Moscow, 1970.
5. R. RENTSCHLER, Opérations du groupe additif sur le plan affine, C.R. Acad. Sc. Paris, Ser.A, 267 (1968) 384~387.
6. J.-P. SERRE, Arbres, amalgames et SL_{2}, Astérisque No. 46 , Société Mach. de France, 1977.
7. I.R. SHAFAREVITCH, on some infinite dimensional groups, pp.208-212, Atti-Simposio Internaz. di Geom. Alg. Roma, 1965.
8. W. VAN DER KULK, On polynomial rings in two variables, Nieuw Archief voor Wisk. (3) I (1953) 33-41.

Rebut el 15 juliol 198:
Revisat el 20 abrit 1982

Bedford College
Regent's Park
London, NWL 4NS

