ON BLOCK-QUASI-TRIDIAGONAL MATRICES

José Vitória

Dpto. de Matematica
Universidade de Coimbra

Abstract - We intend to invert (and to study the eigenvalues of) block-quasi--tridiagonal matrices. We also mention ways for handling the problem of eigenvalues of a block-quasi-tridiagonal tatrix and we obtain upper bounds for the spectral radius of a (certain) black--quasi-tridiagonal matrix which arises in the discretization of partial differential equations of elliptic type, self-adjoint case.

1. About the inversion of block-quesi-tridiagonal matrices
1.1 - In this section we interest us for inverting block-quasi-tridiagonal matrices, that is to say, matrices of the form

[^0]where all blocks are of the same order and commute in pairs. Such matrices arise in the discretization of elliptic partial differential equations,

We nead a result involving a matrix obtained from T by taking its determinant considering the (commuting) blocks as elements. Let Δ_{T} : $=\operatorname{dev} T$ be such a motrixs Δ_{T} is the formal determinant of T. It is known that det $\Delta_{\mathrm{T}}=$ det T . This rasult allows us to manipulate only matrices of low order, when solving large systems of linear equations and, like in aur case, invarting large block-matrices.
1.2 - To invert the matrix T we shall use an hybrid method: classi: cal partitioning in four blocks plus a recurring procedure.

Let us partition and note as follows

where P is a block-tridiagonal matrix.
It is known that the inverse of a matrix partitioned in that manner 15

$$
T^{-1}:=\left(\begin{array}{c:c}
K_{M} & L \\
\hdashline M & L_{-}
\end{array}\right)
$$

With the same partitioning and where.

$$
K:=P^{-1}-P^{-1} Q M, M:=-N R P^{-1}, L:=-P^{-1} Q N \text { and } N:=\left(S-R P^{-1} Q\right)^{-1} \text {. }
$$

In this way we need only to invert two matrices: P and ($S-R^{-1} Q$). So we have to invert a large matrix P, with commuting blocks. For achieving this, one can use a recurring procedure. We obtain a matrix $P^{-1}=\left(X_{11}\right)$ partitioned in the same way as P and where the blocks $X_{i f}$ also commute in pairs,

Let us denote by $P_{I(1, j)}$ the matrix obtained from P by replacing the $j^{\text {th }}$ block-column with the matrix

Then, if we put

$$
\Delta:=\operatorname{dav} P \text { and } \quad \Pi_{i j}:=\operatorname{dev} P_{I(i, j)},\left[i, j=1,2, \ldots, n^{-1}\right) \text {, }
$$

we obtain

$$
x_{1 j}=\Delta^{-1} n_{1 j}, \quad(i, j=1,2, \ldots, n-1)
$$

1.3 - As we have sean, for inverting a block-quasi-tridiagonal matrix We need only to invert two matrices: $S-R^{-1} Q$ and Δ : = dev P. But, in pratice, we invert two matrices of the same order, instead of inverting a law order matrix $S-R P^{-1} Q$ and a high order matrix P. We remark that the matrices $S-R P^{-1} Q$ and Δ heve the order of the original blocks $A_{1 j}$.
2. Abâut the aigenvalues of a (certain) block-quasi-tridiagonal matrix

In this section we interest us for the eigenvalue problem in block--quasi-tridiagonal matrices. Here we get upper bounds for the absolute velue of the eigenvalues by using a matricial norm:

Upper bounds for the spectral radius of a block-quasi-tridiagonal ma trix, which arise in the discretization of partial differential equations of elliptic type, self-adjoint case.

Given the matrix

$$
T:=\left(\begin{array}{cccccccc}
A & B & 0 & 0 & \ldots & 0 & 0 & B \\
B & A & B & 0 & \ldots & 0 & 0 & 0 \\
0 & B & A & B & \ldots & 0 & 0 & 0 \\
\cdots & \cdots \\
0 & 0 & 0 & 0 & \cdots & B & A & B \\
B & 0 & 0 & 0 & \ldots & 0 & B & A
\end{array}\right)
$$

we look for upper bounds of $\rho(T)$, where $p(T)$ is the spactral radius of the metrix T, that is to say, $p(T j:=\operatorname{Max}|\lambda(T)|$, whare $\lambda(T)$ is any eigenvalue of T.

We take the (scalar) norm $\|\mid \cdot\|_{1}^{(1)},\{i=1, \infty)$, of each block, so obtai ning a matricial norm $M_{1}(T),(i=1, \infty)$. It is known, that $p(T) \leq p\left(M_{1}(T)\right)$, $(1=1, \infty)$. And it is also known that $p(A) \leq\|A\|_{j},\{j=1, \infty)$, for any matrix. A. and any (subordinate) matrix norm $\|\cdot\|_{i}$.
(1) For $B=\left(B_{i j}\right) \varepsilon M_{r, s}(K), K=R$ (or C), we let

$$
\|B\|_{1}:=\operatorname{Max}_{j=1,2, \ldots, s}\left\{\sum_{i=1}^{r}\left|\beta_{i j}\right|\right\},\|B\|_{\infty}:=\operatorname{Max}_{i=1,2, \ldots, r}\left\{\sum_{j=1}^{8}\left|\beta_{i j}\right|\right\} .
$$

Hence we have

$$
\rho(T) \leq\|A\|_{1}+2\|B\|_{1}, \quad(1=1, \infty)
$$

a vary simple upper bound for the gigenvalues of T.

Remark

The complete version of this paper is to appear in "Revista da Universidade de Caimbra",

PRINCIPAL REFERENDES

TENEUR, J. - Etude oritique de mëthodes rapides pour la solution de l'équation de Poisson dons un rectangle. (Project de fin d'études). Institut Polythécnique de Grenobla - Math. Appliquées. Grenoble. 1970.

VITORIA, J. - Matrices partitionnëes en blocs commutatifs, Gaz. Mat. (Lisboa), 117-120: 49-57 (1970), MR 49 \# 328; Zb 278, 15008.

Inversion of matrices partitioned in commating blacks. Rev. Cienc.Mat. 4: 29-32 (1973), MR 52 \# 3187; Zb 322, 15009,

Matrizes de blocos comutativos. Tese, Univ. Lourenço-Merques [now Maputo], Mozambique. 1974.

Nomas vectoriais de vectores e de matrizes. (Report). Universidade de Lourenço-Marques [now Maputo]. Mozembique. 1974.

GEOMETRIA ALGEBRAICA

Clas. A.M.S. 13,14

Mesa presidencial: Pedro Abellanas, M. Luisa Noronha, Francisco P仑rez Monasor, Eduardo Casas

[^0]: * The work for this paper was supported, at different stages, by Fundação Calouste Gulbenkian (Lisboa, Portugal), Universidade de Maputo (Mozambique), and Instituto Nacional de Investigação Científica (Lisboa, Portugal).

