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ABSTPACT . This paper splits broadly into two related parts, concerned respec-

tively with generalized idempotents(associated to superunities and subunities)
and with lattice-dilations and contractions in an f-ring A. If u is a superuuii-
ty, we characterize the mappings F:A-->A satifying IF(x)-F(y)I = uIx-y1 (u-di-
lations) as the mappings of the form F(x)= x(u-2e)tb, with e being a generali .-
zed idempotent, and obtain an analogous result for lattice-contractions . The
set of the hcnageneous ones(both cases) are proved to be Boolean algebras .

Our terminology and notations are mostly standard, and follow widely L1] .

Recall that in an -e-ring A , u is a superunity 133 if ux A xu.>,,x holds for e-

very x >/ 0, and s is a subunity L 6 ] if 0 < sx < x , 0< xs ; x

	

for every x > 0 . Now,

it follows a summary of results without proofs .

1 . Generalized ideaqotents . In an -¿-ring A, we introduce the following defi-

nitions : a) if u is a suTneruni ty, then e E A is a u-idempotent if eu = ue = e2 .

b) if s is a subunity, then e E A is an s-idempotent if es = se = e2 . The res-

pective sets will be denoted by I(u) and I(s) .

We first show that in an f-ring A , I (p) = { x E A 1 x A (p-x) = 0 } if p is a

subunity or a superunity, and obtain as a consequence :

Theorem 1 .I(p) is a Boolean algebra with the ordering of the ring .

2 . Boolean al

	

ras of generalized idempotents . On account of I (p) having no

special property whi.ch an arbitrary Boolean algebra need not nave, we have ana-

lized its boolean properties in eonnection with lattice and algebraic-theoretic

properties of the ring . Since I (p) is closed by taking arbitrary suprema and

infima, it is easy to relate the order oompleteness properties of A with ~lete

ness properties of I(p) .



We pay considerable attention to projectable f-rings, that is, those for
which al ® -L-= A holds for every a E A. They are specially interisting in this
context in view of the following result for f-rings with a superunity u:

Theorem 2 . A is projectable if and only if the polar of every element is
the polar of a unique u-idempotent .

For the "only if" part of Th .2, it suffices proving that if aE A, then
al =

	

el , being e the projection of u onto á" « L .
Some ccepleteness and projection properties :L-,ply that the f-ring A be

projectable . For instance, those of the main inclusion theorem [4J , and o-
thers . We have proved here that if I(u) is eonvex, then A is projectable .
Frcm Th.2 we obtain that if A is projectable and non totally ordered, then
I(u) is non trivial .

Sane results suggest the interest of studying the subset Pu (A) = t e -'- 1
e E I(u)} of all the polars P(A) of the ring. In this connexion we prove:

Theorem 3 . With the ordering of P(A), Pu (A) is a Boolean subalgebra of
P(A), iscmorphic to the algebra I(u) . Moreover, Pu(A) is a sub-lattice of
PP(A), the lattice of all principal polars, and a sualgebra of the Boolean
algebra of direct sum:nands . If P(A) is superatonic,then I(u) is finite .
If u' is another superunity, then I(u) and I(u') are isomrphic in the fo-
llowing cases : a) A is Dedekind-cadete ; b) I(u) and I(u') are complete
Boolean algebras and are convex in A.

The proof of TM uses mainly the decomposition A = el ® (u-e)1 if eeI(u),
and the fact that if el , e2 e I(u) and el = e2

	

then el= e2 . The isomr
phism of the statement is given by

	

I(u)--> Pu(A) , e~ (u-e)1 .
By using Th .3 in the projectable case, we obtain :
Theorem 4 . Let A be a projectable f-ring . a) I(u) is atomic in the follo-

wing cases : 1) P(A) is atcenic ; 2) A is basic or ~letely distributive . b)
If A has a finite basis, then I(u) is finite .

3 . Boolean al

	

ras of lattice-dilations . If u is a central supeninity
of the f-ring A, we generalize the notion of

	

¿-isonetry ( [21 , [5'1, [6 1)

by considering the mappings F : A -> A that satisfy IF(x)-F(y)j = uIx-y1
for every x,yE A. They will be called lattice-dilations or u-dilations ,
since IF(x)- F(y)I> 1x-y1 . We denote by Hu(A) the 'set of all hcmogeneous
u-dilations, that is, those for which F(0) = 0 . On the other hand, if e E I(u),
we consider the mapping cre:A -~ A , ~e (x)= x(u-2e) and set Zu (A) _
{v'e leeI(u)1



The fundamental result we have obtained ncw follows :

Theorem 5 . a) Hu (A)= o~)u (A) . b) Every u-dilation F is of the form F(x)=

x(u-2e)T b, being b e A and e E I(u) . c) Every Fe Hu(A) is a hamtecy of ra-

tio a, with I a I = u

Part a)'of Th.5 has been proved by means of a suitable representation of

A as a subdirect product of totally ordered rings, and the fact that for'a

totally ordered ring with a superunity u, the only u-dilations are O'6 (x)=

ux for every x, and a-u (x)= -ux for every x. Part c) follows on account of

e E I(u) being a component of u.

1 Now, if we consider the Boolean ring structure of the Boolean algebra

I(u),then Th .5 enables us to endow Hu(A) with a Boolean structure :

Theorem 6 . With the operations

	

(a-e® é,) (x)= x(u-21e-e'I)

	

and

(oye ,Y ae' ) (x) = x(u-2 (e n e' )),

	

(Hu(A),

	

, IK ) is a Boolean ring with unity,

isomorphic to the Boolean ring I(u) .

Now in view of the iscenorphism Hu(A)='I(u) and the theorems 3 and 4, we
i

have derived the corresponding properties of the Boolean algebra Hu (A), but

we shall not explicitly mention them here . ~ver, i.t is worth noting that

if A is projectable and non totally ordered, then there exist non trivial

u-iilations .

The u-dilations v'o and o-u are interesting since we have :

Theorem 7 . If F EHu (A) , then there exists a unique decanposition A= B$C,

with- B,C being ¿-ideals, for which FIB '70 and FIC Qu .

Indeed, by Th .5

	

F= ore , for sane e e I(u), and it suffices taking B= e l

and C= (u-e)l .

Theorem 7 enables us to give sane geometric interpretation of harogeneous

u-dilaticns, especially by neans of the coneept of lattiee axial sycmtry .

Recall frcan [ 6 ] that if a e A , then f:A-s A. is a lattice axial symmetry of

axis a if : 1) f is a group hamamrphism : 2) A=<aj® aL and 3) f
La>

I ,

f 1 a1= -I , with I being the identity mapping . Then we can partially rephra-

se TM : Every hcuegeneous u-dilation é
is a homotecy of ratio u on

orthogonal directions, followed by a lattice axial symmetry with respect to

one of that directions(of axis u-e), or, which is the same : it is a lattice

axial symmetry followed by a hanotecy of ratio u. Conversely, every lattice

axial symmety, followed by a harotecy of ratio u is a hanogeneous u-dila-

tion .



In the course of our study the set B of all square roots of u2 has natura-
lly arisen . We have pMved that B =La¡ la ¡= u} . Moreover,

Theorem 8 . With the same ordering of the ring, B is a Boolean algebra,
that is isamorphic to the Boolean algebra I(u) . Hence isamorphic to Hu (A) .

The preceding iscmorphism is given by I(u) -B , e r-~2e-u . It is pos-
sible now to transfer to B many of the properties that could be asserted for
the Boolean algebra I(u) .

4 . Lattice-oontractive mappings . If s is a central subunity of the f-ring
A, we can define "mutatis mutandis" the concept of lattice-contraction
(s-contraction) and hoimgeneous s-contraction by only interchanging u by s
in the definition. With certain additional assumptions on A , it is possible
to develop a theory for s-contractions, that is parallel to that of u-dila-
tions, though less satisfactory in some aspects . The difficulty appears when
serme of the properties that are valid for u-idemootents do not hold for
s-idempotents . For instance, the decompositich A= el e (u-e)'L is no more va-
lid for every eE I(s) . It remains valid however if A is Dedekind-complete
or if s is a formal unity. Other properties still hold in absence of nonzero
nilpotent elements .
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