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ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL SEQUENCE OF

STRONGLY BOUNDED SUBSETS

Kazuaki Kitihara

ABSTRACT,

	

Let

	

E(t)

	

be - a locally convex space admitting

a fundamental sequence (B n } of strongly bounded subsets .

In this paper, we consider a characterization of the subspace

B of the completion E of E(t), where each Bn=1 n

	

n
denotes the completion of Bn .

	

As a result of this, the
m

space k) B n is characterized as the smallest subspace of

all subspaces of E that contain E and have the property

that every closed strongly bounded subset is complete .

Furthermore, by using this result, we concretely study the L p -

spaces under some weak topologies . .
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INTRODUCTION .

Let E(t) be a locally convex space admitting a fundamental

sequence of bounded subsets {B n } .

	

Then many authors have

considered this space in general or under some additional condi

tions and

	

have obtained various importan t results .(

	

for

	

instance,

see M . De Wilde [3] and D . J . H . Garling [4] .)

	

As one of these
00

results, we can give the result concerned with the subspace ñil
B n of the completion E of E(t), where each B n is the com-

pletion of B n in E(t) .

	

For example, if E(t) is distinguished,

denoting by E the quasi-completion of E(t), then E = k) B n .
m

Furthermore

	

in case

	

E(t)

	

is

	

a

	

(DF).-space,

	

then

	

E

	

=

	

n=iBn .

But comparatively little attension has been paid to a locally

convex space F(t') admitting a fundamental sequence of strongly

bounded

	

subsets

	

{Cn } .

The main purpose of this paper is to consider a characteriza-

tion of the subspace k

	

Cn of the completion F .

	

To answer

this problem, we introduce a certain completion of a locally

convex space, which has the property that every closed strongly

bounded subset is complete .

	

We call this completion the S-quasi

completion .

	

The property of the S-quasi-completion is weaker



than that of the quasi-completion .

	

However, as is shown later,

under an appropriate condition we can easily obtain the S-quasi-

completion(see Proposition S .) and this completion of a non-

complete locally convex space is frequently such a delicate

subspace that is not obtained by considering the quasi-completion .

(see the results in section 4 .)

	

In these respects, the notion

of S-quasi-completion seem to be useful in application .

Here follows explanation of each section .

	

In section 1, we

explain some definitions and notations used through this paper .

In section 2, we introduce the S-quasi-completion of a locally

convex space and, under an appropriate condition, we give a

representation of this completion .

	

In section 3, by using the

result in section 2, we give an answer of the above problem .

In the final section, we use the results in section 3 to study

the s-quasi-completions of the Lp-spaces with some weak topolo-

pies, and give a few propositions with the Cauchy sequences in

this completion .

Í . PRELIMINARIES .

Mostly we shall follow the definitions and notations in H .

Jarchow [6] and H . H . Schaefer [10] .

	

Through this paper we deal

with Hausdorff locally . convex spaces over the real fíeld R .

Let E(t) be a locally convex space .

	

We denote by E' the

topological dual of E(t) and simply call this space the dual of

E(t) .

	

Further we write
Ese,(tseq)~

É(t) and E(t) for the

sequential completion, the quasi-completion and the completion of

E(t) respectively .

	

Let B be any subset of E, then to specify



a localiv convex topology we represent B[t] and á[t] for the

completion and the closure of B respectively . If (Aa } is a

family of subsets of E, then we express AC(A .~) for the abso

lutely convex cover of

	

o A~ .

	

As

	

for

	

bounded subsets

	

in

	

E(t),
a

we denote by B st the family of all closed absolutely convex

strongly bounded subsets .

	

If there exists a seqúence B 1 C B 2 c

of absolutely convex bounded (strongly bounded) subsets such

that every bounded (strongly bounded) subset is contained in some

B k '

	

then we call

	

Chis

	

sequence a

	

fundamental

	

sequence of

	

bounded

(strongly bounded) subsets .

	

Let (E, F) be a dual pair, then

we express <u, v>, u E E, v E F for a bilinear form on E and

F .

	

For the dual pair (E, F), we often use the following

"_ocally convex topologies ;

a(E, F) = the topology of uniform convergence on the set of

all finite subsets of F on E,

B(E, F) = the topology of uniform convergence on the set of

all Q(F, E)-bounded subsets on E and
w
(E, F) = the topology of uniform convergence on the set of

all a(F, E)-bounded subsets on E .

Finally we give some definitions of locally convex spaces .

	

E(t)

is said to be quasi-HG -barrelled if every bornivorous barrel in

E which can be represented as the intersection of a sequence of

closed, absolutely convex o-neighbourhoods is itself a o-

neighbourhood in E(t) .(see H . Jarchow (6j .)

	

Supposing that

every Q(E', E)-bounded subset of E' is R(E', E)-bounded, then

we call this space W-space .(see P . K . Kamthan and M . Gupta [7] .)

E(t) is said to be B-semi-Montel if every closed strongly

bounded subset is compact .(see K . Kitahara [S} .)
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2 .

	

ON A LOCALLY CONVEX SPACE .

DEFINITION Í .

	

A locally convex space E(t) is said to be a

S-quasi-complete space if for every O(E, E')-bounded subset B,

B[t] is complete .

DEFINITION 2 .

	

Let E(t) be the completion of a locally

convex space E(t) and (Ex}xEll the family which consists of

all the S-quasi-complete subspaces of E(t) with E c E x c= E .

Then we set the linear subspace E$ =
á6fl

Ex of E and call
-R

this space the S-quasi-completion of E(t) .

	

We denote by t

the induced topology from E(t) on ES .

	

To specify a locally

convex topology, we often use the notation E0 (t 1 ) for the í3-

quasi-completion of E(t) .

PROPOSITION Í .

	

The S-quasi-completion E6 of a locally

convex space E(t) is S-quasi-complete under the topology ~.

-fi
Proof .

	

Let B be an arbitrary ~(E', E')-bounded subset(The

dual

	

of

	

Es (t S )

	

is

	

E' .)

	

and

	

{Ex}AF-A

	

the

	

family

	

in

	

Definition

2 .

	

Since E o c E X and (3(E s , E') is finer than B(E X , E') on

Es for each a E A, B is O(EX , E')-bounded .

	

Thus B[tB ] _

B[t] r'
(áÉnEa) = áÉn(B[t] r, E a ) = B[t] .

	

Hence we obtain B(t]

c E~ .

REMARK Í .

	

For a locally convex space E(t), if we set E B

B[t], then it holds that
BE: B

st

E c ES c 0 c E c E .

Now we show that under what conditions E~ coincides with E



PROPOSITION Z .

	

Let E(t) he a locally convex space, then

E" coincides with E if and only if E"(t E ) is a W-space .

Proof .

	

If E 3 = E, then E 3 (t . ) is a Id-space from its

quasi-completeness .

	

Conversely let E~(t~) be a [d-space .

Since, in

	

E')-boundedness is identical with S(Ea ,

E')-boundedness, E R (t 3 ) is a quasi-complete space .

	

Hence we

obtain E a = E from Remark 1 .

DEFINITION 3 .

	

Let E(t) be a locally convex space and ES *

the dual of E'(R*(E', E)) .

	

If for an arbitrary (3(E",, E')-a _

bounded subset B of ERA , there exists a (3(E, E')-bounded

subset BO c E such that BO [6(E" , E')] :D B, then E(t)

	

is
R

r_

said to have (*)-property .

PROPOSITION 3 . . A locally convex space E(t) has (*)-

property if and on1y if E'(S*(E', E)) is quasi-barrelled .

Proof .

	

If E(t) has ( ;`)-property and B is an arbitrary

S(E" , E')-bounded subset in E" � , then there exists a S(E, E')

bounded subset BO in E such that BO [a(E",,, E')] u B .

	

Since

BO [a(E" v E')] is a S*(E', E)-equicontinuous subset, so is B .

Conversely suppose that E'(B*(E', E)) is quasi-barrelled and B

is an arbitrary O(EE')-bounded subset .

	

Then the polar Bo

of B in E' is a J*(E', E)-neighbourhood of o .

	

Hence we

take a (3(E, E')-bounded subset B 1 satisf *ving that the polar Bi

of B 1 in E' is contained in B o .

	

Consequently the polar
B00 of B o in E",, is contained in the polar

	

B00 of B 0 in

Thus we get the conclusion Erom the property of polarity .
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Using Proposition 3, first we show

LEMMA 4 .

	

Let E(t) be a locally convex space with (*)

property,

	

then

	

Che

	

B-quasi-completion

	

E0( (5( E,

	

E') B)

	

of

	

E(o(E,

E')) coincides with Eá * .

Proof .

	

Since E"

	

is the dual of E'(B*(E', E)), E" _
B

B oo , where Bo ís the polar of B in E' and Boo is the
BEBst

polar of Bo in E",

	

Every

	

B00 is equal to B[a(E" , E')]
B~

	

s-
and a(E" * , E')-compact, hence Boo = B[a(E, E')] .

	

So E(a(E,

E') B )

	

E" . follows from Remark 1 .

	

Let B be an arbitrary0 .1

B(ES * , E')-bounded subset, then by- the assumption there exists a

B(E,- E')-bounded subset

	

BD	with

	

B 'c: B0 o 1= ES A .

	

F:om this

fact, we can state that E" (a(E"

	

E')) is a B-quasi-complete
B ;.. Br

space,

	

which implies

	

EB(a(E

	

EB) = E"

Then we prove

PROPOSITION S . Let E(t) be a locally convex space with

(*)-property, then the B-quasi-completion E B (t B ) of E(t)

coincides with tl

	

![ti .

BEBst

Proof .

	

Since clearly E B (t B )

	

11

	

B[t], it is sufficient
BEBst

to show the converse inclusion .

	

First we consider the identity

map i : E(t) -" E(a(E, E')) .

	

As this map satisfies the filter

condition(see Sec . 6, N . Adasch, B Ernst and D . Keim [1] .), the
1

continuous extension i : E t (t) -~ E a(a(E, E')) of i is one to

one, where E t and Ea are the completions of E(t) and of

E(c(E, E')) respectivelv .

	

Hence we regard E t as a subspace

9 1



of

	

Eci .

	

Further

	

if

	

we

	

set

	

F

	

=

	

iwhere

	

E~

	

is

	

the

	

B-

quasi-completion of E(a(E, E')), then the subspace F of E t

is B-quasi-complete under the induced topology from E t (t) .

	

So

we also regard the B-quasi-completion ES of E(t) as a sub-

space of c5 .

	

Now let B be an arbitrary absolutely convex

B(E3, E')-bounded subset of Et .

	

Since B is B(E~, E')-

bounded, there exists an'absolutely convex (3(E, E')-bounded

subset B 1 with B 1 [Q(E, E')] z) B by Lemma 4 .

	

From this fact,

we obtain Et () B 1 [a(E, E')] = B 1 [a(Et, E')] z B .

	

On the other

hand, the locally convex topologies a(Et, E') and t B are

compatible,with the dual pair (Et, E') .

	

Hence we have Et ()

B l [a(E, E')1 = B1[t1]

	

B[tB ] = B[tB] .

	

This means that Éá is
contained in U

	

B[t] .
.BEB st

By Proposition 3, every distinguished locally convex space does

not have (*)-property and conversely every locally convex space

with (*)-property is not distinguished .

	

Here we give a normed

space which does not have (")-property by using a counterexample

in G . Káthe [9] .(see P . 435 .)

subspaces of RN x RN , we set

9 2

EXAMPLE .

	

First we use the following notations .

	

As linear

Q1 = { (x i j ) 1 E Ixi jI < +

	

},

Q = { (x i,j ) I sup Ix i jI < + W

}i,j

a =

	

{

	

(x i
j )

	

I

	

E

	

la (n) .x i

	

jI

	

<

	

+ co for each

	

n

	

c N,

	

where
i,j

a( n ~ = j Eor i g n and a( n ~ = 1 for i > n } and



a ,	=

	

{

	

(xi

	

j )

	

1

	

there

	

exist

	

an

	

n

	

E

	

N

	

and

	

a

	

c

	

>

	

0

	

such

	

that

Ixi
j 1 ;S .c-a( n ~ for (i, j) E N x N } .

Further we set

t = the locally convex topology on A generated bv the semi-

norms

	

{pn},

	

where

	

p n (x)

	

=

	

E

	

ja(
n) . x i	for

	

all

	

(x i

	

)

	

E

	

a
i,j j ,j

	

j

and all n E N .

Then a(t) is an (F)-space with its dual a' .

	

By G . Kdthe

[9], in the strong dual a'(R(a', a)) of a(t) the following

facts hold .

(1)

	

For the sequence B n = { (x i j ) 1 (x i j ) E a',
Ixi,j1

5

a i n)

	

for

	

all

	

(i,

	

j)

	

E

	

N

	

x

	

N

	

}

	

n

	

E

	

N

	

of

	

the

	

subsets

	

of

	

a',
j

{n . B n } forros a fundamental sequence of bounded subsets .

(2)

	

The family consisting of subsets . ;)f the forro U (c ) _
n

(AC(c n B n ))[6(a
,

, A)), where each c n is a positive number, is

a base of neighbourhoods of o .

(3)

	

Every o-neighbourhood U has an element u = (u i j )

such that u E 2~ and for each i E N there exists a k i E N

with u¡,k = 2 .i

(4)

	

The subset V = AC(2 -n . B n ) is borniborous and does not

have an element satisfying the condition in (3) .

	

Hence V is

not a neighbourhood of o .

To give an example, we need the following two lemmas .

LEMMA 6 .

	

710W, M

the condition in (3) .

does not have an element satisfying

Proof .

	

By 4-(1), P . 399 in G . Kdthe [9], it is sufficient

to show that the algebraic hull Va of V satisfies the



i_uu~lu .LUu .
	 ~)uppuse LuUL v
	

ttcnb di¡ cLCUICUL i. adi.i~r 11,g

the condition in (3) .

	

Then there is a v E V with [ v , u ) c

V, where [ v u ) denotes the real line segment joining v and

u, including v and excluding u .

	

On the other hand, for each

element

	

z

	

of

	

V

	

it

	

holds

	

that

	

~z
i
.

	

j
1

	

=

	

1

	

for

	

all

	

i

	

k-

	

i 0

	

and
,

all j E N, where i 0 is a sufficient large positive integer .

If we put

	

w = t 0 * v + (1-t0 ) . u,

	

and

	

if

	

t0	is a sufficiently

small positive number, since Iwi,jj
ñ (1-t0) .jui j j -

t0 .lvi,jl,

then we obtain Iwi kil > 1 for each i i i l and some k i E f,

where i 1 is sufficiently large positive integer .

	

This contra-

dicts the fact that w belongs to V .

with S(\', \) on Q .

00Proof .

	

It is sufficient to show that S(\, Q ) is identical

with the topology t .

	

Since Q
w

( , (2
co

, \)) is a subspace of

\'(Q(\', \)), Q
co
(a(R

W
, X)) admits a sequence C n = { (xi,j) 1

(xi,j) E

	

~xi,j~ 5 ai n~ } n E N such that {n-C n } is

fundamental in bounded subsets .

	

On the other hand, for an

arbitrary z = (z i
j ) E Bn = { (x i

j ) 1

	

a( n ~ for all

(i, j) E N x N } and for an arbitrary y = (yl
.,j)

E \, if we set

z (k,9)

	

=

	

(z(k,£))

	

where

	

z(k£)

	

=

	

z

	

for

	

i

	

á

	

k,

	

j

	

ñ

	

!C,
J

	

,

	

i
j

z (k,£)

	

= 0

	

otherwise,

	

then

	

we

	

have
l,j

j<Y, z - z(k,£)>j

(i,j)

	

{ (i,j)

	

i i k, j é Q } yi,J 1, .7

a
(i,j)

	

{ (i,j) 1 i :S k, j 1 1C } ly l,j .z i,j~

By the above inequality, each C n n c N is a(\', \)-dense in

94

L.EMMA 7 .

	

In the dual pair (\, 2m), 0*(QOO , X) is identical



B n . .

	

Hence the bipolar of C n in X' coincides with B n .

Since the polar of C n in X coincides with the polar of B n

in X, we obtain the conclusion .

If we consider

	

the normed space

	

(a,

	

11-11 1 ),

	

where

denotes the 2 1 -norm, then we can establish the following

PROPOSITION ó .

	

(a . li - 111) does not Nave (*)-property .

m
Proof .

	

Since the dual of (a, ~~ IIl) is k , we need only

show that Qm(RY- (Qm , a)) is not quasi-barrelled .

	

By Lemma 7,

the family consisting of the subsets of the form U (c ) n
n

where U(c ) denotes the subset in (2), forms a base of neigh-
n

bourhoods

	

of

	

o

	

in

	

Q m (S * (£ m ,

	

Further

	

every

	

U (cn)

	

()

	

Qm

contains an element satisfying the condition in (3) .

	

On the

other hand, V[(3(a', a)] ri 2m is a bornivorous barrel in Qw(Br_

(£m,
X)) and does not have an element satisfying the condition

in (3) by Lemma 6 . Thus V[S(a , , x)] r
_

	

Qm
is not a neighbour-

hood of o in Q m(S x (Qm , X)) .

3 .

	

ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL

SEQUENCE OF STRONGLY BOUNDED SUBSETS .

Now we draw the main theorem from the results in section 2 .

THEOREM 9 .

	

Let E(t) be a Iocally convex space admitting

a fundamental sequence [Bn } of strongly bounded subsets, then,
ao

for che subspace ri)l
B n (t) of the completion E(t), Che

following facts hold :

(L)

	

~~ L	Bn (t1

	

coincides

	

with

	

E~(t
B

) .
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W

	

_

	

W
(2)

	

á=1

	

en (t]

	

coincides

	

with

	

E(
_
t)

	

if and

	

on1y

	

if

	

ri)1
8n[t] is a W-space under the induced topology from E(t) .

Proof .

	

As to (1) .

	

Since E(t) admits a fundamental

sequence of strongly bounded subsets, E'(R*(E', E)) is quasi

barrelled .

	

Hence we obtain the conclusion (1) from Proposition

5 .

As to (2) .

	

By Proposition 2 and the conclusion (1), we can

verify this .

Then we have several corollaries under the same condition as

in Theorem 9 .

COROLLARY 10 .

	

n=i

	

8n(Q(E,

	

E')]

	

= E(o(E,

	

E')~)

	

= Eá*.

Proof .

	

It is clear from Lemma 4 and Theorem 9 .

COROLLARY ~Í .

	

Suppose that each Bn is precompact in
.. -

	

W ..
E(t) .

	

Then, under the induced topology from E(t), ñ=1 Bn[t]
W

is R-semi-Montel .

	

Furthermore (1 1 8n [c] is semi-!lon. tel if

and on1y if ñ=1 Bn [t] is a W-space .

COROLLARY 12 .

	

If t is the finest locally convex topology

that on each Bn induces the same neighbourhoods of o as t,

then

	

É(t~)

	

coincides with

	

E(t) .

96

W
Proof .

	

For an arbitrary strongly bounded subset B in ñ=l

Bn [t], as in the proof of Proposition 5, there exists a B n
0

such that B c
Bn0[t]

.

	

Thus the conlusion follows immediately .

Proof .

	

Noting that (2 n -B n 1 is also an absorbing sequence,



from ( ;) and (1Z) of section 16 in N . Adasch, B . Ernst and D .

Keim [1], we get the conclusion .

REMARK 2 .

	

Let E(t) be a quasi-,~JI0 -barrelled space admitting

a fundamental sequence {Bn} of strongly bounded subsets .

	

If
00

ñ) l

	

Bn[t]

	

is

	

a

	

W-space

	

under

	

the

	

induced

	

topology

	

from

	

E(t),

then, by the proof of Proposition 5 and Theorem 9, á!1 B n [t] is a

quasi-complete and quasi-~0-barrelled space admitting a fundamen-

tal sequence (B n [t]} of bounded subsets .

	

Thus ñ=1Bn[t]

coincides with E(t) .

4 .

	

ON THE LP-SPACES .

First we prepare the notations .

NOTATION Í .

	

(i)

	

Let X be a set, A(X) a Q-algebra of

subsets of X and u : A(X) - [0, -] a Q-finite measure .

	

Then

we set the following function spaces on the measure space (X,

A(X), u) ; for each p with 0 < p 5 + -,

L(p) (X) = { f(x)

	

f : X ; R is an A(X)-measurable function

such that jf(x)1 p is u-integrable . },

L(-) (X) _ { f(x) 1 f : X ; R is an A(X)-measurable function

and u-essentially bounded . },

Sim .(X) _ { f(x)

	

f =
E ai .XEi

(finite sum), where a l E R

and each XEi is a characteristic function of a subset E i E

A(X) . } and

Sim . f (X) = { f(x) 1 f = E ai -X
Ei

(finite sum) and for each
i

E i E A(X), u(E i ) is finite . } .

Furthermore we denote bv L P (X), L'(X), S(X) and S f (X) the



spaces consisting of the equivalente classes of functions in the

above four function spaces respectivelv, where the equivalente

relation

	

%

	

means that

	

f ti g +- f = g U-a .e . .

(ii)

	

For any p with 1 á p é + .~, we denote bv ~~ ~~P

the usual norm on LP(X) such that, for an arbitrary f E f E

L P (X),

11

	

f

	

H p

	

°

	

(fX

	

If1P

	

du(x)) 1/P	for

	

1

	

i

~~ f

	

ess .sup ~f(x)~ .
XEX

The topology generated by the norm

p < + and

is denoted by t
P

Now we consider the measure space on the set of all positive

integers N such that A(N) is the family of all subsets of

N and u is the counting measure .

	

In this case, LP(N) is

identical with £p for 0 < p á + ~ .

	

Then in the dual pair

(QP, $), where l~ is the space of all finite sequences,

QP( 0 (QP , kP)) is S-Montel for 1 é p 1 + m by Proposition 2 in

K . Kitahara [8], hence the S-quasi-completion of Qp(0(RP, Vj))

is QP for 1 1 p 5 + - .

	

For the R-quasi-completion of

QP( a (QP , ,p)) "0 < p < 1, the following holds .

PROPOSITION 13 .

	

For any p with 0 < p < 1, the R-quasi-

completion of £p(a(kp, $)) coincides with
Q1 .

Proof .

	

~(Q(0, Q P )) . admits a fundamental sequence B n = { x

x

	

E

	

W c

	

2CO

,

	

~~ x~~~

	

`=

	

n

	

)

	

n

	

E

	

N

	

of

	

bounded

	

subsets .

	

Since

each

	

Bn	is

	

t.-dense in { x 1 x E c 0 c Q

	

x

	

n } ,

QP(s(QP, ~U)) admits a fundamental sequence C n n E N of

bounded subsets such

	

that

	

Cn = {

	

x

	

x E QP C Q 1 ,

	

~~ x ~~ 1

	

= n }

S

	

R
n

	

E

	

N .

	

Hence

	

by

	

using

	

Theorem

	

9,,2p

	

(a(2 P ,

	

q)

	

)

	

=

	

ñ= 1

	

Cn [o(zP,
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REMARK 3 .

	

Let X be a set .

	

We put 2 p (X) = { (ZX)XEX

(Z )

	

E RY , E IZ I p < + m } for 0 < p 5 1 and O(X) =
x XE.

	

XEX x

	

XEX
R x ,

	

where

	

each

	

R x

	

=

	

R .

	

Then,

	

by

	

che

	

similar

	

proof

	

of

	

Proposi-

tion 13, we obtain ZP (X) s (a(Lp (X), 4)(X)) a ) _ Z 1 (X) for 0 < p

1 .

Let (X, A(X), U) be any 6-finite measure space .

	

Th.en in

che dual pair (LP(X), S f (X)), 1 < p 5 + m , we consider che R-

quasi-completion of LP(X)(a(LP(X), Sf(X))) .

THEOREM 14 .

	

For any p with 1 < p 5 + m, Lp_(X)(6(Lp(X),

Sf(X))) is R-semi-Montel . hence che S-quasi-completion of chis

space is itse1f .

Proof .

	

It is sufficient to show that every strongly bounded

subset is relatively compact in LP(X)(o(LP(X), Sf(X))) .

Sf(X)(Q(Sf(X), LP(X))) admits a fundamental sequence B n n E N

of

	

bounded

	

subsets

	

such

	

that

	

Bn	=

	

{

	

f

	

f

	

E

	

Sf (X) ,

	

I)

	

f

	

11 q

	

5

	

n }

n E N, where . 1/p + 1/q = 1 and if p

	

then q = 1 .

	

Since

each Bn is t q -dense in { f 1 f E Lq (X), 11f 11q 5 n },

LP(X)(S(LP(X), S f (X))) admits a fundamental sequence C n = { f

f E L P (X), Ilf 11p 5 n } n E N of bounded subsets .

	

Each C n

is Q(L P (X), S f (X))-compact by che reflexivility of LP(X)(t p )

and che fact that L W (X) is che dual of L 1 (X)(t 1 ) .

	

Hence

L'(X)(a(LP(X), S f (X))) is S-semi-Montel .

Using Theorem 14, we obtain a corollary related with Vitali-

Hahn-Sales theorem .



COROLLARY 15 .
	

Let (X, A(X), U) be any finite measure space

and H the space which consists of all sequences converging to

o

	

in

	

L1 (X) (a (L 1 (X),

	

S(X))) .

	

If

	

{fn}

	

is

	

a

	

Cauchy sequence

	

in

L 1 (X) (a (L 1 (X), S(X)», then {fn }

	

has a limit in LP (X), 1 < p g

+ °°,

	

if and only if

	

there exists a

	

subsequence

	

{f
nk

}

	

such

	

that

inf

	

suplí f

	

- h 11

	

is finite .

	

However in case g does
{ h k } EH

	

k

	

nk

	

k

	

p

not belong to L P (X), we put 11 g 11 p = + °° .

Proof .

	

By Vitali-Hahn-Saks theorem, {f n } converges to an

f 0	E

	

L1 (X) .

	

If

	

f0	E

	

LP(X),

	

then,	{fn

	

-

	

f0}

	

E

	

H

	

by

	

putting

	

f n

_ (f n - f 0 ) + f 0 n E N .

	

Hence the necessary condition holds .

Conversely suppose that there exist a subsequence {f } of
nk

{f n } and a {h k } E H satisfying that skp 11 f n - hk~~p < + m .
k

Then the sequence {g k }, gk = f n - h k k E N is a Cauchy
k

sequence in LP(X)(a(LP(X), S(X)) .

	

Thus by Theorem 14 there

exists

	

a

	

g0 E

	

LP(X)

	

to

	

which

	

{g k}

	

converges .

	

Since

	

(f n}

is a Cauchy sequence, {f n} and {gk} have the same limit .

REMARK 4 .

	

(1)

	

The fact that L.(X)(o(L'O(X), S f(X))) is S-

semi-Montel is a generalization of bounded convergente theorem .

(2)

	

In general since LP(X) 0 < p < 1 and S f (X) do not

form a dual paic, we can not consider the weak topology on LP(X)

by S f (X) unlike the case of 0 0 < p < 1 .

Next we consider the S-quasi-completion of L1(X)(a(L1(X),

S(X))) and L1(X)(a(L1(X), S f(X))) .

	

Before giving the results,

we need the following notations .

NOTAT[ON Z .

	

(i) Let (X, A(X), u) be any a-finite measure



space and F(X) the set of real-valued functions 1 on A(X)

such that

(a)

	

sup { I~(A)I I A E A(X) } < +

(b)

	

j(A t) B) = j(A) + J(B) for A, B E A(X) and A () B =

and

(c)

	

j(A) = 0 if A E A(X) and W(A) = 0 .

For such a ~, we define

	

on A(X) by the rule
n

I~I(A) = sup { jZ l I1(A j )I 1 Aj E AM, j = 1, 2 , . . . , n, A ri
n

A
j
=

	

for

	

i r j

	

and

	

1j

	

A .

	

A } .
j=1

Then F(X) is a linear space and we . can define a norm II .IIF

such that

	

II1IIF = I1I(X) .

	

This norm space (F(X), II-IIF) is

identical with the strong dual of (L <'O(X),

	

where for an

arbitra,ry 1 E F(X) and an arbitrary equivalence class IA E

L (X) to which X A , A E A(X), belongs, the following bilinear

form holds ; <j, I A? = Z(A) . (see P . 357 in E . Hewitt and K .

Stromberg [5} .)

	

Further by considering the injection map i l

L 1 (X)

	

+ F(X)

	

such

	

that

	

f E f

	

and

	

ET(A)

	

= IA

	

f

	

du(x)

for all A E A(X), (L 1 (X), li- 11 1 ) is a subspace of (F(X),

(ii)

	

Under the same condition of (i), we denote by F0(X)

the set of real-valued functions

and u(A) < + - } satisfying that the conditions replaced A(X)

in

	

(i)-(a),

	

(b)

	

with

	

A0(X)

	

and

	

the

	

condition

	

(i)-(c)

	

hold .

then (FO(X), 1 1-11 FO)

n on A0 (X) - = { A 1 A E A(X)

n
Similarly we can define Ini(A) = sup { jEl In(A j )I 1 A j E

n
A (X), j = 1, 2,---, n, A . rt A . _ ¢ for i ~ j and S1 A . _
0

	

1 j

	

j=1
A } for all A E AO(X) .

	

Hence if we set

	

IInIIFO = sup

	

Inj(A),
AEAO(X)

is a normed space and identical srith the



strong dual of (S f (X), 11 -¡l) .

	

For the bilinear form in

F0 (X) and S f (X), the same formula of (i) holds .

	

Moreover

setting

	

the

	

injection

	

map

	

i 2

	

:

	

L
1
(X)

	

}

	

F0 (X)

	

such

	

that

and , nf(A) = f A f du(x) for A E A O (X), (L 1 (X), 11 - 111)

is a subsp'acé o£ (F0(X), ~~ I~FO) .
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Using these notations, we obtain

THEOREM 16 .

	

Let (X, A(X), ü) be any Q-finite measure

space, then L 1 (X) S (a(L 1 (X), S(X)) s ) = L1(X)(a(L1(X), S(X))) _

F(X)

	

and

	

L 1m , (a(L 1 (X), S f (X» R ) = FO(X) .

-

	

Proof .

	

First we consider the ' B-quasi-completion of

	

L 1 (X)

(a(L 1 (X), S(X))) .

	

S(X)(Q(S(X), L 1 (X))) admits a fundamental

sequence B n n E N of bounded subsets such that B n = { f 1 f

E

	

S( X),

	

~~f

	

l¡.

	

á-

	

n

	

}

	

n

	

E

	

f .

	

Since

	

each

	

Bn	¡s

	

t.-dense

	

in

{ f 1 f E L. (X), 11 f ~~ . 5 n }, L1(X)(S(L1(X), S(X))) admits a

fundamental sequence C n = { f

	

f E L 1 (X), 11f 11 1 á n } n E N

of

	

bounded

	

subsets .

	

Hence

	

the

	

topology

	

0x (S(X),

	

L 1(X))

	

is

identical

	

with

	

t0	on

	

S(X) .'

	

Noting

	

that

	

(S(X),

	

~~-

	

11 .)

	

is.a

dense subspace of (L m (X),

	

by Corollary

L 1 (X) S (a L 1 (X), S(X)) s ) = F(X) .

	

Moreover since F(X)(a(F(X),

S(X))) is sequentially complete by Main Theorem in T . Andó [2J,
R

	

R
from

	

Proposition

	

2

	

we

	

have

	

L 1 (X)

	

(a(L i (X),

	

S(X))

	

)

	

=

	

L 1(X)

10 we obtain

(a(L 1 (X), S(X))) .

	

As for L 1 (X)(a(L 1 (X)1 s f (X))), by the

similar argument, it holds that B Y (S f (), L 1 (X)) is identical

1 a 1
with t m on S f (X) .

	

Hence we obtain L (X) (a(L (X), S f (X)) )

=

	

F0 (X)

	

bv

	

Corollary

	

10 .



In Vital¡-Hahn-Saks

	

theorem

	

the Cauchy sequences

	

in

	

L1 (X)

(Q(L 1 (X), S(X))) are dealt with and the Cauchy sequences in

F(X)(a(F(X), S(X))) are treated in Main Theorem in T . Andó [2] .

Here we shall investigate the Cauchy sequences in FO(X)(a(FO(X),

S f (X))) .

	

If, for an arbitrary 1 E F 0 (X),

	

denotes anv

continuous extension of 1 on (S(X), ll-II.) with 11"IF0

11 1 IIF, then we can prove

THEOREM *17

	

Let (X, A(X), u) be any Q-finite measure space

and

	

FO(X)

	

the

	

dual

	

of

	

(Sf(X),

	

II "

	

II � ) .

	

For a

	

Cauchy sequence

{1n} in FO(X)(Q(FO(X), S f (X))) the following facts hold .

(1)

	

{in }

	

converges

	

to

	

a

	

10	E F0(X)

	

if and only if

sup

	

lim I~ (E)¡ < + ao .
EEAO(X) n n

there

	

exists a

	

10	E

	

F(X)

	

with

	

10 (E)

	

=

	

Iim

	

1n (E)

	

for all

	

E

	

E
n

A(X) .

(2)

	

{in } is a Cauchy'sequence in F(X)(a(F(X), S(X))) if

and only if there exists an fncreasing sequence . {En } of subsets

of

	

X

	

such

	

that

	

En

	

E A 0 (X)

	

n

	

E

	

N

	

and

	

che

	

sequence

	

En	=

skp(II ~k IIFO

	

Iyk l(En )) n E N converges to 0 .

	

In this case,case,

1
(3)

	

{in} is a Cauchy sequence and lim 1n E L (X) if and
n

only if there exists a sequence {E n } of subsets of X satis-

fying the condition in (2) and for this sequence there is a

sequence {d n }, d n > 0 n E N such that the sequence c n = sup {

lim Il i (F)j I F c En and u(F) < 8 n
} n E N converges to 0 .

i
In

	

this

	

case,

	

there

	

exists

	

a

	

1O

	

E

	

L 1 (X)

	

with

	

I E E 0 dU(x)

	

=

	

lim
n

in(E)

	

for all

	

E E AM .



A O (X), then ss"0 belongs to FO (X) if and only if sup
EEA0 (X)

Il¡ms n (E)l = sup

	

limli (E) l < + -

	

by Notation 2-(ii) .
n

	

EEA 0 (X) n n

finite, we set an increasing sequence {X .} of subsets of X
1

with U(X i ) < + °° and ~~ X . = X .

	

Suppose that {~ } is a
i=1 1

	

n

Cauchy sequence .

	

Since

each

	

n E

	

N

	

there

	

exists

	

an

	

increasing

	

sequence

	

{Y (n)}

	

such

that

	

Y ( n)

	

E

	

AO(X)

	

and

	

II

	

~ n

	

II F	-

	

I

	

l(y(n))

	

<

	

1/i .

	

Then

	

we
0 n

consider the following increasing sequence {Z n } ; Z 1 = X 1 ~~

Yi 1) , Z 2 = X~ 1)
y2

1) 1) y2 2 )~ . . .~ Zn = X n k)
yn

l) . ll . . .

y(n), . . . . Clearl each Z E An

	

y

	

n

	

0(X) n E N and n=lZn = X .
j

For this sequence, observing that II n l(x) - (11 1(21) + kEl

I1 n l(Zk+1

	

-

	

Zk))

	

<

	

l/j

	

for

	

each

	

n

	

E

	

Y

	

and

	

all

	

j

	

1

	

n,

	

it

	

holds

that

	

11 1(X) =

	

11n1(Z1) + kE l

	

I 1 nl(Zk+1

	

Zk )

On the other hand, for the sequence {Z n } and the Cauchy sequence

{fi n }

i. L VN~ . no	 l.U	 ~ . f .	
11

	
wc bet_

	
bok ~/

	 = lilil s n k c')
	

LUC
	 e t,

n

As to (2) .

	

Since the measure space (X, A(X), U) is Q-

III n II F = IIs n fI Fo for all n E N, for

for each n E N .

by using Lemma 4 in T . Andó [2], there is a {n~} c N such

that sup lykl(Zi - Z j ) < 1/2Q for , all i, j 1 nQ . . Now we

shall show that for an arbitrary E > 0 there is a k(E)

with sup I~ k l(X - Zk(E)) < E .
k

For given positive number E, if

we put Z0 with 1/2 20 < E/2, then we obtain, for each k E N,

l~ k l(X

	

-

	

Zn£O)

	

=

	

l'kl(11Z0(Zn
1
. + 1

	

-

	

Zn
1
.))

	

=

	

J.l 0
llkl(Zn

1. +1

	

Zn . )1

á E

	

1/2 1 = 1/2 Q0

	

1 < E .
i =Q 0

Hence if we put
Zk(E)

= ZnQ, then the conclus -ion follows .
O

Converselv suppose that there exists an increasing sequence

{E n } satisfving the condition .

	

For an arbitrary E E A(X) and

an arbitrary E > 0, we take an n 0 E N with E n < E/3 for a11
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n 1 n 0 .

	

If we set E = (E () E n0 ) t~ (E (i Eñ0 ), where E10 is

the complement of E nO , then we obtain , for all n, m --

li n (E)

	

-

	

~m (E)1

	

=

	

lzn(E

	

(i

	

En0 )

	

-

	

¿m(E

	

(l

	

En0 )¡

é

	

11n (E

	

()

	

En0)

	

-

	

I m (E

	

r)

	

En0 )j

	

+

	

2-E/3 .

Hence taking an n i E N such that n 1 1 n 0 and for all n, m a n i

li n (E

	

()

	

E
n0

)

	

-

	

1m(E

	

()

	

E
n0

)j

	

<

	

E/3,

	

we

	

have

	

lzn (E)

	

-

	

1m (E)j

	

<

	

E

for all n, m i n i .

	

Clearly by Theorem 16 the Cauchy sequence

{fi n } has a limit ~0 in F(X) and it holds that 1 0 (E) = lim
n

I n (E)

	

for

	

all

	

E

	

E

	

A(X) .

As to (3) .

	

Suppose that {I n } has a limit in L 1 (X) .

	

Then

from absolute continuity with the measure space (X, A(X), u)

and the proof of (2), the necessity follows .

Conversely assume that the necessary condition holds .

	

Then

we need only show that Z0 = lim 1 n is countabl_v additive .

	

For
n

an arbitrary sequence {F n } c A(X) with F n () Fm =

	

for n r
k

	

m
m, it holds that Eo(i)i F i ) - ip1 10(Fi) + SO(i=k+1 F i ) for all

k E N from its finitely additivity .

	

For an arbitrary E > 0,

we

	

can

	

take

	

an

	

n0

	

E

	

N

	

with

	

cn ,

	

E n

	

<

	

E/3

	

for

	

all

	

n

	

1

	

no,

	

bv

the

	

assumption .

	

Then we

	

set

	

Dk

	

=

	

(i=kT1 F i )

	

r)

	

En0'

	

Gk

	

(i=k+1

Fi )

	

n

	

E n0

	

for

	

all

	

k

	

E

	

N .

	

Since

	

{Gk }

	

is

	

a

	

decreasing

sequence such that u(G 1 ) < + m and ri Gk	thereesists a
k=1

k0 E N satisfying that u(G k ) < 6
n0

for all k ó k0 .

	

Hence

for each k i k 0 and all sufficiently large n which depends on

k, we obtain

n 0'

+ ~~ n (E () Eñ 0 ) - 1 m (E () En0)~

Fi)I

	

=

	

I&n(D k )

	

+

	

in(G k)¡

	

1

	

¡In(Dk)l

	

+

	

¡In (Gk)I

9 E/3 + 2-E/3 5 E .



Thus we have
	

I ~0 ( i=k+1

	

Fi ) I

	

-

	
lim

	

I ~n ( i=k+1

	

Fi ) I

	

° E
	

for
	

all

k

	

á

	

kO,

	

which

	

implies

	

the

	

sequence

	

(1O(i=k+i

	

Fi )}k

	

converges

	

to

0 .

	

This completes the proof .

REMARK 5 .

	

(1)

	

Let A(R) be the family of all Lebesgue

measurable subsets on R and u the Lebesgue measure on (R,

A(R) ) .

	

If ve

	

consider

	

the

	

sequence

	

~n (E)

	

=

	

u(E

	

()

	

[-

	

n,

	

n])

n E N, E e A(R), then (&n } c F 0 (R) is a Cauchy sequence in

F0(R)(O(FO(R), S f (R))) but sup

	

lim l~ n (E)j = + ~ .
EEA0(R) n

(2)

	

Let

	

(R,

	

A( R),

	

u)

	

be

	

the

	

same

	

measure

	

space

	

in

	

(1) .

If we consider the sequence vn (E) = u(E 1) [2n, 2n + 1]) n E N,

E E A(R), then (vn } c F O (R) is .a Cauchy sequence converging to

o in FO(R)(a(FO(R), S f (R))) and sup livn ''F0(R) _ :. .

	

But

this sequence does not have an increasing sequence of subsets of

R in Theorem 17-(2) .

	

Thus (v } is not a Cauchy sequence inn
F(R)(6(F(R), S(R))) .

Finally ve give a slight consideration on the space of all

real-valued continuous functions .

NOTATION 3 .

	

Let X be a Hausdorff compact topological

space .

	

Then we use the following notations :

B(X) = the Borel algebra of X,

u(-) = a regular measure on (X, B(X)),

C(X) = the space of all real-valued continuous functions on

X,
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C(X) = the equivalente classes of C(X) with the measure

space (X, B(X), u),

11 - llu = the uniform norm on C(X) and



ll' Il . = the essential supremum norm on C(X) .

Further in the dual pair (C(X), S(X)), we consider the bilinear

form

	

<f,

	

h> =

	

I
X

f -h dll(x)

	

for

	

f E f E C(X)

	

and

	

h E h E

S(X) .

THEOREM 18 .

	

In the space C(X)(a(C(X), S(X))), the following

facts hold ;

(1) C(X)S(o(C(X), S(X)) S ) = LCo(X),

(2) C(X)

	

(a(C(X), S(X))

	

) = L (X) and

(3) C(X)(a(C(X), S(X))) = F(X) .

Proof .

	

As to (1) .

	

For an arbitrary f E C(X) and an
_

	

_

	

n
arbitrary h E S(X), if f E f and h = iE1 niXE E h, then we

obtain

l<f,

	

h>-l

	

=

	

IIX

	

f .(¡=l CLdu(x)I

	

=

	

l irl a i -(f X f-XE . du(x))I
i

m ¡El lail .ifx_

	

f .XEi
du(x)I = Iif ii m '( i E l I~ i l-u(E i ))

= Ilh il l 'll f Il u .

Bv the above inequalitv, we can regard S(X) as a subspace of

the

	

dual

	

of

	

(C(X),

	

IIII u ) .

	

Hence

	

S(X).(a(S(X),

	

C(X)))

	

admits

a fundamental sequence B n = { h I h E S(X), II h 11 1 = n }

	

n E N

of bounded subsets .

	

Since each Bn is t l -dense in { f l f E

L 1 (X),

	

11T 11 1 á n }, C(X)(S(C(X), S(X))) admits a fundamental

sequence C n = { g I g E C(X), I) g II . á n } n E N of bounded

subsets .

	

On the other hand, since X is compact and ü is a

regular measure, each C n is o(L00 (X), S(X))-dense in ( h I h E

L"' ( X),

	

111

	

Il m 1 n

	

} .

	

Hence we

	

get

	

the conclusion

	

from Theorem

14 and Corollary 10 .
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As to (2) .
	

For an arb¡trary f E L - (X) and an arbitrarv

positive number E, there exists a h E S(X) with 11 f - h11 l <

E .

	

For h E S(X), from the assumption of the measure space,

there is a g E C(X) with ~~ g -

	

l < E .

	

By this, for each

f 1E L (X) we can take a sequence {O-n} c: C(X) which converges
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