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ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL SEQUENCE OF

STRONGLY BOUNDED SUBSETS

Kazuaki Kitihara

ABSTRACT. Let E(t) ©be a locally convex space admitting
a fundamental seguence {Bn} of strongly bounded subsets.

In this paper, we consider a characterization of the subspace

[} - M ~ -
Ail Bn of the completion E of E(t), where each Brl
denotes the completion of Bn' As a result of this, the
o -
space éil B, is characterized as the smallestc subspace of

-~

all subspaces of E that contazin E and have the property
that every closed strongly bounded subset is complete.
Furthermore, by using this result, we concretely study the L?-

spaces under some weak topologies.
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INTRODUCTION.

Let E(t) be a locally convex space admitting a fundamental
sequence of bounded subsets {Bn}' Then many authors have
considered this space in general or under some additiocnal condi-
tions and have obtained various important results.( for instance,

see M. De Wilde [3] and D. J. H., Garling [4].) As one of these

o

results, we can give the result concerned with the subspace éll

Bn of the completion E of E(t)}, where each Bn is the com-

plecion of Bn in E(t). For example, if E{t) 1is distinguished,
— — ™

dencoting by E the quasi-completion of E(t), then E = éiLBn

Furthermore iﬁ case E{r) is a {(DF}-space, then E = hilﬁn

But cemparatively little attension has been paid to a locally
convex space F(t') admitting a2 fundamental sequence of strongiy
bounded subsecrs [Cn}-

The main purpose of this paper is to consider a characteriza-

=] ~ ~
tion of the subspace éJ Cn of the completion F. To answer

=1
this problem, we introduce a certain completicn of a locally
convex space, which has the property that every closed strongly

bounded subset is complece. We call this complection the B-quasi-

completion, The property of the B-quasi-completion is weaker
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than that of the quasi-completion. However, as is shown later,
under an appropriate condition we can easily obtain the B-gquasi-
complerion{see Proposition 5.} and this completion of a non-
complete locally convex space is freguently such a delicate
subspace that is not obtained by considering the gquasi-completion.
{see the results in section 4.,) In these respects, the notion

of B-quasi-completion seem to be useful in application..

Here follows explanatiom of each section. In section 1, we
explain scme definitions and notations used through this paper.
In section 2, we introduce the f-gquasi-complerion of a locally
convex space and, under an appropriate condition, we give a
representacion of this completion. In section 3, by using the
result in section 2, wa give an answer of the above problem.

In the final section, we use the results in section 3 to study
the B-quasi-completions of the Lp—spaces with some weak topolo-
gies, and give a few propositions with the Cauchy sequences in

this completion.

1.  PRELIMINARIES.

Mostly we shall follow the definitions and notatioas in H.
Jarchow [6] and H. H. Schaefer [10]. Through this paper we deal
with Hausdorff locally convex spaces over the real field R.

Let E{t) be a locally convex space. We denote by E' —the
topological dual of E(t) anad simply call this space the dual of
E{t). Further we writge Eseq(?seq)' E(Y) and E{;) for the
sequential completion, the quasi-completion and the completion of

E{t) respectively. Let B be any subset of E, thea to specify
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a igcally convex Lopology we represent LG C] and bR ior the
completion and the closure of B respectively. If {AQ} is a

family of subsets of E, then we express ACU(4,) for the abso-

lucely convex cover of i;Aa. as for bounded subsets in E(t),
we dencte by Bst the family of all closed absolutely convex
strongly bounded subsects. If there exists a sequence B1 < 82 <

of adsolutely convex bounded {strongly bounded} subsets such
that every bounded {strongly bounded} subset is contained im scome

B then we call this segueace & fundamental sequence of bounded

K
(strongly bounded) subsets. Lec {E, F) be a dual pair, then
we express <u, v>, u € E, v ¢ F for a bilipear form on E and
F. For the dual pair (E, F), we often use the following
iocally convex topologies;

g{E, F) = the topology of uniform convergence on the set of
all finite subsets ¢f F on E,

B(E, F) = the topology of uniform convergence on the set of
all g(F, E)-bounded subsets on E and

Bﬁ(E, F) = the topology of uniform convergence on the set of
all B{F, E)-bounded éubseés on E.
Finally we give some definitions of locally convex spaces. E{t)
is said te be quasi—kb—barrelled if every borpivorous barrel in
E which can be represented as the iatersection of a sequence of
closed, absolutely convex o-neighbourhoods is itself a o-
neighbourhood in E{t}.{see H. Jarchow [6].) Supposing that
every g(E', E)-bounded subset of E' 1is B{E"', E)-bounded, Chen
we call this space W-space.{see P. K. Kamthan and M. Gupta [7].)
E{t) 1is said to be B-semi-Montel if every closed strongly

bounded subset is compact.(see K. Kitahara [3].)
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2. On A LocALLY

DeFintTION 1.

B-quasi-complete space if for every B{E, E')-bounded subset

BE[t] is complece.

DEFINITION 2. L

convex space E(t)

all the B-quasi-comp
Then wé ser the line
this space the B-qusa
the induced topology
We

convex topoclogy,

gquasi-completion of

PrOPOSITION 1.

convex space £E(t)

Proof. Ler B

dual of EB(EB) is

E E

A
Ae A,

2.

Since =

ES for each
g t] rv E =
(x] (ken A) AE

E

=

REMARK 1. For a

ﬁ[t], then it h
t

L
BeB
5

B

E< E < P

E

Now we sheow that

A

CONVEX SPACE-

locally convex space E{t}) 1is said to be a

B,

et E(E) be the completion of a locally
and {El}keh the family which consists of
lete subspaces of E{E) with E < Ey < E.
ar subspace - 0 E, of E and call
Aed 8
si-completion of E{(t). We denote by ¢t
from E(t) on ES. Toe specify a locally
often use the notation ES(ES) for the B~
Ef{t).
The B-quasi-completion E of a lecally

: —£
is B-quasi-complete under the topology ¢t .

8
be an arbitrary B(E , E')-bounded subsec{The

E'.) and {EA}Aen the family in Definition
and B(ES, E') 1is finer than B(EA' E') on
B is B(E,, E')-bounded. Thus BIEY] -
A(ﬁ[t] " Ey) = g[t}. Hence we obtain Bt}
. R

locally convex space E(t), Lf we set E =
olds that

< E c'g.

under what conditions EB coincides with E.
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PRoPOSITION 2. Let E(t) be a locally convex space, then
8

—_ PR S
E coincides with £ if and only if E(t"} 1is a W-space.

o

— - —R
Proof. It EB = E, then E”(ts) is a W-space from its
quasi-completeness. Conversely let ES(EB) be a W-space.

-8 =8

Since, in EB(t J, o(E”, E')-boundedness is identical with B(EB,

E'y-boundedness, EB{Eg) i5 8 quasi-complete space. Hence we

obrain E” = E from Remark 1.

DeFiniTion 3. Let E{t}) be a locally convex space and EE*

the dual of E'(8*(E', E)). If for an arbitrary B(Eé E*)-

N

bounded subset B of EU there exiscs a B{(E, E')-bounded

g’

subset B, = E such that EO[U(Eé E‘')] = B, then E(t) is

*’

sald to have (¥)-propercty.

ProrosiTiON 3. . 4 Iocally convex space E(t) has (*)-

property if and only 1f E'(B*(E', E)) 1is quasi-barrelled.

Proof. If E{(t} has (®*)-property and B 1is an arbitrary

B(Eé*, E')-bounded subset in Eg%, then there exists a B(E, E')-

bounded subset B0 in E such that EO[U(EE*’ E')] = B. Since

EO[G(E" E'}] 4is a B*(E', E)-equicontinuocus subset, so is B,

Bi!"
Conversely suppose that E'(R®(E', E)) is quasi-barrelled and B

is an arbitrary E(Eé%, E'Y-bounded subset. Then the polar B°
of B in E' is a R¥(E', E)-neighbourhood of o. Hence we
take a B{E, E')-bounded subsert B1 satisf?ing that the polar B?
of B1 in E' is contained ia B°. Consequently the polar

8°° of 8% in Eé* is contained in the polar _BTO of B? in
.. Thus we get the conclusion from the property of polarityv.

3
S
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Using Proposition 3, first we show

LEMMA 4. Let E(t) be a locally convex space with {*)-

e B

property, then the B-quasi-coampletion EF(O(E., E'J°) of E(O(E.

£')}) coincides with Eé*.

Proof. Since EE* is the dual of E'(B*(E', E)J, EE* =
oo

LV B°°, where B8° is the polar of B in E' and B°°
BEBS

is the
t

polar of 8% in Eg*. Every B°° is equal to E[O(Eé*. E')]
and o(EE*, E')-compact, hence B°? = Blo(E, E')]. So ES(ETET
ETTB) > EE* follows from Remark 1. Let B be an arbitrary
B(EE*, E')~bounded subset, then by the assumption there exists a
B(E, E')-bounded subset B, with B 380 < EE*. From this

fact, we can state that EE*(G(E" E')) 1is a B-quasi-complete

g’

space, which implies EB(G(E, E')e) = EEW

Then we prove

PROPOSITION 5. Let E(t) be a locally convex space with

5(?8) of E(t)

(*)-property, then the f-quasi-ceocamplation E
coincides with 4) ﬁ{c}.

B€Bst

. Proof. Since clearly EB(?S) ERN ) B[], it is sufficient
BeB
st

to show the converse inclusion. First we consider the identity
map 1 : E(t) - E(G(E, E'"}). As this map satisfies the filter
condition(see Sec. &, N. Adasch, B Ernst and D. Keim [1].}, the
- - - ~ .———.,_‘_‘_____", . !
continuous extension i : Et(t) + EU(O(E, E')) of i 1is one to

- -

one, where Et and EU are the completions of E(t) and of

E(o(E, E"Y) respecrively. Hence we regard E_ as a subspace
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of Eg. Further if we set F = I'I(Eg), where Eg ié the 8-
quasi-completion of E(U(E,-E'}), then the subspace F of E
is B-quasi-complete under the induced topology from E_(t). So
we also regard the B-quasi-completion EE of E{(t) as a sub-
space of Eg. Now let B be an arbitrary absolutely convex
B(ff, E')-bounded subsec of EE. Since B is B(Eg, E'})-

bounded, there exists an absolutely convex B(E, E')-bounded

s5ubser B1 with EL[U(E’ E')] > B by Lemma 4. From chis fact,
we obrain Ty 0 B {o(E, B')] = B [0(E°, €')] > B. On the other
hand, the locally convex topologies O(EE, E') and FE are
compatible with che dual pair (ﬁf, E'). Hence we have EE 0N
glfc(E, E"yl = El[?ﬁ] s ﬁ[fﬁ] - B[(TR]. This means that EE i§
contained in L) g{t].

_BeBst

By Proposition 3, every distinguished locally convex space does
not have (*)-property and conversely every locally convex space
with (#)-preperty is not distinguished. Here we give a normed
space which does not have (¥#)-property by using a counterexample

in G. Kéthe [9].(see P, 435.)

FxAMPLE. First we use the following notations. i4s linear
! h
subspaces of Rh x RN, we set
1
o= (x. )| £ |x. .| <+ =},
L,] i, 1,1]
g = { (x; )} sup |x, .} <+ &},
1’.] l,J '-}
- (n)
ho= | (xl,j) | 1£j|ai’j.xi’3r < + w for each n £ N, where
a?n} = j for {1 £ n and a?n} =1 Ffor i »n } and
1,] 1,;]



A" = { (x., .) ] there exist an n e ¥ and a ¢ > Q0 such that

|
< c.qln) L

rxi.jJ -cray for (i, j) e N x N }.
Further we set

t = the locally convex topology on by generated by the semi-

_ (n),

norms {pn}, where p (x) = i?j’ai-j xi,jl for all (xi,j) E A
and all =»n ¢ N.
Then A{t} 1is an (F)-space with its dual Ai'. Bv G. Kothe

9], in the stromg dual A'(B{A", A)) of X(t) the following
g

facts hold.

n

(1) For the sequence Bn = { (xi,j) | (xi,j) £ A, ]xi,.f

agn; for all (i, j) e N x N} ne N of the subsets of A',
{n-Bn} forms a fundamental sequence of bounded subsets.

(2) The family consisting of subsets pf the form U(c )
n
(AC(cn‘Bn))[G(A', A}], where each € is a positive number, 1is

a base of neighbourhoods of o.

{3) Every o-neighbourhood U has an element u = (ui jJ

o
such that u = % and for each i £ N there exists a ki £ M

with u 2.

i,k
(4) The subset V = AC(2

1 . . .
-Bn) is borniborous and does not

have an element satisfying the condition in (3). Hence V is

not a neighbourhood of o.
To give an example, we need the following two lemmas.

LEMMA 6. V{B(A‘, A)] does nor have an element satisfying
the condicion in (3).

Proof. By 4-(1), P. 399 in G. K&the [9], it is sufficient

a

to show that the algebraic hull V¥ of V satisfies the
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s Ea s s e e =
the condition in (3). Then there is a v & V with [ v , u ) <
V, where [ v ,u } denotes the real line segment joining v and
u, including v and excleding u. On the other hand, for each

element 2 of V it holds that |z, .} s 1 for all i 2 i; and

1,]
is a sufficient large positive integer.

0

all j g N, where io

If we put w = tg v + (1—t0)'u, and if tp 1s a sufficiently

small positive number, since |wi,j| z (l_tO)-lui,j! - t0-|vi’j],

| > 1 for each i z i and some ki € N,

then we obtain {w. 1

l,ki

where i is sufficiently large positive integer. This coatra-

dicts the fact that w belongs teo VY.

Lemma 7. In the dual pair (A, 2%, B*(2", \) is idenrical

L=~}

with B(X' X)) en & ,

Proof. It is sufficient to show that B(A, Ew} is identical
with  the topology t. Since Rw(c(im, X)) 1is a subspace of
AT(o(AT, A)), 2°¢o(2”, \)) admits a sequence c, = { (x J_) f

= {n) ; . :
(xi,j} e L, [x i3 } ne¥ such that {n-C_} 1is
fundamencal in bounded subsecrs. On the other hand, for an
1,_]) I fxi,j
(i, 3) e ¥ x N} and for an arbitrary y = (y. .) € i, if we set

i,
k,2) (k.ﬂ}) where z(k’l) = for 1 =
i,] ! 1,3 i,3
0 otherwise, then we have
L)

. ] s a
i,]

[ sa™) for all

arbitrary 2z = (zi.j) £ Bn = { (x 1]

2 (2 k, j s 2,
z(kﬁg)
l.,J

i<y,

>

by oz
(1,50 € { (i,3) | 1 sk, 3 &} 1,0 1]

z ozl .
: (i,j) € { (i,j)y | i =k, j s 2} i, zl’J‘

, Al-dense 1in

"
-
~
"

=]

—
e

By the above ineguality, each Cn n
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B Hence the bipolar of Crl in A' coincides with Bn

Since the polar of C  in A coincides with the polar of B

in A, we obrain the conclusion.

If we consider the normed space (A, If'|]l), where |]- “L

denotes the il-norm, then we can establish the following

ProrOSITION 8. 'SV ”1) does not have (*®)-property.

@

Proof. Since the dual of (X, |l - “l) is £ , we need only
show that ﬂm(B*(Qm, A}) dis not guasi-barrelled. By Lemma 7,
the family consisting of the subsets of the form U(Cn) o7,
where U(Cn) denotes the subset in (2}, forms;a bagse of neigh-
bourhoods ¢f o in Rm(B*(Em, AYD. Further every U(Cn) A
contains an element satisfving the conditien in (3). On the
other hand, Y[B(A', A)] 2° is a bornivorous barrel in &7 (8%
(Em, X)) and does not have an element satisfying the condition

in (3) by Lemma &. Thus V{B(AT, W] n ¥ is not a neighbour-

hood of o in Em(B*(im, Ay).

3. ON A LOCALLY CONVEX SPACE ADMITTING A FUNDAMENTAL

SEQUENCE OF STRONGLY BOQUNDED SUBSETS.

Now we draw the main theorem from the results in sectien 2.

THEOREM 9. Let E(t) be a locally convex space admitting
a fundamental sequence {Bn} of strongly bounded subsets. then,
for the subspace 511 En{E] of the completion E(t), the
following facts hold:

ey —
(1) $i1 Bn[t} coincides with £
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@

(2) Mo En[t} coincides with E(t) if and only if

@

!
nil

Bn{c} is g W-space under the induced topology from E{ct).

Proof. As to (1). Since E(t) admits a fundamenctal
sequence c¢f stronglv bounded subsets, E'(B®(E', E)) is quasi-
barrelled. HQence we obrtain the conclusion (1) from Proposition
5.

ds to (2). By Propasition 2 and the conclusion (1), we can

verify this.

Then we have several corcllaries under the same condition as

in Theorem 9.

) w ~ _f —_  fi
CoroLLary 10. i, B [G(E, E')] = Es(c(a. ET)7) = Efa-

Proof. It is clear from Lemma 4 and Theocrem 9.

CoroLLary 11. Suppose that each Bn is precompact in
Efe). Then. under the induced topology from E(t)., L, Bé{t}
@ -
is B-semi-dontel. Furthermore (14 Bn{t} is semi-Moncel if
and only if AL, Bn{t} is a W-space.
Proof. For an arbitrary strengly bounded subset B in $=1

~

Bn[t]. as in the proof of Proposition 5, there exists a BnO

such that B < B [t]. Thus the conlusion follows immediately,

CorROLLARY 12. If t is the finest locally convex topology
that on each Bn induces the same neighbourhoods of o as ¢,

=3 . iy
then & (?8) coincides with E(t).
Proof. Noting that [2"-B 1 is also aa absorbing sequence,

n
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from (2) and (12) of section 16 in N. Adasch, B, Ernst and D.

Keim [1], we get the conclusion.

REMaRK 2. Let E{t) be a quasi~¢%—barrelled space admitting

a fundamental seguence [Bn} of strongly bounded subsets. If
oy -~ -
éil ant] is a W-space under the induced topeology from E(t),

. =] ~
then, by the proof of Proposition 5 and Theorem 9, }/, Bn[t} is a
quasi-complete and quasi-Hb-barrelled space admitting & fundamen-
tal sequence fgn[t}} of bounded subsets. Thus éilgn[t]

coincides with E{t).

4. On tHE LP-spaces.
First we prepare the notations.

NotaTion 1. (i) Let X be a set, A{X) a O-algebra of
subsets of X and ¥ : A{X) >~ [0, ®] 3 O-finite measure. Then
we set the following function spaces on the measure space (X,
A{Y), u) ; for each p with O < p £ 3 =,

L(p)(K) ={ f(x) | f: X+ R 1is an A(X)-measurable function
such that If(x)]p is y-integrable. },

L(m)(X) = { f£(x) | f: X+ R is an A{X)-measurable function
and py-essentially bounded. },

Sim.{X) = { £{x) | £ = E a5 Xg, (finite sum), where a, € R

and each is a characteristic function of a subset Ei E

Xg,
A(X). 1} and
Sim.f(X) = { £{x)y | £ =2£ a,"x (finite sum) and for each
i1 "By
Ei e a{X), u(Ei) is finite. }.

Furthermore we denote bv LP(X), L¥(X), S(X) and Se(X) cthe
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spaces consisting of the equivalence classes of functions in the

above four function spaces respecrively, where the equivalence

relation " means that f ~ g+ f = g p-a.e..

{ii) For asny p with 1 s p & + @, we denote by | ',Ip
the usual norm on LP(X) such that, for am arbitrary f € f ¢
L,

it ”p = (fy [£]P du(x))llp for 1 5 p < + @ and

I £, = ess.sup 2001,

xeX
The topology generated by the norm M- ”P is denoted by tp.

Now we consider the measure space on the set of all positive
integers N such that A(N) 1is the family of all subsets of
N and © is the counting measure. In this case, LP(N) is
identical with &P for © < P & + @, Then in the dual pair
(ip, W), where ¥ 1is the space of all finite sequences,
2P(o(2P, ¥)) is B-Montel for 1 s p S + @ by Proposition 2 in
K. Kitahara (8], hence the B-quasi-completion of Rp(c(ﬁp. ey)
is &% for 1 2p s + . For the B-gquasi-completion of

2P(o(2P, ¥)) 0 < p < 1, the following holds.

ProrposiTioN 13. For any p with 0 < p < 1, the B-quasi-

completion of 'ﬁp(c(ip, $)) coincides with 21.

Proof. v{a{y, lp)) admits a fundamental sequence Bn ={ x
x5 .
| xewect, Hxll,fal ane N of bounded subsets. Since
-~
each B is t,-dense in { x | x ¢ cg €4, Il x i, 8 n},

P8P, %)) admits a fundamental seguence Cn n e N of

bounded subsets such that C_ = [ x| x e8P < 21, li xlll £}
— —— —uf3 o ~
n e N, Hence by using Theorem 2, 2P (0(2P, w) ) = a1 Cn[U(QP:
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1

W1 =
ReMARK 3. Let X be a set. Ne put LP(X) = { (Z) ey |
X p
Z g RY, I Z < + o} for O < £ 1 and Xy = @
(2,0, ¢ Loiz,l P $(X) = e
Rx' where each RX = R. Then, by the similar proof of Proposi-

tion 13, we obtain QP(X)B(U(QP{X). w(X))B) = QZ(K) for 0 < p ¢

L.

Ler {X, A(X), ) be aay O-finite measure space. Thea in
the dual pair (LP(X), SE<X))' 1 <p 2 + =, we consider the B-

quasi-completion of LP(X){o(LP(X}, §:(X0)).

THEOREM 14. For any p with 1 <p = + », LPx)co(tP¢x),
SE(X))) is f-semi-Montel, hence the B-quasi-completion of this

space is Itself.

Proof. It is sufficient to show that every strongly bounded
subset is relatively compact in L2 (o(LP(xy, Sf(X}))-

Sf(K){G(Sf(X), Lp(X))) admits a fundamental sequence B n £

n
of bounded subsets such thatr B_ = { £ | £ ¢ S¢(X), 1 ”q £}
n &€ N, where .I/p +# 1/q = 1 and if p = ©, then gq = 1. Since
each B is tq«dense in {£ ] £et¥%, (¢ nq sn},

tPoO 8L, Sf(K))) admits a fundamental sequence C_ = { £ |
£ e Lxy, i £ Hp $n) o€ of bounded subsers. Each C_

is O(LP(K), SE(X))—compact by the reflexivility of LP(X)(tp)
and the fact that Lm(X} is the dual of LI(X)(tl). Hence

LP(x)(a(LP (1), $.(%))) 1is B-semi-dontel.

Using Theorem 14, we obtain a corollary related with Virali-

Habn-Saks theorenm.
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CoroLLARY 15. Let (X, A(X), u) be any finite measure space
and H the space which consists of all sequences converging to
¢ in LI(X)(G(Ll(X). SeX))). If {fn} is a Cauchy sequence in
thexscoitcx), sex))y. ehen (£} has a lisit in LP(X), 1 < p 3
+ ®, if and only if there exists a subseqguence {f”k} such that

inf supfff - hk i is finite. However In case g does
[hk}EH k ax p

not belong to LP(X), we putl I glip = F %,

Procf. By Vitali-Hahn-Saks theorem, {fn} converges to an

1
fO £ LX), It fo

= {fn - fo} + f0 n € N. HHence the necessary condition holds.

€ LP(X), then {e - £,} € # by putting £

Conversely suppose that there exist a subsequence {f“k} of

i i - < -
{fn} and a {hk} € H satisfving that SpP ] Enk hkllp + @,

Then the sequence {8k}' g = ¢ -h,  ked is a Cauchy
Oy
sequence in LP(X)(G{LP(X), S{X)). Thus by Theorem 14 there

exists a e LP(X) to which {gk} corverges. Since {En}

&0
is a Cauchy sequence, {En} and {g,} have the same limit.
RemARK 4. (1)  The face chac L=(X)(9(L7(X). $.(X))) is B-
sepi-Montel is a generslization of bounded convergence theorem.
(2) In general since LP(X) 0 < p < 1 and Sc(X) do not
form a dual pair, we can not consider the weak topclogy on LP(X)

by SE(X) unlike the case of 4P 0 < p < 1.

. i
Next we consider the B-quasi-completion of Ll(X)(U(L (),
s()) and LixCo(Ll(x), $.(X))).  Before giving the resules,

we need the following notations.

NoTaTion 2. (i} Ler (X, A(X), ) be anv C-finite measure
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space and F(X) the set of real-valued functions & on A{X)
such that

(a) sup [ fe(a)] | ae a() } < + o,

(b) £{(a v} B) = £(A) + £{(B) for A, B e A(X) and 4 v B =
¢ and

{c) E{A)Y = 0 if A £ A(X) and u{A) = O.

For such a £, we define |£| eon &(X) by the rule

{£1¢a) = sup { jzz IE(ﬁE)I { Aye A(D), =1, 2,0, m, Ay 0
aj = ¢ for i #£ j and ;il Aj = 4 1}.
Then F{X) 1is a linear space and we can define a norm [[‘IIF
such that N eile = [6]CX).  This norm space (F(X), - flg) is
identical with the strong dual of (Lm(X), ||'l|w), where for an

arbittary & £ F(X) aad an arbitrary equivalence class IA £
L7(X) to which X,» A € 4(X), belongs, the following bilinear
form holds; <&, IA> = £(4)., {(see P, 357 in E., Hewitt and K.
Stromberg [3].) Further by considering the injection map i1 H
Llexy + Fex) 5 T o £z such that f ¢ £ and &z(4) = f, £ du(x)
for all & e aCX), (L'(X), |l - H}) is a subspace of (F(X),
e g _

(ii} Under the same condition of (i), we denote by FO(X)
the set of real-valued functions 1 on ﬁO(X)'= f A ae a(X)

and uf{A) < + ® } satisfying that the corditicns replaced A(X)

in (i)-(a), {(b) with AO(X) and the condition {(i)-{c) hold.

: n
Similarly we can define .[n[(A) = sup { jél in(Aj)I i Aj £
)
j = AR = 1 ] ) 4., =
AO(X), j 1, 2, »on, A0 Aj ¢ for 1 £ j and 3:1 AI
A} for all A £ a4(X). Hence if we set [f n}l = sup |nj{4ay.
B ﬁ€AO(X)
then (FO(X). - ¢ ) is a normed space and identical with the
]
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strong dual of (Sf(X), - lig)- For the bilinear form in

FO(X) and SE(K}, the same formula of (i} holds. Moreover
setting the injection map 12 : LI(X} - FOCX) i F o= ng such that
£ oand nz(A) = 7, £ du(x) For 4 e Ay(0), (LCOL (-
s a subspace of (F (X}, || - “Fo)'

Using these notztions, we obtain

THEOREM 15. Let (X, A(X), u}) be any o-finite measure

space, then Li(X) (G(LY(X), S(X)IT) = Li(a)(o(LiCh)s S(XI)) =

B

8
Fex) and Licx) cocticx), Sp(X))7) = Fo(X).

Procf. First we consider thelﬁ—quasi—completion of LI(X)
(G(LZ(X). S(X))3}. S{X)(a(S(X), Ll(X})) admits a fundamental
sequence Bn n g N of bounded subsets such that Bn = { | f

e S(X), [ £fl,sn} neN. Since each B is t_-dense in

(e ] eet™O, JJell, s, LhOOGGYX, S(0)))  adnits a

fundamental sequence ¢, = {£] £« Ll(X), I| £ ”1 £n} neld
of bounded subsets. Hence the topology B*(S(X), LI(X)) is
identical with ¢_ on S{X). Noting that (S{X), Il -1l) 1is a
dense subspace of (Lm(X), i 'Ilm). by Corollary 10 we obtain

LI(X)B(O(LZ(X), S(X))B) = F(X). Moreover since F{X){o{F{X),

S{X}))) 1is sequentially complete by Main Theorem in T. andd [2],

8 B
from Proposition 2 we have vl (U{LL(X), S{X)») ) = L

(o(LY(X), S(X))). As for LYX)(o(Li(Yy, S.(0))), by the

*
similar argument, it holds that B (SE(K), LI{K)} is identical

8
with ¢ on sf(x). Hence we obhtaip LI(K)B(O(LL(K). sf(x)) )

o

= FO(X) bv- Coroliary 1O.
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In Vitali-Hahn-Saks theorem the Csuchy sequences in Ll(X)
(G(LI(X), ${X})) are dealt with and the Cauchy sequences in
F(X)(O(F(X), S(X))) are treated in Main Theorem in T. Andd (2].
Here we shall investigate the Cauchy seguences in FO{X)(O(FO(X).
Sf{X))). If, for an arbitrary £ ¢ FO(X), E denotes any
continuous extension of & on (S(X), || lls) with |} £ ”FO =

l g HF’ ther we can prove

Tueorem 17 Let (X, A(X), n) be any O-finite measure space
and FO(X) the dual of (Sf(X). I[‘ Hm). Ffor a Cauchy sequence
[En} in Fo{X)(o(Fu(X), $,(X})) che following facts hold.

(1) {én} converges to a &5 € Fo(X) if and only if

sup Iim Ign(E)I < + =,
EEAO(X) a :

{2) {En} is a Cauchy sequence in F(X){o(F(X), S(X))) if
and only if there exists an increasing sequence {En} of subsets
of X sSuch that En £ AO(X) n £ ¥ and the seguence €, =
szp(llik ”FO - |g 1(E }) n e N converges to 0. In chis case,
there exists a &0 £ F(X) with 5O(E) = lém EH(E) for all £ g
A(X).

(3) {En} is a Cauchy sequence and lim En £ Li(X) if and
only If there exists a sequence {En} of subsets of X satis-
fying the conditien in {2) and for this sequence there is a
sequence {& }, 8 > 0 n € N such that the sequence ¢ = sup {
lim f&i(F)| | F < E. end u(F) <8 } ne N converges to 0.
In this case, there exists a 50 € LI(X) with fg 50 duf{x) = 1im

n
EH(E) for all E € A(X).
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n

AO(X), then 50 belongs to Fa(X) if and only if sup
EEAL(X)

Ilimin(E)! = sup 1im|& (E)| < + « by Notation 2-(1i).
n Ecag(xy n» °

As to (2). Sirce the measure space (X, A(X), uy is O-

finite, we set an increasing sequence {Xi} of subsets of X

ich (Y. ) < w Vi - - .
wi (tl) + and Ha Xi X. Suppose that {En} is a

Cauchy sequence, Since !!in ”F = ]f&n ”FO for all a € N, for

. . 3 n
each o € N there exists an increasing sequence {Yg )} such

that an) € 4(X) and fl € ||FO . Ianl(ygn)) < 1/i. Then we

consider the following increasiag sequence [Zn} ;'lea £ vJ
(1) - v oyl (2) ... (1) e

LR T 22 = X2 Y2 v yz , » 2, = X Y Y u ¥
(a) ... Oz -

Yn . . Clearly each Zn £ AO(X) n € N and nzlzn = ;.

For this sequence, observing that ;Eni(x) - (!snlle) + k§l

f5n|(2 -Z,)) < 1/) for each n € ¥ and all j Z a, it holds

k+1l

thar 15 t(0) = le 1(z)) + L, 18 1z, - 20

On the other hand, for the sequence {Zn} and the Cauchy sequence

for each n € N.

{En}. by using Lemma &4 in T. Andd [2]), there is a fnz} < N such

; £ .
r - : 3 \
that s;p !-,k|(2i ZJ) < 1/2 for.all i, 3% n,. Now we
shall show that for an arbitrary £ > 0 there is a k() & ¥
with s;p |€kf(X - Zk(c)) < g, For given positive number €, if
7 .
we put 20 with 1/2 0 < E/2, then we obtain, for each k & W,
- ~ @ ) —
e, 1¢x -2 ) = i€l (2 -2 )y =5, lg (2 -7,
k nzo k lzio ni+1 ny lzzoi k! i1 ny
© ; Ly - 1
s .z, 1/2t = 17270 < g.
1=1O
Hence if we put Zk(a) = ano, then the conclusion follows.

Conversely suppose that there exists an increasing sequence
{Eq} satisfving the condition. For an arbitrary E £ A(Y) and
i

_an arbitrary £ > 0, we ‘take an ng £ N with €, < e/3 for all
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£ = € e .
Dz ong- If we set E = (E n Eno) vOo(E E“O)' where EﬂO is

the complement of E“O' rthen we obtain , for all n, m 2 LAY

um

|£n(E) - gm(E)i Ign(E “nE Y- & (EnE )

no m n

+ Egn(E £y EEO

e (B E D - g (E 0 EnO)I + 2-€/3,

et c
) - & (E o En0J|

"

Hence taking an ny ¢ N such that ny z Ny and for all n, m 2z n

1
lgn(E 0 E“O) - £ (E n En0)| < £/3, we have Ign(E) - Em(E)| < £

for all n, m z ny - Clearly by Theorem 16 the Cauchy sequence
(£ } has a limit £, in F(X) and it holds that £.(E) = lim

n 0 0 n
En(E) for all E & A(X).

As to (3). Suppose that {gn} has a limit in Ll(X). Then
from absolute continuity with the measure space (X, A(X), u)
and the proof of_(z), the neceséity follows.

Conversely assume that the necessary condition helds. Then

we need only show that 50 = lim gn is countablvy additive. For
n

an arbitrary sequence {Fn} ¢ A(X) with F_ v F = ¢ for an #

o0 k - -]
m, it heolds thact 50(%i1 Fi) = 121 EO(Fi) + 90({ik+1 Fi) for all

k € ¥ from its finitely additivicty. For an arbitrary € > O,

we can take an 1, € ¥ with e, & < £/3 for all n 2 Ny by
]

the assumption. Then we set Dk = (L) Fi} r ES . Gk = ({=k+l

i=k+1 ng

F.) rv E for all k g N. Since (G, } 1is a decreasing
i ng k

-
sequence such that u(Gl) < + @ and é\le = ¢, there exists a

k. e i satisfying that U(Gk) < 6“0 for all k 2 ky. Hence

0

for each k 3z kg and all sufficiently large n which depends cn

k, we obrain

le (3 oy Bl = € (D) + &.(G )| s £, (D ] + |g (6]

L5

/3 + 2-€/3 £ €.
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Thus we have [50({ik+1 Fi)l = lim fﬁn({ik+1 Fi)l s £ for all
s . - - el o
k 2 kg, which implies the sequence [5o(iik+1 Fi)}k converges to

0. This completes the proof.

RemMark 5. (L) Let A(R}) be the family of all Lebesgue
measurable subsets on R and 1y the Lebesgue measure on (R,
ACRY). If we consider the sequence En(E) = u(E v [-n, a])
n e N, E ¢ A(R), then {En} c FO(R) is a Cauchy sequence in

Fo(RYCO{FL(R), S_.(R))) but sup lim [ (E}| = + =,
© 0 £ EEAn(R) n n

(2) Let (R, 4(R), w) be the same measure space in (l}.
If we consider the sequence vn(E) = u(E M [2n, 2n + 1] neN,
E ¢ A(R), then {Un} ¢ Fg(R) 1is.a Cauchy sequence converging to
o in Fu(R)(a(Fy(R), S (R))) and sup !{un HFO(R) =1, But
this sequence does not have an increasing sequence of subsets of
R in Theorem 17-(2). Thus [Gn} is not a Cauchy sequence in

F(R)Y(S(F(R), S(R})).

Finally ve give a slight consideration on the space of all

real-valued continuous functions.

NoTaT1oN 3, Let X be a Hausdorff compact topological

space, Then we use the follewing notatiocns:

B(X) = the Borel algebra of X,

u(-) = a regular measure on (X, B{X})},

C{X) = the space of all real-valued continucus functions on
X,

€(X) = the equivalence classes of C{X) with the measure

space (X, B(X), u),

Il - “u = the uniform norm on C{Y¥) and
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| - {|lo = the essential supremum norm on C(X).
Further in the dual pair (é{X), S{X}), we consider the bilinear
form <f, h> = IX £f-h dpu(x) for f & F ¢ E(X) and h € h €
S{X}.

THeoREM 18. In the space E(X)(U(C(X). S¢X))}), the following

facts hold;

bl 8 il 8 -3
(1) CCX) (o(C(K), S(X)) ) = L (X),

= seq =z seq 1
(2y C(X) (o(CCX)s S(X)) J) = L (X) and

(3) CCX)(O(C(X), S(X))) = F(X).

Proof. As to {(1). For an arbitrary e E{K) and an
- - B -
arbitrary h e S{X), if f ¢ £ and h ='i§1 @, "Xg € h, then we
i
obtain
I & 5 : ? ;
[<E. B>l = My £00 8 oy xg ) du(af = | Lye Uy £rxg  duG)]

n i
fo (4Iy lagl-u(E D)

[ 1)

[ 1)
[al}

2y le 1-10y £xg @u0)|
IR oI E

| B

By the above inequality, we can regard S(X) as a subspace of
the deal of (C(X), Il ). Heance S{X)(o(S(X), C(YX}))) admits

a fundamental sequence Bn ={n f R e s(Y), ” Hlll $nl} ned

of bounded subsets. Since each B_  is t,-dense in S

Ll(x). 3 Hl sal, E(X)(B(E(X), ${X})) admits a fundamental

sequence C_ = {glge ¢y, ligllysa) aed of bounded
subsets, Os the other hand, since X is compact and W 1is a
regular measure, each C_ 1is O(LQ(X), S(Y{))-dense in { b ! ® €
Lw(x), HR {los o }. Hence we get the conclusion from Theorem

14 and Corollary 10.
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ds to (2). For an arbitrarv f

i

L°(X) and an arbitrary
positive number €, there exists a h € S(X) wich T - E”1 <

g . For n

[y}

S{X}, from the assumption of the measure space,

€ C(X) with [ig - B, <. By this, for each

oo |

there is a
f e Li(x) we can take a seguence {gn} < E{X) which converges
to f with the topology O(Li(x), SCX)). Consequently the
conclusion (2) follows from Vitali-Hahn-Saks theorem,

= seq = = seq =
As to (3). Since C(X) c C{X), we have C(X) = C{X}.

Thus we obtain the conclusion {3) by Theoream 16.

All the propositions with minor changes in the proofs are true

for a locally convex space over the field of the complex number.
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