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1 . Examples on propagation of singularities in the wave eguation

1 .0 . Introduction

introductory graduate course in PDEs, to describe (without proof)

the general propagation of singularities theorem of Lax and

HBrmander . The customary catch-phrase

is, at best, misleading - not all bicharacteristics carry

singularities . The more exact version

The following study arose from an attempt, in an

"~5.íngutatU¿e¿ p-topagate atong bíchaAactvlú,~, .ti,u"

"mícxo-local 4.íngw2ahítíea paopagate along the conteeponding

b.íchatactexl.Atc.u"

requires substantial explanation, but this effort is repaid by

a more complete understanding as shown in the examples below .

We first describe our examples . Then we define

characteristics and the wave-front set, state the propagation

of singularities theorem, and use it to interpret the examples .

Finally we give details of the calculation of the wave-front

set for the example of Fritz John [2] (ex . 2) . Taylor's article

[5] describes also reflection and diffraction of singularities

in boundary'value problems . Mathematical details of the theorem

(and generalizations) may be found in, for example, the books

of Taylor [6] or Hármander [4) .

1 .1 . The examples

Example 1 Consider tempered distributions E, E+ , E - on

1Rt

	

N IRx

	

defined by

	

E(t,j)

	

= ¡ti -lsintl tI

	

(Fourier

transformation in x),



E(t,j), t > 0

0

0, t>o

E (t, ) _

t < 0

	

-E(t,1), t < 0 .

Then as distributions on IR x IRn ,

(a 2/at2 - Ax)E(t,x) = 0

(a 2/at2 - Ax )E+ (t,x) = 60(t,x)

and the singular support (outside which they are C ) is

shown in Fig . 1

Fig . 1
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Consider a point
	

(t 0 ,x0 )
	

of
	

Ix1 L = t~,
	

t 0 T 0 ;
	

only one

of the bicharacteristic rays through this point carries

singularities of E . No ray through (tl ,x l ), ti

	

(x11 2 ,

Fig . 2

carries singularities of E ; though they all pass through the

singular support of E .

	

(See Fig . 2) .

Example 2 (F . John [21, p . 572-574)

Imagine a vast and troubled sea ; and in the midst of the

sea, a circle ; and inside the circle, every thing is calm . There

are no special forces acting . The circle is not a physical

barrier . But the region of quiet continues, neither expanding

nor contracting, while the storm rages without .

Sound impossible?

For any positive integer k, if Jk is the kth order

Bessel function ; Jk (kr) éik(t+9) is a

polar coordinates) of the wave equation

IR X IR2

	

so

srnooth solution (usincr plane
= uxx + uyy on

u =

	

r

	

k-x Jk(kr)

	

eik(t+Q)

	

[sum over powers of 2]
k = 2int.> 2



is also a distribution solution when

	

X > 0 ._

	

Taking

	

X = m +3/5,

m = integer > 0,

	

u

	

is a

	

Cm	function on

	

IRt Y

	

IR2(x,y),
which is analytic inside the cylinder {x 2 + y2 < l,t arbitrary},-
Cm+l in the exterior {x2 + y2 > l}, not Cm+2 on any open

set which meets {x 2 + y2 > 1} and not Cm+ 1 on any open set

which meets {x 2 + y 2 = 1} .

	

If m > 2, u is a classical

solution .

The singular support of u is {x 2 + y 2 > 1, t

arbitrary} but the boundary {x2 + v2 = 1} is nowhere

characteristic . There are many bicharacteristic rays linking the

regular {x2 + y 2 < 1} and singular {x2 + Y2 > l} regions,

but these do not carry singularities from one region to the

other (See Fig 3) .

Fig . 3

Not all rays carry singularities . (We show later, for

this example, that at most 4 bicharacteristic rays, through



any given point outside the cylinder, can carry singularities -

they are the rays tangent to the cylinder) .

1 .2 . Characteristics and wave-front sets

Let P(x,j) =

	

E

	

pa (x)Ja be a polynomial in 1 E
I al Smcowith C

	

coefficients, and supnose the principal part

I a I =m
tics

	

are

	

simple :

	

e

	

E

	

!tn ,

	

Pm(x,l)

	

=

	

0,

	

al ..

	

Pm (x,

	

)

	

=

	

0

	

for

j

	

=

	

1, . . . . n

	

imply

	

1

	

=

	

0 .
J

S, but is not Cr+l everywhere since the (r+1)-order

a characteristic surface : Pm (x,N(x)) = 0 when x E S, N(x)

is normal to S at x, and u is not Cr+l on any

neighborhood of x . Such a surface S may be represented as

{x : ~p(x) = 0} where ~p is a smooth function with QW(x) $ 0

(in the region of interest) and

	

Pm (x,pq (x)) = 0

	

where

q.(x) = 0 . We may solve (locally) the characteristic eguation

Pm (x,pq(x)) = 0 by solving the Hamiltonian system

34

dx/dñ = aPm/a1 (x,j), al/ax = - apm/ax(x,U

IRn

Pm (x,I) =

	

E

	

pa (x)ta is real-valued and the real characteris

As is well-known, if u is a Cr solution of P(x,Tx)u=0

(r > m)

	

which is

	

Cr+l

	

on either side of a smooth hypersurface

derivatives have a jump discontinuity across S, then S must be

for appropriate initial values with Pm(x,j) .--_ 0, and then

;p (x (X))

	

= constant,

	

psp (x (X))

	

= J (X)

	

along such integral curves .

(This construction is classical, and more details may be found

(for example)

	

in Courant - Hilbert (1], vol .

	

2) . The resulting

curves X - (x(A), I(X)) are termed bicharacteristic strips

and their projections X --" x(a) bicharacteristic curves or



rays . The characteristic surface {9 = 0} is then fibered by

such rays, and Lax[31 proved the magnitude of the jump in the

(r+1)-derivative across S satisfies a first-order linear ODE

along such a ray, so it is either zero everywhere or non-zero

at every point of such a ray . In this sense, such "jump"

singularities propagate along the bicharacteristic rays . Taking

this as representative of other singularities, the solutions of

the wave equation in example 1 behave more-or-less as expected,

though it is not clear why some rays through a singular point

do not "propagate" the singularity . But F . John's example (ex .2)

remains completely mysterions - the boundary of the regular

region is a cylinder {x2 + y 2 = 1, t arbitrary} which is

nowhere characteristic . Of course, there is no contradiction

- we are not dealing with a jump discontinuity - but it shows

that propagation of singularities is a more complicated

phenomenon than the classical treatment (or Lax's theorem)

suggests .

For a more precise formulation, we must go beyond local

analysis ("near a point") to micro-local analysis ("near a

point, looking only in certain directions") .

Definition

	

Let

	

A C IRn

	

be an open set and

	

u

	

a

distribution on A (u E D'(A)) . The wave-front set of u,

WF(u),

	

is a subset of

	

A X(IRn -{0}),

	

which we define by exclu-

sion :

	

(x0 ,1 0 ) E AW (IRn-0) is outs¡de WF(u),if and only if

there exist

	

E C~(A), ~p(x 0 )

	

96 0,

	

and an open cone

	

K C IRn -0

containing

	

0 , such that the Fourier transform

(9 . u) - U)

	

= 0(I 1I -N )

	

as



for every N = 1,2, . . . .

Note We localize u near x0 by multiplying by a cut-off

function 9 with small support including x0 ; then we localize

the "direction" near

	

0 by choice of the cone K. In fact,,

we should consider

	

a co-vector or co-direction, the impor-

tant thing being the corresponding hyperplanes {1 .x = const} .

After multiplication by 9, we may suppose W .u is

defined and equal to zero outside supp w, so (~c .u) - is well-

defined .

WF(u) is a conical set closed in the relative topology

of

	

AX(IR' - 0) .

Examples

(1)

	

If

	

sP E C (A) , DIF(sp)

	

is empty .

(2)

	

If

	

5 0

	

is Dirac's delta,

	

< SO ,sp > = w(0)

	

for

9 E CC

	

(IR n ),

	

then

	

WF(S 0 )

	

=

	

(0,1)I1

	

96 0}

	

and

WF(a j 8 0 ) = WF(S 0 ) . ] _ 1,2, . . .,n_

(3)

	

If

	

n C IR n is an open set and

	

aS2

	

is a

hypersuface (with 91

	

on .only one side), XP = 1

in n and X2 = 0 outside 91, then

WF (X~)

	

_

	

{ (x, t) I x E anj

	

~ 0

	

is normal to

	

asa at x}

(4)

	

HSrmander

	

[4,v .1]

	

shows,

	

for. eách

	

10 y£ 0

	

in 1R n,

there exists

	

u E C0	(IRn)

	

n CI(]R n \ {0})

	

such that

PIF(u) = {O,tl 0 ) : t > 0}



Note that the direction -10 is not included :

WF(u) need not be a "double" cone .

(5)

	

Let

	

g

	

:

	

A --~

	

IR

	

be

	

Cw	with

	

pg(x)

	

Y

	

0

	

on

	

A,

and suppose f E C 0 (IP)

	

is not C0; then for the

composition we have

WF(f . g) =

	

{ (x,1)I x EA,

	

f is not C00 on any nbd-. of g (x) ,

is a non-zero multiple of pg(x)}

(6)

	

WF (cp .u)

	

C WF (u)

	

for any

	

Cco

	

function

WF(a j u) C WF(u)

	

for j = 1,2, . . . .n

(7)

	

WF(u + v) C WF(u) U WF(v)

The proofs of (1), (2), (6), (7) are easily supplied,

while the others are in Hbrmander [4, vol . 11, for example .

We only prove a special case of (5) :

and

f (t)

	

=

	

1

	

for

	

t > a,

	

f (t)

	

= 0

	

for

	

t < a .

	

Then

	

if

	

0 ECG(IPn )

where

f o g)-(P)=

	

ff

	

e

	

n n W(x' ñ)dx' dxn{xn >a}

-¡al

	

�

	

-ij -r
;(j= e

	

n f 0 e

	

n

	

' a+r)d7,

Integration by parts shows (for any N)



until

(Y " f a g) - ( 1) =
e
-¡al n _

a) + 0U-2(1+I1I
)-N)

n

=0(I i n ¡ -1 (1+1 1 , 1
)-N)

	

as

	

I tI

WF(Pu) C WF(u) C WF(Pu) U Char P

where Char P . = {(x,j)Ij 74 0, Pm (x,U = 0}

x' = apn/at(x,I), 1' _ - apn/ax(x,1)

00 .

If iP( " ,a) Pé 0 and 1n --> ±00

	

with t'

	

bounded, the transform

does not go to zero rapidly (merely

	

o(I lí -1 )) .

	

But if

	

1 - °°

in such a way that Ij'I/ijl > const . > 0,

	

i .e . excluding some

conical neighborhood of the

	

1 n -axis, then

	

(IV .f o g)' (U =

= 0 (I 1

	

1
-N)

	

=
0(1 11

-N ) .

	

Thus,

	

for this example,

	

WF (f o g)

	

_

{(x,U l

	

xn	=a,

	

1

	

=

	

(0, . . . . 0,1 n )

	

~

	

0},

	

in agreement with

	

(5) .

Now we state the general propagation of singularities

theorem of Lax and HSrinander :

Theorem . Let P(x, ax) be an m-order scalar differential operator

with Coo coefficients whose principal part Pm is real and has

its real characteristics simple . If u E D'(A), A open, A C IRn ,

and WF(u) \ WF(Pu) is a subset of Char P which is invariant

under the Hamiltonian flow

x

	

reaches aA

	

or

	

(x,j)

	

reaches

	

WF (Pu) .

Returning to the functions E, E+ , E - of example 1, we



now see more clearly their signifance . With O = a2/at2

0E(t,x) = 0 on all IR X IRn	sogiven any point

	

(t0,x0%ro'10)
of

	

WF (E)

	

C

	

CharO, r
02 =1

	

~I
2 ~ 0,

	

the entire bicharacteristic

through this point

	

(t0 +

	

kr 0, x 0 - XI
0 ; .T 0 ,

	

1 0 ) ,

	

- 00 < X <

must lie in WF(E) . Since E(t,x) is invariant with respect to

rotation in the x-variables, the same is true for WF(E) .

Analogous conclusions hold for E+ , but WF(OE+ ) = WF(6 0 ) =

= { (0,0 ;7.0,Z 0)1 (7 0 ,1 0 )

	

YÉ

	

(0,0) ; ,

	

so we can only follow the

bicharacteristics in WF(E+ ) until x reaches the origin, and

can draw no conclusion about the other half-line .

We prove in the next section that, for John's example 2,

WF(ul

	

2

	

2

	

)

	

C 4 -

	

{ (t,x, y ;

	

r ~1,n)I x2+y 2 >1

	

and
x +y

	

>1

(7,1,17) is a non-zero multiple of either

Q(t+d-Cos-1
1
- r 2 )

	

or

	

Q(t+B+Cos-1 1+r2 )}

using plane polar coordinates (x,y) = r(cos 0, sin 0) .

The corresponding bicharacteristic curves-the only ones

that can carry singularities-are

(T,X,Y) _ (t,r cosB,r sinB) +A(±l,a r2-lcos9- sinB
~a r2-l sin6 + coso )

r

	

r r

	

r

- - < X < -,

	

where

	

a = ±l,

	

so

X2

	

+

	

Y2	=r2	+

	

2Xa

	

/r2-1

	

+ x2

	

=

	

1

	

+

	

(X + a Jr2 - 1) 2



and such rays are tangent to the unit cylinder . No ray carrying

singularities passes from the regular to the singular region .

The cylinder {x2 + y2 = 1} is the envelope of rays carrying

singularities, which may (plausibly) be related to the

additional "roughness" on the cylinder, compared to the exterior .

1 .3 . The wave-front set for F . John's example .

Let Q be the closed conic set defined at the end of the

last section . We show, for every positive integer N,

u = uN

	

+

	

RN	with

	

WF (UNI
x2 + y2 >1 )

	

C Q

and

	

RNI 2

	

2

	

9.s of class

	

Cp(N) ,

	

p(N)

	

as

	

N ------
x +y >1

Given a point of

	

{x2 +y 2 >l} X (IR 3-0)

	

outside

	

Q

	

and any

positive integer NO , , choose N so large that p(N) > N0

and then (after micro-localization) the Fourier transform of
-N

(cut-off) .u is 0(111 0 ) in an appropriate cope ; thus

WF (u1
x
- 2

+y
2
>1

)

	

C Q.

By the method of stationary phase,

Jk (k secp) = E k-7-1/2 (a+(P)eikg(P) + a-(p)e-ikg(p)))

j=0

+ RN(k,P)

where g(p) = tan p - P, a
j

(P) and RN (k,P) are analytic



in P on 0 < p < n/2

	

(so sec P> 1)

	

and

have

(~p)s RN (k,P) = O(k-N-3/2+s) as k -'

uniformly for p in compact sets of (0, 9/2) . For example

(with N=0)

Jk (k sec P)

	

tarp cos(kg(P)-7r/4) +O(k-3/2 ),

as proved in Courant-Hilbert [1, vol . 1], and more details may

be found in Watson [7] .

Now defining

k-A-7-1/2 oiks

	

(X=m+3/5)fj (s) -

	

int . ~k=2

	

>2

we see

	

f .
7

	

ís

	

2r-periodic and

	

Cm+j+l

	

but the

	

(m+j+2)- order

distributional derivative is nowhere locally integrable . We

N
u= E {a

j (P) fj(g(P)+t+9) + aj (P) fj(-g(p)+t+6)} + RN(t .p'0)
j=0

= UN + RN at (t,x,y) = (t, sec p cos 6, sec p sin 0)

where RN(t,P,d) =
k-2int

	

2 k-x RN (k,p)elk(t+B) is of class
CN+m+2~ and (by examples (5), (6) and (7) of wave-front sets

above)



so

	

WF (u1
x2+y

2
>1

)C

	

Q .
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2 . Non-decav of thermoelastic vibrations in dimension >- 3

Dafermos [1J showed the equations of linear thermoelas-

ticity

pü = a A u + (a+p ) p (div u) - u Q 0

pCD 0

	

+ u

	

div u = r.

	

A 9

	

in

	

SE C

	

IRn

for an isotropic homogeneous material

	

(p,a, 2a+Q,CD , x positive

constants, and M constant T 0), with boundary condition

= 0

	

or stress = 0

=

	

0

	

br

	

íc áB /ó N

	

+

	

00

	

=

	

0

	

on

	

3 f2,

define a semigroup of contractions in an appropriate Hilbert

space X with norm

f
II (u,ú,B) I X =

	

{ a E (au ./íix j ) 2 + (a+0) (div u) 2 + pl úl 2
SZ

	

i, j

	

i

+

	

PCD

	

0 2

	

}

(In fact, he treats a much more general situation .) He also

showed (under plausible hypotheses on 12) that every solution

tends to zero in

	

X

	

as

	

t --> co .

More recently, Orlando Lopes and Anizio Perissinotto, ir .

(Univ . Estadual de Campinas, S .P .,Brasil) showed, for the case

n = 1, that the solutions thend to zero exponentially .

It is easy to show that, if n > 2 and we use spatial

periodicity in place of the boundary conditions, there are



solutions which do not dacay -in fact 6

	

0, pü = a 0 u,

div u 5- 0, but u j1 0 . Dafermos showed there are no such

solutions satisfying the boundary conditions, for most regions SI

But if the boundary has opposing "flat spots" (described below)

and n > 3, we show there are solutions almost of this kind, so

there are solutions which dacay arbitrarily slowly . In fact if
At{e , t > 0} is the semigroup, we have

IIeAtll£(X) = r ( eAt) = ress(eAt)

	

1

for all t > 0, where r( .), ress( .) denote the spectral

radius and essential spectral radius .

Specifically assume (after appropriate rigid motions)

there is a cylinder

	

{ (x,xn) I xl

	

< S , 0 < xn < 1.}

	

in

	

0~

	

whose

ends

	

(xn = 0,1)

	

are in

	

an (see figure) .

	

Then given any

F > 0,

	

there is a

	

C0	function

	

v :

	

IRn

	

X IR --"

	

IRn

	

with

div v = 0,

	

Ipvtt - a 0 vl < E

	

satisfying the boundary

conditions at the ends of the cylinder and vanishing whenever

1 XI >S .

	

Further

	

II (v,vt ,

	

0) II X = 1 .

If T > 0 is given with ~Ia/p T/ .2 rational, we may

choose v to be T-periodic in time . If follows that the



solution u,0 of the thermolasticity equations with initial
0

values u = v, u = vt , 0 = 0 , (at t = 0) satisfy

uniformly on 0 < t < T .

	

Thus

II (u-v,

	

ú-vt ,

	

0) II X = O(E)

II
(eAT-I) (v,v,0) t=0 II X = O(e),

	

II (v,v,0)II X = 1,

so

	

1 E a (eAT ) .

	

In fact

	

(v,v,0)I t=O	tendsweakly to zero as

e - 0, so it cannot have a strongly convergent subsequence,

hence 1 E aess(eAT),

II eAT 11

	

>

	

r (eAT )
ress(eAT), soWe already know 1

in fact we have equality .

It only remains to construct v, which is embarrassingly

easy . Let c = .N/a/p

	

(the speed of transverse shear waves) .

Choose

	

sp ;

	

IRn-1 -.

	

IRn-1

	

of class

	

C ,

	

supported in

I xl

	

< 5 ,

	

with div ~P =

	

0 ;

	

for example

SP1 (x) = a (x l )0 , (x2)y(x3 . . .xn-1)

lp 2 (x)

	

= - a (xl )Q (x2 )7 (x 3 ~ ~ " xn-1)

Ipj
(x) = 0 for

	

2 < j < n-1

where a,y are C real-valued functions with small support .

(if

	

n = 3,

	

y =

	

1) .

	

Let

	

v(t,x)

	

= eic"xn coswct (-P(x) ;0),

	

w> 0,

where we use Rev if the boundary condition at xn = 0 (in

the cylinder) is stress = 0,

	

and Im v if the cóndition is

u = 0 .

	

It follows easily that

	

div v _- 0

	

and

45



Multiplication by an appropriate constant gives a solution with

norm 1 .

Finally if cT/ .1 is rational, we may choose arbitrarily

large

	

w

	

so, not only is the boundary condition at

	

{xn = .2}

satisfied, but v is T-periodic (since wcT/2t is an integer) .

Two obvious auestions :

1) Does the boundary really need to be flat?

2) What happens for n = 2?

I don't know the answer to either, but will say the little I

know or speculate .

The construction is, of course, modeled on geometric

optics which does not require flat boundaries (for example,

Ralston's "solutions with localized energy") ; but which beco

mes much more complicated when the boundary is curved . We want

a solutions with div u --_ 0

	

(or div u, 3 tdiv u,
ax

div u

46

P vtt - a ¿~l v = 0(w 1 ) as w -- +°°,

uniformly in (t,x) . Since v is 2r/w-periodic in xn , we

may choose arbitrarily large w such that Rev or Imv also

satisfies the appropriate boundary condition on

	

{xn =1 }

in the cylinder . Also note (if

	

v

	

is either the real o r

imaginary part of the v above)

II (v,vt ,0)IIX

	

=

	

í

xt
pl vt l 2

	

+

	

a i

	

D

	

1 2

-_ a2 f

	

~

	

I ~I 2

	

+

	

0(w1 )
I xl <S



uniformly small), which is still true after many reflections at

the boundary . It may be possible to achieve this when the

"flat spots" reduce to points where the tangent planes are

parallel . This last condition is easily satisfied in a smooth

bounded convex domain 2: maximize Ip - ql

	

with p,q in a2.

The problem does not look impossible - merely difficult .

When n = 2 the above construction fails

	

(div 9

	

0

implies 9 = constant) . There are analogous solutions between

infinite parallel planes {x 2 = 0} and {x 2 = 1}, but I am

not able to localize these . Consideration of non-normal reflec-

tions does not appear promising . Reflection at a plane boundary

always generates dissipative "waves", except at normal incidence .

I incline (weakly) to the view that n = 2 will be like the

case n 3 3, rather than n = 1 .

Reference

C . Dafermos, On the existence and asymptotic stability of

solutions to the equations of linear thermoelasticity .

Arch . Rational Mech . Anal . 29(1968) pp . 241-271 .



3 . On some non-linear integral inequalities of Kielhdfer and

Caffarelli .

Certain integral inequalities from Kielhdfer's article

[1] have proved to be useful in the study of parabolic partial

differential equations . One of these (lemma A .1 from the appen

dix to [1], p . 218), sometimes cited as "Kielhm-fer's lemma",

though Kielhdfer attributes the argument to L . Caffarelli,

appears to be incorrect -at least the proof contains a grave

error . (I suspect the estimate itself is wrong, but Nave no

counter-example) .

We will correct the proof and generalize the resulta .

Aside from this correction, our argumenta are only mild variants

of these of Kielhdfer and Caffarelli . The resulting inequality

(Theorem 2 below) is significantly weaker than lemma A .l[1],

for application to uniform (in time) estimation of solutions,

and we may hope Theorem 2 is not the best possible result .

Our first result is a generalization of [1], lemma 1 .2

(p . 205 and 218) .

Theorem 1 Let a,p,q be positive constants with

1 S p < 1 + aq .

	

Suppose A,B,C are non-negative constants,

0 < T < - and tip : [0,T) --., IR +

	

is continuous with

fT

	

pq

	

< 00
0

and

	

0 ~, 9 (t) 5 A ~p (t0 )

	

+ B + CJt ^ (t-s) a-1 ~p (s)pds

	

for all

0 < t0 < t < T .
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Then 9 is bounded on [O,T) and there exists tl in

(O,T) such that

q (t) < Max(1, 4B,

	

2Aw (tl )) on t 1 <, t < T .

Proof

	

f0 Ipq < _

	

implies

	

lim inf

	

(T-t)q (t) q = 0 .

	

Thus for
t -' T-

any positive

	

el,e2

	

there exists t l	in

	

T- e 2 < tl < T

	

such

that

	

(T-t1 ) sp (ti	~e 2 .

Assuming C > 0,

	

to avoid trivialities, we first

suppose

	

B < 1/4 .

	

Choose

	

e
2 > 0

	

so small that

	

áCeZ < 4,
and e l , e 2 so small that

Then choose t1 in [T-e 2 ,T) as above and apply the inequality

on the largest interval [ti , t2 ) C [tl,T) where

~p (t)

	

< L

	

=

	

max

	

-{ 1, 2A~p (t 1 ) } .

If

	

t2 < T . then

P-1 a _U-1

1 C(2A) p-1 e
l
q

	

e
2

	

Q

	

< 4

9 (t2 )

	

< AW (tl )

	

+

	

B + CLp f t

	

(t-s) a-1

	

ds
1

= AW (tl )

	

+ B + á C Lp(T-tl )
a .

If

	

2Aw (t 1 ) < 1,

	

then

	

L = 1

	

and

sP(t 2 ) < 2 + 4 +á Ce2 <1=L .



t2 = T .

Otherwise L = 2A~p(t 1 ) > 1 and

-0 (t
2)

	

< 1 +

	

1 +

	

CLp-1 (T-

	

ac
t )

3 + 1 C(2A)p-l E (p-1)/q E a - (p-1)/q < 1 .4 a

	

1

	

2

In either case p(t2 ) < L,

	

so t2 cannot be maximal unless

Now suppose

	

B > 1/4

	

and let

	

O(t)

	

= w (t)/4B .

	

Then

	

41

satisfies the hypotheses of the previous case so, for some

t1 < T,

	

O(t) < max (1,2AO(t1 ))

	

on

	

tl < t < T hence

~p (t)

	

5 max

	

(4B,

	

2AO (tl ) )

	

on

	

[ tl,T)

Remark Kielhófer [1] treats the case q = 2, A = C = l,

p = 1 + aq, 0 < a 5.2 .

	

In place of

	

"B", he allows a function

of (t,t0 ), whose important feature is that it is bounded .

Example If p > 1 + aq, we show there is an unbounded

continuous w : (0,T) - IER+ ,, satisfying the other hypotheses .

In fact let S > 0 be defined by p = 1 + a/S, so 0 < Sq < 1,

and let W.(t) = M(T-t) -S , M > 0 . Then fTwq < - and (with

A > 1, C > 0, B = 0 and M sufficiently large)

1 < A(1+N) -S +CMp-1 fN va-1 (l+o) -a-S da

	

for all

	

N > 0 .

On change of variables (N = (t-to)/(T-t), we see

satisfies the inequality of Theorem 1 for all

	

0 < t0 < t < T .

Theorem 2 Let a,p,q be positive with p c 1 + aq, a c 1 .
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There is a continuous function L on [0,°°) 3 , increasing

in each argument (depending also on a,p, which are kept fixed),

such that :

for any

	

0 < T < -,

	

non-negative a,b,J,K,

	

and continuous

[ 0,T)

	

--'

	

IR+

	

with

(1)

	

0

	

< 9 (t)

	

< a

	

+

	

b f

	

(t-s) ,-1 ~o (s) Pds

	

on

	

0< t< T,

(ii)

	

I ó9q < J

	

and

I (0, T)

	

n { ,p

	

<

	

l}Ip
P < K .

we have p bounded and in fact

sp (t) < L (a,bia ,

	

bK« )

	

< -

	

on

	

0 < t < T .

If p > q we may suppose K < J . The function L is given

explicitly below (at the end of the proof) .

Example If p > 1 + aq and a,b,a,q are positive, let

p = 1 + e£/S,

	

-p(t)

	

= M(T-t)-S

	

If

	

M,T

	

are sufficiently large,

is an unbounded function satisfying (i) and (ii) of the

theorem .

Remark

	

The error in the árgument of

	

[1, P . 219-220]- aside

from irritating misprints - is disregard of the set of

	

t

where sp(t) < 1, so there is no dependence on K .

	

(The proof

is wrong ; it is not known whether the inequality claimed is

false) . After correcting this point, we follow fairly closely



the argument of Kielh5fer and Caffarelli .

The form given above is independent of rescaling of time

(yt in place of t, for any constant 4 > 0) . The corollary

below gives a form also independent of rescaling of -p (Qg in

place of w, for any constant Q > 0) .

L is also an increasing continuous function of p and

1/a.

Proof Define Ak = {t E (O,T)I 2k < ~o(t) < 2k+1}

	

for integers

k > 0

	

and

	

A* = {t E

	

(O,T) q (t)

	

< l} .

	

Then

	

(O,T)

	

is the

disjoint union of

	

A*

	

and the

	

Ak , k > 0,

	

and

	

(with ¡Al _

measure of A)

fA*Spq + E [Ak 1 2kq S f 0

	

vq

	

J .
0

For certain A > 0 and integer M > 1, depending only

on

	

a,p, a,b, J,K (chosen below), we will prove

	

-P(t) < 22M(1+X-1J)

on 0 < t < T .

	

(To avoid trivialities, we suppose a,b,J,K gre

all positive ; the final estimates are continuous when one or

more of these tends to zero .

Let

	

Ix	bethe set of integers

	

k > 0

	

so

	

2
kqlAkl

	

> ~ .

This is a finite set and in fact

For large integers v > 0, [vM,(v+1)M]

	

does not meet I .,

and we let v 0 > 0 be the smallest such integer . For each v
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I~

	

=

	

E

	

1 5

	

E

	

A-1

	

2kgl
Ak¡

	

S A-1 J .
k E I~

	

k E Ix



in

	

0 < v < v 0 - 1,

	

there is a corresponding point of IX ,

and allowing for possible double-counting of end points,

so

Then

x-1J >

	

I~ > 2 (v 0 - 1)

0 < v 0

	

5 1

	

+

	

2A-1 J .

If

	

2m > a,

	

as we assume,

	

then

	

(since q(0)

	

< a)

w (t)

	

< 2M < 2M (l+v0)

	

for small positive

	

t.

	

Let

	

tl	be the

largest number in (O,T] such that

9(t)

	

< 2M(l+v 0 )

	

on

	

0 < t < tl .

We show(for appropriate choices of X,M) that tl = T . This

says ~(t) < 22M(l+~-lJ)

	

on 0 c t < T, as desired .

Suppose for contradiction

	

tl < T,

t2M(1+VO)

	

= W(t 1 )

	

< a + b J O
1 (t l-s) «-1 w(s) p ds

M(v +1)0
<a +b J (0,t)1n A k (t l-s)a-1 sp (s) p + 2pb

	

kpO

	

J
(0,t1)nAk(tls)«-lds 2k.

Now

	

0 < w < 1

	

on A'

	

so for any h

	

in 0 < h < tl

so

	

q (t1 )

	

=

	

2M(1+v 0 ) .

t
J(O,tl)nA*(tl-s)«-1~p(s)pdsSha-l J(O,tl_h)nA*~ap+Jtl_h(tls)«-lds .



Choose h = K when 0 < k < t1 , and h = tl when K > t1 ;

in either case we obtain an upper bound (1 + á)Ka . Thus

Now ¡Ak 1 < J 2-kq for every k > 0, but we use thic ácitimate

only for

	

0 < k < M v0 ;

	

[ M vo ,M(v 0 +1) ]

	

is disjoint from

	

I.,

and for

	

k

	

in this interval,

	

IAk i < X 2-kq .

	

Substituting

these estimates

Recalling p-qa < 1, we find

2M (l+v 0 )

2M (l+v 0 )

	

< a +

	

(1+á) bKa	+

	

2apbb

	

0

	

2kPl Akl a .
k=0

<
Mv -1

1 a 2PbJaa

	

0
a k=0a + (l+ )bK +

	

2
1, (

`
-
`
al

M(v

	

+1)
+

	

2Pb?~a

	

E

	

0
2k (P qa ) .a

	

k=Mv 0

2M (1+v 0)

	

< a+ (1 1 ) bKa +

	

2PbJa 2Mv0
á a

a
+ 2P+lb~ 2M(v0+1)

a

This is contradictory if 2 P+l bXa/a = 4'

M(v +1)

a + (1+á) bKa < 4 . 2M,

	

2PbJa/a < 4 . 2M,

since it says

	

2M (1+v0)

	

-z;; .2 2M(1+v 0) .

	

(Recall we assumed

earlier that a < 2M) .

Thus choosing X as aboye, let M be the first positive



integer > M0 , where M0 is defined by

M
0 = max{0,

	

log2(2p+2bJa/a),

	

1092

	

(4a+4 (1+-)bK«)},

an increaging continuous function of a,bJa and bKa . We have

-~vM

_.

	

and

so

is the de-=-- red "ound :

x -1 J = (2p+3 bJa/a)1/a

1092L (a,bJa , bKa ) =

=

	

2 (DI0+1) (1+(2p+3bJ(X /a )1/a
)

log2 'P(t)

	

< M(l+v0 )

	

< 2(M0+1)(1+X -1J)

	

= log2L .

Remark

In the proof of Theorem 2.we used the following simple result :

If

	

0 < a S 1

	

and

	

A

	

is ary measurable subset of

	

IR +,

f (0,t1) f1A (tl-s)a-1 ds S á1 Al
a .

1

This is clear if A is a finite union of intervals in

(0,t1 ) ; s -> (t l-s)a-1 is increasing, so by moving the



interval to the right we preserve I Al

	

while increasing the
t
lintegral to

	

f t_I AI (t1 -s) a-1 - ñ ¡Al « .

	

Any open

	

A

	

is

	

a
1

countable union of open intervals, and the result for open A

follows by taking limits of incrasing unions of finite inter-

vals . Finally, any measurable A may be approximated in

measure, from the outside, by open sets, so we get the general

case .

Corollary We use the notation and hupotheses of Theorem 2, but

also, for some Q > 0 and KQ > 0, suppose 9 satisfies

Then on

	

0 5 t < T,

1(O,T) n {9
<Q}'p

< KQ .

~p(t) -< Q .L(a/Q, bJa Qp qa-l , bKQ Qp(1-a)-1) .

The last argument on the right-hand side may also be written

bJa Qp-qa-1 (KQQ p/JQ
q)a .

Note the simplification in the extreme case

	

p = 1 + a q .

Proof Define

	

: [0,T) ---~ IR + by O(t) _ ~p(t)/Q, and

apply the theorem to 0 . Returning to W = Q .O gives the

corollary .



Reference

1 .H . Kielh6fer, Global solutions of semilinear evolution

equations satisfying an energy inequality, J . Diff . Eg . 36

(1980), 188-222 .



4 . An example in-the spectral theory of semigroups

4 .1 . Introduction

If A E £(X)

	

is a continuous linear operator, the

spectral mapping theorem says a(eAt ) = eta(A) . In general,

the generator A of a strongly continuous semigroup
At{e , t ~ 0} is not bounded, and the most one can assert

(without further hypotheses) is that

a (eAt) D eta(A)

	

for

	

t Z 0,

and in more detail ([3], Th .16 .7 .1,2,3,4)

(note 0 loes not belong to the image of the exponential

function, though it may be in the spectrum of the semigroup) .

A remarkable example is given in Hille and Phillips

([3], sec .23 .16) of a strongly continuous group of operators
{eAt, -- < t < ~}

	

on the Hilbert space

	

L2 (0,1),

	

whose

generator A has no spectrum, while for any real t 76 0

Pa (eAt)\ {0} = etPu (A) ,

	

Ra (eAt )\ {0} = etRa (A)

and

	

Ca (eAt ) D etCa (A)

-I ti n/2

	

I ti r/2
}

.
a (eAt ) = Ca (eAt ) _ {z : e

	

< I z

	

el

The spectrum of this semigroup bears no relation to a(A),



since a(A) is empty ; but a recent theorem of Gearhart and

Herbst [1,2]

	

shows spectrum may also arise from lines

Re X = constant where the resolvent

	

(X-A) -1

	

is unbounded . We

prove

. II (X-A) -1 11 . is bounded on any line Re

	

= constant

	

9

II (X-A) -1 11 is bounded as Imh --" +-

	

on Re k = constant E (-2, 2)

but is unbounded as ImX - -

Jt (Js f)(x) = xf
0

{f z r (t)

	

r (s)
(x-z) s+t-1

r(t+s)
f (z) dz

in accordance with this theorem .

We will review the entire example, since certain details

are treated differently than in [3], and other details are

supplied that are omitted from [3] .

4 .2 The exam le

	

,

Given continuous f : [0,-) --> C and t > 0, define

t-1
(1)

	

Jtf(x) = f x (X (x

	

f(y)dy, x > 0 .

For any positive t,s, we have Jt (J s f) = Jt+sf .

(x-Y) t-1 dY fY
-
_(y- Z) s-1r(t) 0 r(s)-

(x-Y)t-1 - (Y-z)s-1

f(z)dz

dy} f(z)dz
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Further, if f is continuously differentiable,

t

	

t-1
Jtf (x)

	

= r' (t+1)

	

f (x)

	

+ f 0

	

(xr (t)

	

(f (Y) - f (x) )dy

60

=

	

f ( x )

	

+

	

{

	

xt

	

-

	

1 } f(x)

	

-

	

t

	

f x (x-Y) t

	

f(x)-f(Y)

	

dYr (t+1)

	

r , (t+1)

	

0

	

x-y

-+

	

f (x)

	

as t --"

	

o+ .

Defining J 0f = f, we have (at least formally) a semigroup of

operators, the fractional integration semigroup , such that

J 1f (x)

	

= f xf (y) dy

	

and

	

ax (Jtf (x))

	

= Jt-l f (x) ,

	

t > 1 .

(We estimate norms below to show this is strongly continuous

on L2 (0,1) .)

In fact, the definition (1) makes sense for complex t

in

	

Re t> 0,

	

t --> Jt f

	

is analytic in

	

Re t > 0

	

and

Jt (J s f) = Jt+sf

	

for

	

Re t > 0, Re s> 0,

	

by analytic continua-

tion .

	

If

	

f E Cc	(IR+),

	

t --~

	

Jt f(x)

	

extends to be an
mfentire analytic function with Jtf(x) = d (x) when
dxm

t =-m (m = 0,1,2, . . .),

	

as may be seen from the formula

t-1 N
Jtf (x)

	

=

f__

	

(xr
(t)

	

{f (Y)

	

-

	

E

	

f (~) (x)

	

(Y-x) j1j!-} dy
j=0

N
+

	

E

	

f ( j ) (x)/j~

	

.

	

(-1) j xt+j/((t+j)r(t)) .

	

.
j=o



entire analytic functions of t, for any integer j > 0 .

show

Note l/r(t) and 1/((t+j)r(t)) may be considered

We will work only in the half-plane {Re t > 0},

	

and we

(2)

	

IIJt fil L2(O1l)

	

< B (t)

	

IIf1I L2(011)

	

for

	

all

	

f E

	

C~(0 1 1) 1

where

	

B(t)

	

= Ret r(t)

	

for Re t > 0,

	

or for

	

0 < Re t < 1/2

	

we

may take

Ilmtl

	

1/2
B (t)

	

= e 2	/(1-2Re t)

Note, on Ret = a > 0, Stirling's formula gives

Si ImtI .
1

	

1 Imtl - a+1/2e2

	

{1+O( I Im ti ) } as Im t-~
a~,/2r

so our bounds for the norm are not too far apart . In fact, by

the maximum principle, we have

	

II Jt 11

	

< 1.1292

	

e'/2 I Im t I

	

for

0 <Ret< 1/2 .

For the first estimate, define

ut-1/r(t) when u > 0
Kt(u) _-

0

	

when u < 0,

so on

	

0

	

< x < 1,

	

Re t> 0,

	

supp

	

f

	

C (0,1),

1 Jtf (x)I

	

= I

	

Ió Kt (x-y)f(y)dy l =

	

1

	

I1 Kt (x -y)

	

f

	

(y)

	

dy 1I <



<

	

(I 0

	

I Kt (x-y)

	

dy) 1/2

	

(I 1 I Kt (x-Y) I

	

I f (y) 1 2 dy) 1/2

so I 1 IJ t f (x) 1 2 dx < I 1 1

	

I Kt (u)Idu I 1

	

{I 1 I Kt (x-y)I

	

dx}I f (y)¡ 2dy

Thús we may take

`(I11

	

I Kt (u)Idu) 2

	

II fil 2
2 (0,1)

	

.

Re t-1
B (t)

	

= 1 1 1 1 K t (u)I du = J1

	

u

	

du =

	

1
I r(t)I

	

Ret

	

r (t)

Before proving the other estimate, we note that this
alredy shows t - " Jt f E L2 (0,1) is continuous (and even
analytic) in Re t > 0, for any f E L 2 (0,1), and it is also
continuous as t - 0

	

in any sector {largtl< r/2 - e < r/2}
strictly in the right half-plane .

Thus we have a strongly continuous semigroup in Re t > 0,
and in particular on the real axis {t > 0} .

Let A denote the generator of . {Jt , t > 0}C £(L2(0,1)},

so Jt = eAt, t > 0 . Now the spectral radius

r (jt )

	

=

	

lim (I Jnt11

	

1/n

	

<

	

lim

	

1

	

=

	

0 .
n+oo

	

£(L2 )

	

n;- r(nt+1) 1/n

for any t > 0, so a(Jt ) = {0}for t > 0 . It is also known that
{0}

	

= a(e t A)

	

D eta(A)

	

;

	

but

	

0

	

is not in the image of the

exnonential function, and any po.int of a(A) would give a

non-zero ooint of a(etA ) for any t > 0 ; so a(A) is emoty .

(Of course a bounded operator always has spectrum, but A is

unbounded) .
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Now we obtain the other estimate, which shows the semigroup

may be defined (and is strongly continuous) in the closed half-

plane

	

{Ret > 0 } . For f E C~(0,1), Jtf is well-defined for all

complex t, and we consider in particular the strip 0 < Ret < 1/2,

because then

I Jt f (x) I

	

=

	

I f1 (x-Y) t-1

	

f (Y)

	

/

	

I' (t)

	

=

	

p(XRet-1)

for

	

x > 1, so j0IJ t f(x)1 2dx < °° .Define Jtf(x) = 0 for x < 0 ;

we compute the Fourier transform when 0< Ret < 1/2

(Jtf)

	

(

	

)

	

= lim JRRe-i t x Jtf (x) dx
R+oo

= lim fR e-ij x Jtf(x)dx
R+oo

= lim f 0 dY {I0 Y ut-le-l
udu/I'(t)} e-ltyf (Y)

R+co

Rotation of the line of integration to the negative (or positive)

imaginary axis when t > 0

	

(or t < 0)

	

shows

(Jtf)'(j) = itl-t eTiat/2 g (t), (? = -sg.n 1)



Then

f 0I Jtf l 2

	

=

	

2111-
00

111 -2Ret

	

e±rrImt

	

I f (

	

) 1 2

	

d

00c 27r
errl1mtlf

	

i

	

I -2Ret I f (

	

)12 d

2n

	

errl Imt1 (f
-00 If 12

	

+ 111 Mi-2Ret:1) I f u m2 ) .

For the second integral, recaíl supp f C (0,1) sol f(UI < IIfIIL2(0,1)
for all real j ;Thus when 0 < Ret < 1/2 .

~~ Tt2 _ fó 1 Jtfl 2 < fó 1 Jt f 1 2 < e' I Imtl

	

II f1l 2 ( 1+

	

Ret
1_2Ret )

which gives the desired estimate .

Now we have a semigroup in (Ret > 0), and we will examine

in particular the behavior on the imaginary axis . First, a technical

point : determining the domain of the generator .

Lemma Q31) , Th .23 .16 .1)

Let f E L 2 ((0,1), (E) and define

F (X)

	

= fo

	

hog (x-y)

	

f (y)

	

dy,

	

0

	

< x

	

< 1

	

;

the integral converges absolutely (Cauchy inequality) and

F (x) .,*

	

0

	

as x +

	

0 .

(i) if w y¿ 0 is any complex number with Rew > 0, and if



lim 1 (Jctf-f) = g exists as a limit in L2 (0,1), then F is
t+ 0

	

1
absolutely continuous with derivate F' in L2 (i .e . F E H (0,1))

N
and

	

g = w(F' + yf) ,

	

where y =-I" (1) = lim ( E k - log N) _
N+oo

	

1
= Euler's Constant = 0,5772 . . . .

(ii) if F E H1 (0,1)

	

then as t - 0 in Ret > 0,

Thus wheter we consider

	

(t - J t)

	

as a semigroup in

	

(Ret > 0)

or in {t > 0, Imt = 0}, or on any ray or sector in the closed

right half-plane, we always obtain the same generator A :

Proof : It is convenient to do our calculations on Jt f when

Ret > 0, and Ret may be chosen to be large to improve smoothness .

Then we extend results by analytic continuation to the open

half-plane Ret > 0, and to Ret > 0 by continuity .

(i)

	

For Re t > 0,

	

J~+1 f = J 1 (J1 f)

	

or

	

Jj+1

	

f (x)

	

= f x Jpf (y)dy =

rU+1) . f 0
(x-y)1

	

f (y) dy .

t (Jtf-f) - F' + yf in L2 (0,1) .

D (A)

	

=

	

{f E L2 1 F E H1 }

	

and

for

	

f E D (A) ,

	

Af

	

= F'+ yf .

Taking 1

	

= wt with

	

t > 0

	

(Rew > 0, w

	

;é 0)

	

we find



Jo

	

(J

	

f (Y) - f (Y) )dY = J 0

	

(_t

	

{

	

r(1+wt)

	

-

	

1}

	

f (Y)dy .

By our hypothesis, the limit t -->, O+ is

so F is absolutely continuous with derivate F' = w g - 7f in

L2 (0,1), as claimed .

(ii) Now assume F E H1 , with F(0) = 0 as noted above, so

F = J1F'

	

and J~ -1 (F)

	

= J'F'

	

for

	

Red > 1 . We show

	

J'(F')

	

=

= a~ (Ji f) - 1'Jlf .

11, J x g(Y)dy = J ó

	

{log(x-y)

	

-
r

	

(1 }

	

f (y) dy
r(1) 2

In fact, for Ref > 1,

= F (x)

	

+ 7 J x f .

f

	

1-1

	

x

	

x (x-Y) 1 -2J (F') (x) = J

	

(F) (x) = J 0 { J z r(1-1)

	

log(Y'z)dy} f(z)dz

= J x

	

(x-Z) 1-1

	

{log

	

(x-Z)

	

r'(1)	f(z)dz.o r(-)

	

r(1) r(~)

(The inner-integral was evaluated as a/a1 l e = 0 of the identy

X

	

(X-Y)1-2

	

E

	

=

	

(X-Z) J -1+E (1+E)
JZ r(3'-1)

(Y-z) dY

	

r(1+E)

	

)



This for Rea > 1, Reo > 1,

Jof

	

- . Jaf

	

= f 0

	

a

	

(J' f) d1

	

= I«J l (F'+

	

'Yf) d1

But the final equation holds (by continuity and analytic

continuation) in Rea > 0, Reo > 0 . Allowing a - 0,

(JR f-f)

	

= -!f O Jf (F'+yf)dJ, Reo > 0,

and then we see this converges to F' +yf(in L2 ) as M -->- 0 with

Reo > 0, completing the proof .

Now we are ready to close the trap!

The strongly-continuous group

	

{Jlt1 -°° < t <

	

}

of operators on L2 (0,1) satisfies

11 Jit11

	

<

	

e 1 t17r/2

£ (L2)

Now Jit has spectrum -as does any bounded linear operator-

and the spectral radius

r(Jlt )

	

.IIJ1tll£ (L')

while the inverse of Jlt is J-lt , so

el ti a/2

a (Jlt )

	

C {z :

	

el t) n/2 < 1 zl

	

:iQ

	

el ti a/2

	

}



(We see below that these sets are egual whenever t 71 0-But the
generator of this group is ¡A, where A is the generator of
{Jt ,t > 0} (see the lemma if you don't believe me) ; and a(A) is
empty, so a(iA) is empty .

Just to make the situation definite, we show every z in
e

	

1tl ir/2 < 1 z 1 <
C-

¡ti ir/2 is

	

in a (Jlt ) .

	

Since

	

the

	

spectrum is
always a closed set, this holds egnalty for the closed annulus,
when t 7~ 0- (Hille and Phillips (3,23,16] give as an open problem
whether the interior of the annulus is in the spectrum ; it is,
as we show) .

For any complex p with Rep > 0 define

JitgP to find

gp (x) = xP

	

Rep +

	

, 0 < x < 1,

so IIgp II L2(0,1) =1 . By the definition of Jlt , we may compute

itg	-

	

r (P+1)

	

g

	

=

	

r(P-+7_)

	

( xit-1)

	

g

	

(x) .J p r(p+l+it p (p+l+it

	

p

Now j 1

	

I x lt-11 2 Igp (x)I2dx -. 0

	

as Rep

	

for any real - t ;

	

and

we choose p with

	

arg p

	

fixed in (-v/2,

	

ir/2) and

	

I pl - °°, say

p

	

=

	

Rn

	

ei9

(-n/2 < 0 < ir/2, Rn = exp (a+21rn/lt1 ) a and 0 fixed)



Then

	

f (p+1) / f(p+1+it)

so with

	

z = exp

	

(-

	

(te+ita)),

Any such z is in a(J lt ), and (0,a) may be chosen freely in

(-7r/2, zr/2) X R, so the interior of the annulus above is in the

spectrum, as claimed .

4 .3 . Interpretation

From 1948 (in the first edition of [3]) until 1978, this

example was complately mysterious and outside the theoretical

structure of spectral theory . Even after 1978, the theorem of

Gearhart [1] -extended and simplified by Herbst [2] in 1983-

was not applied to this example . We will apply it, and then see

it more as an example than a counter-example .

The theorem of Gearhart and Herbst says : if { e tA ~ t

	

0 ;

is any strongly continuous semigroup of linear operators on a

Hilbert space, then for any

	

t > 0, z E C,

e zt E

= P-it

	

(1+0 (I PI -1 ) )

= R-it e-te (1+ O(Rnl ))

= e -te-ita (1+0(R_ 1 ) )

(I

	

Jltgp-zg p11 L

	

-~

	

0 ,

	

II

	

gp11 L

	

=

	

1 ,
2

	

2

a(eAt) if and only if either

or z+
2ntn

	

¢

	

a(A)

	

for all integers n but the resolvent

(z + 2112 - A ) - 1 is not uniformly bounded as n

z

	

E a (A), mod

	

2?i,
t

t
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(No comparable result is known for Banach space semigroups) .

We compute and estimate the resolvent of the generator iA
ZJit,

t > 0} on lines Re z = constant, or -what is the same

thing- consider (z-A) -1
on lines Imz = constant .

First recall

As before

(z-A)-1 = JO e-zt Jt dt

for Rez large -and in fact, for all complex z, since both sides

so

	

II (z-A)-11I£(L2(o,1))S J 01 E(u;z)1 du .

II (z-A)-111
L2(0,1)

	

< J O I E(U;z)1 du 11f1I L2(011)

There is no difficulty when Rez > Const.> - -.

are entire . Thus

(z-A)-1f (x) = Jó e-ztdt
JO (xf(t)-1 f ( y)dy

= Jx E (x-y ; z) f(y)dy, 0 < x S 1,

where E(u;z) = J zt t- 10 dt e- u /f (t) for u > 0 .



Por example, if Rez > -1,

j1du I E(u ;z)I S t1du jódt e-tRezut-1 /r(t)

where C = max e 2t/r( .t+1) - 238,83 .
t>0

and then .

In fact, by rotating the line of integration, we may

estimate E(u;z) álso in the left-half plane, provided

IImzl > 1r/2 . Since E(u ;z) = E(u ;z,`, it suffices to treat the

case Imz = n >

This shows, when I1-logul> 1,

f-dt e tRez/r(t+1) 5 C/(Rez+2)

w/2 . Stirling's approximation shows we way

rotate the line of integration to the negative imaginary axis,

i

	

<-

	

iT (1-logu)

	

e-Tn
E(u ; +in) = u 0 e

	

r(-
t) dt

for 0 < u < 1, n >w/2 . Note I r(-ÍT)I_

	

2t e-T7r/2 as T --> +~

but the integral converges since n > ir/2 . In fact T ~

	

n/r(iT),

along with its derivates,tends to zero exponentially as 1�+ +w,

so we may integrate by parts twice to obtain

2

	

-T n
E(u ;1+¡T7) =

	

1

	

2 {1 +ifÓ e ir( -logu)
aá2

	

(r(eiT) )d T}

u (t-logu)



for a constant C depending only on n . In caselt-logul < 1, we

use the earlier representation :

where C1 depends only on n .

Now for n >r/2 fixed and J< -1 (we estimated j>-1 above)

Thus 11 (j+in-A)-111
L(L2)

is uniformly bounded on - - < t <

provided n> r /2 or

	

n <

	

-ir/2 . For any

	

n,

	

it is bounded as

but we prove it is unbounded when

	

->-~, for - ir/2 < n < ir/2 .

In fact given any g E L2 (0,1)

We choose, of course, g = gp (x) = xp

	

2Rep+1 , with Rep

	

+

arg p = constant,

	

as before . Then 11gp 11L21 and .

1 E (u ; j+¡17) l

	

< C /

	

(u I

	

J-logul 2 )

I E (u ; j +in) I

	

< 1

	

IOd r I e -r n/r (-ir )I

	

= C1/u .

1

	

~ -1

	

~+1
+f 1du 1E(u ;1+in)1

	

e
= (~

	

+
0

	

J .e

e

	

-1

(Jtg)

	

(x)

	

= g(x)

	

x
t
r (P+1 )p

	

p
f (p+l+t)

1

	

) 1 El du

ej +1

:1; C + 2C 1 + C (1 -

	

)< 2(C+C1) .

II

	

(t +¡71 -A) -111

	

(L2 )

	

>

	

II gll
L2

	

/

	

11

	

(t +¡n-A) gll
1,2*

00



so differentiating with respect to t,

Ag (x) = gp(x) { log x - r(ppl1) }
P

But 119

	

(x) log xll

	

-> 0

	

as Rep

	

and r , (p+1)

	

_
p L2(0,1)

	

r(p+ 1 )

= log p +o(

	

) so we may chooseI
PI

p = e-U+i72) ,

then argp = -n is fixed in (-w/2, w/2),1 p I = e-p -, +~

	

and

Rep-+ +- as

	

-> -~, and II Agp-

	

Q +i'7) gpll L2 -> 0,

	

II gpll

	

L2

	

=

	

1 ,

	

so

II ( +ira-A)-1'!

	

T

	

-> +°° . In fact, uniformly on l i7l S 2-S< 2 ,.
L(J2)

II j+ii7-A)+°° as

	

-
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5 . A property of the exponential function

Theorem Let Q be any subset of the complex plane, and define

Of course, X may be empty ; but if-not, it is a closed subset of

IR

	

and we set Z = X + ¡IR={ z E C : Rez E X} . For any real t,

etZ is a(relatively closed)collection of circles or annuli in

C\{0} .

and in fact

where Q. _ { z E Q :1 Imz1 > N} . The excluded set of t is of

measure zero and also meager (=Baire category I) . If X is empty

and Q is closed, then etQ is closed in C\{0}for every real t .

ixample

	

Let Q = {O,'± i, ±2i, ±3i, . . . } .

	

so X = {O} and e tz is

the unit circle for t r 0 . Then e tQ is dense in the unit circle

if and only if t/r is irrational .

X

	

= { x E IR¡

	

3

	

sequence z n E Q with

	

Rezn	->x,

	

( Imzn I -> +w } .

For almost all real t,

etz C Closure etQ

etz = n Closure etQN \{0}
N >1



Proof It is sufficient to treat the case when Q 1is`coñtained

in the imaginary axis and

	

X = {0} . There is a sequéüce-J91

{i wn}

	

n > 1

	

in

	

Q

	

,

	

with

	

I wn1--,

	

and for defini.teness .-- r- ~ 2

suppose w

For any real

	

a

	

and any

	

S

	

in

	

0 < S

	

< a , : rdefine

	

o

Sa (S )

	

_ {t E IR I

	

for some integers

	

j ,k,1 w j , t-a-.2zkl-< S } .

Note

	

dist

	

(e
¡a ;

	

eQt )

	

< 2 sin S/2

	

when

	

t E Sa (S )1:--, GleaT1y

	

m 8

Sa (S) is open ; we prove its (closed) complement has measure

zero, hence also has no interior . To do this, we estimate the
s n3:{;a

density of

	

S«(S) .

Recall the density of Sa (S) at t E 1R is

lim 2. meas

	

{S« (S)

	

n

	

(t-e,

	

t+e)
e-+0+

	

_

which exists for almost every

	

t, equals 1 a . e .

	

in' n Sá

equals zero a.e . outside S,(S) .

Now any real interval of length > 1 contains`añ`~ ntéger,=

so for any real t and positive integer there is an'integer

k in the open interval of length 2 centered at (wj t:a')~j2ri=-

Let

	

t* = (21rk+a/w; then I t-t * I < 21r/wj and (sincé S" <

	

)-.

(t* -
b

	

t* +
b

)

	

c s (S)

	

n

	

(t

	

t + 3lr)

so

	

2w meas

	

{S« (S)

	

n (t-e , t+e) } > 3n

	

when

	

F

	

= w,

	

.
j ~n~7yQ

Thus the * density of Sa (S) at t is > S/3rr > 0, and is never
J

zero .

	

But it is zero a.e . outside

	

S. (S) . We conclúde°`that a .e .

t is inside Sa (S) .



Let {al ,a 2 , . . .} be a dense sequence in [0,2w] and

let S =

	

U

	

IR\ a i) . S is a meager set of measure zero,
j k=1

	

j k
since this

	

is true for each

	

IR\S'

	

(1) .

	

If

	

t E IR\S,

	

thena . k .
J

t E Sa(k)

	

for all

	

j,k,

	

so

	

{e¡a j,

	

j > 1}

	

is

	

in the closure.
)

of etQ , so the whole unit circle is in .the closure of e tQ .

For each N = 1,2, . . . , there is a meager null-set

C IR such that

Closure etQN D unit circle

when t E IR\SN . Then for t E IR\S, S = U SN,
N>1

n

	

closure etQN D unit circle .
N > 1

L7hen Q is an arbitrary subset of C, we choose a

countable dense sequence {xn } in X, and for each n there

is a meager null set Sn such that Clousure etQ contains

{I zl

	

= etxn}

	

for

	

t E IR\Sn . Then for

	

t E IR\U

	

Sñ, Closure

etQ contains etZ . n> 1

is an analytic

function in the strip

	

a < Rez< :(3

	

which is asymptotically

almost-periodic, i .e .

Corollary 1

	

Let

	

a < R

	

and suppose

	

h(z)

h (z) - ht (z) -» 0 as Imz ->- ±-

	

with

	

a < Rez < f3

where h+ ( .) are analytic almost-periodic functions in the strip .

Define

Xa = {Rez)

	

ha (z) = 0, a < Rez < Q}, a -- t



and let

Then for a e . real t

z a = { z

	

E

	

C 1 Rez

	

E

	

Closure X,}

Closure

	

{ext	a< ReX<

	

, h (X)

	

= 0}

	

O

	

etZ+

	

U

	

etZ- .

Remark In applications to difference equations, functional

differential equations of neutral type [1]

	

, hyperbolic

systems in one space dimension with general boundary conditions,

and some other problems,we have a "characteristic equation"

(h(A) = 0) given by an asymptotically almost-periodic analytic

function h ( .), such that there are nontrivial solutions

with exponential time-dependence e tx if and only if h(X) = 0 .

The set {eta 1 h(X) = 0} is contained in the spectrum of the

corresponding semigroup .

Proof of Cor .l Basic properties of analytic almost-periodic

functions are described in [1, lemma 3 .1-3 .3] . One of these

[

	

1,

	

1emma

	

3 . 2	]

	

is

If

	

ha (x 1 ) = 0,

	

a < ReX 1 < Q, there exist

	

a2 , x 3 , . . .

	

with

ha (xn ) = 0, ReXn -> ReX,

	

and a .ImXn -> +°° .

Using Rouche's theorem, we find :

if h a (X 1 ) = 0,

	

a < ReX < (3 ,

	

there exist X'2 , X '3 , . . . with

h(X' n )

	

= 0,

	

ReV n - ReX 1 ,

	

and a.ImX'n - - .



It follows that the set X of the theorem, corresponding to

Q --- h 1 (0), is the closure of X +U X- , and the Corollary is

proved .

In the spectral theory of [1, th, 4 .1 .] ; the only

point left open is wheter the set of circles (etz, in our

notation above) is contained in the spectrum of the semigroup .

This is proved by Cor .l for a .e . t .> 0

	

so we have :

Corollarv 2 .

	

If { eAt , t >0} is the semigroup of [ 1] with

generator A, then for a.e . t > 0

a(eAt)\ {0} = Closure e ta(A) \ {0}

Remark. Corollary 2, as you may have guessed, was the original

motive for this investigation . I tried to prove this about 1971,

and failed . In 1981, I found approximately the above argument

but concluded only meagerness, not realizing it proved measure

zero until 1984 . Which shows sufficient patience may compensate

a lack of brilliance .
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6 .As.ymptotic behavior of some scalar ODEs and an elementary

example- of non-minimal ej-limit sets .

A bounded positive-semiorbit of a finite-dimensional

autonomous ordinary differential equation (and some infinite

-dimensional equations) has a nonempty compact connected

invariant w -limit set . "Invariance" means the w-limit set is

composed of solutions of the equation, but it need not be a

single solution . Correcting an example in Hale's book1 11 , and

also in Coleman's article [21 , we show the 2-dimensional system

(in polar coordinates)

=

	

r

	

(1-r 2 ) 3

	

,

	

9

	

=

	

r2sin2	B

	

2)2

has solutions r(t), 0(t) with r (t)- 1 and 0(t)-+-

	

as t-, +°° .

Thus the w-limit set is the unit circle, which consist of four

solutions : the equilibrium points (r,e) = (1,0) and (l,a) ,

and the two orbits joining these . In the version given by Hale

and Coleman, the first equation is r = r(1-r2) ;

	

but this

implies r(t)--> 1 exponentially and B(t) has a finite limit

0, mod n), so every solution approaches an equilibrium .

More generally, we study the asymptotic behavior of

solutions of the scalar equation

(1)

	

ii = f(t,u)

	

= fo (t)

	

+ f1 (t) u + f 2 (t,u)u 2

where

f0 (t) -> 0,

	

f, (t)

	

-+ 0 and f 2 (t,0) - a y¿ 0

79 .



as

	

t l+°°, and give conditions for the existence or nonexistence

of solutions tending to zero as t-+°° .

Theorem 1 Assume f(t,u) and its ' partial derivate fu (t,u) are

continuous on

	

{t0 <

	

t < °° , -r 0 <

	

u

	

< r0 } and

lim
t--> °°
u -> 0

I f (t .u)-f0(t)-f1 (t) u1

	

I fu (t,u)-f1 (t) I

	

21 al .
<¡al , lim

u2

	

t. .�,

	

I u I
u -0

Also assume

	

m

	

= licti

	

t2 I f

	

(t)I ,

	

m

	

= lm

	

ti f

	

(t) 1

	

are

	

finite,
o

	

t4,+CO

	

0

	

1

	

t ->+00

	

1

m1 < 1 and m0 < (m1 -1) 2 /41al .

Then there exists a solution u(t) (for t sufficiently large) of

d = f(t,u) which tends to zero as t 1 + °° : in fact,

¡u (t)I

	

= 0(t-1 )

	

as

	

t -> -

	

.

Remark Many variations are possible by change of variable, for

example

	

u = v - 2á f1 (t)

	

or u = v exp

	

(ft f 1 ) . .

	

It seems

desirable to reduce or eliminate f 1 .

Proof

	

The function r -->m 0+(M1 -1) r+ lal r 2 has a minimum at

rmin =
(1-m

1 )/21al

	

> 0, where it is negative, by our

assumptions . We may choose

	

r > 0 slighthy less than rmin '
so that

and

m0 + m1 r + la¡ r 2 < r

m1 +

	

21 al r

	

<

	

1 .



Fix such r, and let e > 0 be sufficiently small that these

inequalities remain true when m0, milla 1

	

are increased by e .

For sufficiently large A > 0 we have

on the set

Now define

desire d solution .

I f(t,u)-f 0 (t)-f l (t)ul

	

<, (I al+e ) u2

I fu (t,u)-fl (t) I

	

2( 1al+e ) 1 ul

I

	

f 0 (t) I

	

IZ;

	

(m0 +e

	

)/t2

	

, I

	

f1 (t)

	

I

	

<

	

( ml+ e) /t

{

	

(t,u)

	

.

	

t

	

>

	

A ,

	

I u I

	

<

	

r/A

	

}

SA	={tontinuous u : ( A,-) -IR I ti u (t) I < r

	

for t > A }

a complete metric space with the c.istance dA

dA (u,u ) = sup

	

t I u(t) - ñ (t)I .

t_:1A

Also define

	

h : SA -" C ( ( A,-) , IR )

	

by

,h (u) (t)

	

= -Jt f(s,u(s) ) ds, t>

	

A,

It is easily verified that

	

4, (SA) C SA and

dA	(~(u), 4>(ll))

	

S

	

(ml+e +2r (l al+e

	

))dA (n,ñ)

For u,u

	

in SA,

	

so there is a unique fixed point whicy is the



Theorem 2 Suppose

	

a

	

> 0, m, >

	

0, m0 >

	

(m1 ± 1) 2/4a

	

and

If 1 (t)Ic mi/t

	

for large t .

	

Then no solution u( .)

	

of

ti

	

>-a u2	+m0/t2 + f1 (t) u

	

tends to zero as t-u- ;

	

in fact,

every solution blows up (to +-) in finite time .

Proof Let v(t) = tu(t) ; then

t,r =

	

t2ü

	

+ tu :

	

m0 + v -m 1 I vl + av2

so v(t)

	

(Constant) logt > 0, for larae t .

Choose C 1 > 0 such that

whenever

	

v > C1 . Now

	

v > C1	forlarge t, say

	

t > t1 , he-nce

tv > -` v 2 + v and so u > 0 and ii >

	

_a u2 for t > t 1 , so
2

	

2
u blows up .

r

	

=

	

g'(r )

with g(r)

	

= r(1-r2 ) 3

	

or r(l+r2 )

	

(or something similar) . Ole study

a solution r(t) -> 1 as t s + - .

We apply the theorem with

2

	

2

	

2 2

say

	

f0 (t)

	

=

	

( 1-r (t)
2 ) 2 ,

	

f1 (t)=
0,

	

and

	

a

	

=

	

1 .

a(v+(l±m1)/2a) 2

	

+ m0-(1±m1)2/4a

constant > 0

a(v+(1±n?1)/2a)2 + m0 - (l±m1 ) 2/2a > 2 v2 +v

Returning to our example

0

	

= r2	sin20+(l-r 2 ) 2

f(t,e) = r(t) sin 6 + (1-r(t) ) ,



By Theorem 1,

	

there exists a solution

	

0 (t)

	

- 0

	

as

	

t _> + °°

provided

	

lim (1-r(t) 2 ) 2 t2 < 1/4, which certainly holds if
t--'» °°

g(r) = r(1-r ), since r(t)-> 1 exponentially . Since B(t)+ kff

is also a solution for any integer k, it follows that every

solution 6(t) is bounded . The solutions are monotonic so they

have limits, necessarily --_ 0 (mod w) . Thus in the examples of

[ 1,2 ], the w-limit set is always a single point .

Suppose instead that g(r) = r(1-r2 )3

	

then every solution

r ~E 0

	

satisf¡es -r (t) + 1 --

	

1/(4,/-t)so

	

t2f0 (t)

	

= t 2 (1-r(t) 2 ) 2

t/4 as ty +°° and by Theorem 2,there is no solution 0(t) which

tends to zero as t~ +°°. Tnis means there is no bounded solution .

A bounded solution has a limit which (after possible shifting,

0-> 0+ k 70 we mav assume to be zero ; which is impossible . This

is the desired example of a non-minimal w-limit set .
-,

A more delicate example is obtained when g(r) =-r (1-r 2
)` .

Then

	

t2 (1-.r(t)2)2

	

1/4 as t~ +°° (assuming r(t)

	

> 1, so r(t) ->' 1

as

	

t-> + -) .

	

Thus

	

if

	

I X I < 1, any

	

solution

	

(r, 9)

	

of

r = -r (1-r2
) 2 B

	

= l2

	

sin2

	

0

	

± X(1-r2)2

with r> 1 tends to an equilibrium [(r,e) = (1,0) or (1,n)] as

ti +00;

	

but for X >1,

	

r(t) - 1 while 0 (t) ` +°° and the

	

w-limit set

is the whole circle {r=1} . All there examples may be written as

polynomial systems in the plane : the last case, for instante, is

x = -x(1-x2-Y2)2

	

-Y(Y
2+ a(1-x2 -Y2)2)

y = -y(1-x
2-Y 2 ) 2

	+x(Y2 + x(1-x2-Y2)2 ) .
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