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INFRATOPOLOGICAL RBORNOLOGIES AND MACKEY-CONVERGENCE

OF SERIES

Miguel A. Canela and Mercé Serrahima

SYNDPSIS: In this paper some aspects of infratopolegical bornologies

are discussed. First, it is shown that bornologies with countable

basis are infratopological. Second, it is shown that the convergence

of series presents some: pathologies beyond this class.

We*folliow closely the: terminolopy of (5] and1[4] . where the
main topics concerning bormeological spaces can be found. Roughly
speaking, a bornology is infratopolopical when it can be defined
from a topology in the usual way: the bounded sets are those which
are absorbed by zero neighbourhoods. More precisely, let (E, 8 )
be a linear bornological space, and 18 the Mackey closure topola—
gy associated to this spacew. The Von Neumann bornclogy of B , de-
noted by Bt B , is defined as follows: a subset B C E is bounded
when for ewery zero neighbourhood V, there is some } > 0 such that
B € AV (B is absorbed by V). The bornology g is said to be in-
fratopologital when g= Brf., . A more useful characterization,

which does:not involve any topology is the following riq-;

Propositiom ¥. A linear bornological space ( E, g ) is infratopo-

logical if"and only if every subset B C E, which is absorbed for

gvery berniverous subset of E |, is bounded in {E, 8} la subset

U € E is bornivorous when U absorbs every bounded set of {E,B }).
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The bounded subsets of an ordinary topelogical vector space
(the Yon Neumann bornology) form an infratopelegical bornolegy.
tevertheless, bornelogies which are not infratopological can appear

when we deal with equicontinuous sets.

We refer to [lj‘. example p. 166, for an equicontinuous bornology

not Kolmogerov and consequently not infratopological.

We gee next that spaces with countable basis are also infratepo-

logical.

Propesition 2, Let (E, B } be a separated convex bornological space

and suppose that B admits a countable basis (Bn)n 1 Then g is in-

fratopelogical.

Proof. We can supposse that the Bn's are absclutely convex and that
the sequence is increasing. Thus, if we denote by I . i1n Fhé

gauge of Bn' we obtain an increasing sequence of norms, each || . Iln
defined in E_ = Span B .To make it easier, we define !kain = e

for x €EE \ E .
n

Let A be an unbounded subset of (E, B ). then, for every n, we

can find x_€ A with |[|=x_|| > n
n n'' n

. For every k, we define:

1 :
Ay =Tmm Clxg bl veess Hx h o 1)y

and putting:

we obtain a bornivorous subset of E, and V does not absorb A, be-
1

cause, for € > O arbitrary, ifn>¢g , %y does not belong to
N ] .

any kBk'

a) if k 2 n, we have Ilaxnllkzsk A zEn hy > A
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b)Y if L 3k < n, we have |} Exnifk z it exnlln >en” > n3x .

Applying Proposition 1, we conclude that (E, 8 } is infratopo-

iogical. //

People which is used to linear bornological spaces knows that
such & space can fail to have the properties that one hopes to find
in Functional Analysis, unless some extra assumptions are taken.
Restriction to infratopelogical spaces is an example of extra assump-
tion under which some patologies do not appear. We will see here that
the convergence of series does not work in the usual way when we pla-

ce ourselves outside the c¢lass of infratopological bornologies.

A series E: X i3 said to be Mackey-convergent in a linear
nz 1l a

bornological space when the sequence { 2: xk) of partial

nzt
k=1

sums is Mackey-convergent. The following results are well-known for

the topological converpence in a topological vector space. Qur con-

vergence has been considered in [6] .

Proposition 3. { i } Let (E, 8 )} be a Mackey-complete convex bor-

nological space, {xn)n s 1 a bounded sequence in {E g )}, and
(a }

n'n 21

a sequence of real numbers such that 3 la !l is fi-

nzl

nite. Then,

E: a, x is Mackey-convergent.
n
neg i

{ii} Let {E, B } be an infratopological convex bornological space, and

(xn)n 5 1 & sequence such that, for every sequence of real numbers
(an)n > 1 with ZE Ianl finite, tﬁe series ,E: a . x 1is Mac-

nzl S ingt

key-convergent., Then (xn}n is bounded,

21
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Proof. (i) . Take a bounded disk B containing (xn}n , y» and denote

B
by || . [|B its gauge. The sequence of partial sums | jz a X
S

nel
is a Cauchy sequence with respect to || . EIB. and, (E, 8 } being
Mackey-complete, it is Mackey-convergent in (E, g }.
(ii} 1f (xn}n 5 1 is unbounded, there is a borniverous subset V
by a sub-

which does not absorb this seguence. Replacing (xn) X
na

sequence if necessary, we can suppose that X, =] ny for every n.

Then (n*a. xn) iz not Mackey-convergent to zero. //
ngl

As we have previously announced, be will show, through a coun-
terexample, that the assumptionm on (E, g } in part {ii} of the pre-

ceding Proposition is not superfluous.

kExample 4. Let E be the space of measurabile real functions on
the unit interval I ={0,1] (with the standard identification),
provided with the oOrder bornology: a subset A C E  is bounded if
there is some g € E, with g 3 0 and |f]| < g for every f € A.
This bornology is convex, but not the associated infratopolegical
bernclogy. Se E is not infratopelogical. Details on this fact can

be found in {3] . Moreover the Mackey-convergence relative to the

order bornology coingides with the almost everywhere convergence.

We consider the sequence (fn) defined as follows: (we
nz i
denote by XT the characteristic function of & subset T of 1):

Py
il

iy
[

“lo.s) 37 Koy

foo= 3.X , and so on.
E),l/e.;] 5 - ‘Ti é—]
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Obvigusly, (fn) is' bounded in the order bornology. Nevertheless,
nz 1l : :

Z' a fn converges almest everywhere when Z Ian| converges.
>

1 n ozl
It suffices to consider the case in which anz 0 for all n. Moreover,

it suffices, in'this case, to prove that Z a, fn converges 1in
nia 1l
measure, because fer an increasing sequence, both types of conver-

gence are equivalent.

For each n, we dencte:

b = a = a
i n-1 n ) En n-1 Z n 1
2 sj< 2 2 sje 2
. . k K+l .
Take a fixed n. On each interval ( - _n_] , the function gn takes
2 2

the constant value na, for some j, 1o j < 2" . Therefore, e,

exceeds bn on this interval if and only if aj > n_l bn' But this

happens for at most n-1 of these intervals. Thus:

m( { x: g (x) > b 1) 5.,..,:“1
2

Take now an arbitrary £ > O, and choose N such that:

2 e z_:'—l_xs'

ng N ngHN
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Then:

ml { x: Z gn(x])z}} < Z m( { x:gn(x)>bn}}ﬁz n_ <

nz N nz N

- n-1
n=n 2

This argument proves that Z g, converges in measure, and so
nz 1

d N
aes z a‘:| ]
jel
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