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INFRATOPOLOGICAL BORNOLOGIES AND MACKEY-CONVERGENCE

OF SERIES

Miguel A . Canela and Mercé Serrahima

SYNOPSIS : In this paper some aspects of ínfratopological bornologies

are discussed . First, it is shown that bornologies with countable

basi's are infratopological . Second, it is shown that the convergence

of series presents some: pathologies beyond this class .

We , fbllow closely the, terminology of [51 andt[4] , where the
main topics concerning bornological spaces can be, found . Roughly
speaking;, a bornology is iüfratopological when tt:can be defined
from a topology in the usual way : the bounded sets : are those which
are absorbed by zero neighbourhoods . More precisely � let (E, S )
be a linear bornological space, and TS the Mackey; closure topolo-
gy associáted to this space.. The Von Neumann bornology of T S , de-
noted by , BIT S , is defined as follows : a subset B C E' is bounded
when for every zero neighbourhood V, there is some A >-0 such that
B C

	

X V

	

(T; is absorbed by V)' . The bornology 1 is said to be in-
fratopolog'cal when

	

0= BT0,

	

_ A more useful characterization,
which doessnot involve any topology is the following~ 12-1

i
Propositiom 1. . A linear bornological space ( E, 0

	

)

	

is - infratopo-
logical if'and only if every subset B C E, which is absorbed for
every borni.Vorous subset of &. � is bounded in

	

(E,R) ( a subset

U C E

	

is bornivorous when U absorbs every bounded set of (E, S )) .



The bounded subsets of an ordinary topological vector space

(the Von Neumann bornology) form an infratopological bornology .

Nevertheless, bornologies which are not infratopological can appear
when we deal with equicontinuous sets .

We refer to (1 ;
_ .

, example p . 166, for an equicontinuous bornology

not Kolmogorov and consequently not infratopological .

We see next that spaces with countable basis ara also infratopo-
logical .

Proposition 2 . _Let_ (E, S ) be a separated convex bornological space

and suppose that S admits a countable basis

	

(Bn )n > 1 . Then B is in-

fratopological .

Proof . We can supposse that the Bn 's are absolutely convex and that

the sequence is increasing . Thus, if we denote by ~~ . ~~ n the

gauge of Bn , we obtain an increasing sequence of norms, each ~~ . lin

defined in En = Span Bn.To make it easier, we define llxli n

for x E E \ En .

Let A be an unbounded subset of (E, S ) . then, for every n, we

can find xn E A with llxn 11 n > n2 . For every k, we define :

and putting :

ñk = 1 min (lixlll k ', . . ., llxkllk ' l) .
k

V = U

	

ñk . Bk ,

k 11

we obtain a bornivorous subset of E, and V does not absorb A, be-

cause, for E > 0 arbitrary, if n >
E:-l,

xn does not belong to

any AkBk :

a)

	

if k 2 n, we have

	

11 E xnllk 1 Ek ñ k a E n A k > Xk



b)

	

if

	

1

	

_ k

	

<

	

n,

	

we

	

have

	

11

	

Exn1 ik ?

	

11

	

Exn l I n >
en2

	

>

	

n >Xk*

Applying Proposition 1, we conclude that (E, S ) is infratopo-

logical .

People which is used to linear bornological spaces knows that

such a space can fail to have the properties that one hopes to find

in Functional Analysis, unless some extra assumptions aré taken .

Restriction to infratopological spaces is en example of extra assump-

tion under which some patologies do not appear . We will see here that

the convergence of series does not work in the usual way when we pla-

ce ourselves outside the class of infratopological bornologies .

A series

	

2:

	

xn is said to be Mackey-convergent in a linear

n > 1
bornological space when the sequence , ( Y-

	

xk) n > 1 of partial

k=1

sums is Mackey-convergent ."The following results are well-known for

the topological convergence in a topological vector space . Our con-

vergence has been considered in [6] .

Proposition 3. ( i ) Let (E, S ) be a Mackey-complete convex bor-

nological space, (xn ) n Z 1 a bounded sequence in (E B ), and

(an ) n

	

> 1

	

a sequence of real numbers such that

	

lan 1

	

is fi-

n >_ 1
nite . Then,

	

2: an xn is Mackey-convergent .
n i 1

(ii) Let (E, S ) be an infratopological convex -bornological space, and

(xn )n > 1 ' a sequence such that, for every sequence of real numbers

(an )n >

	

1 with

	

lan 1

	

finite,

	

the series

	

,~

	

an

	

.

	

xn

	

is Mac-

n > 1

	

- n > 1

key-convergent . Then (xn)n > 1 is bounded .



Proof. (i) . Take a bounded disk B containing (xn) n > l, and denote

is a Cauchy sequence with respect to 11 . II B , and, (E, S ) being
Mackey-complete, it is Mackey-convergent in (E, B ) .

(ü) If (xn )n >_ 1

	

is unbounded_there is a bornivorous subset

	

V

which does not absorb this sequence . Replacing (x
n

)
n

	

by a sub-
á 1

sequence if necessary

n
its gauge . The sequence of partial sums

	

n ak xk ) ,
'k-1

	

n > 1

we can suppose that x11 EZ n2V for every n .

Then (n~2 . xn )

	

is not Mackey-convergent to zero . //
n a 1

As we have previously announced, be will show, through a coun-
terexample, that the assumption on (E, S ) in part (ii) of the pre-
ceding Proposition is not superfluous .

Example 4 . Let E be the space of measurab'le real functions on
the unit interval I = - 10,1 (with the standard identification),
provided with the order bornology : a subset A C E is bounded if
there is some g E:E, with g a 0 and Ifl < g for every f E A .
This bornology is convex, but not the associated infratopological
bornology . So E is not infratopological . Detail :s on this fact can
be 'found in [3J .

	

Moreover the Mackey-convergence relative to the

order bornology coincides with the almost everywhere convergence .

We consider the sequence (fn )

	

defined as follows : (we
n ? 1

denote by X T the characteristic function of a subset T of I) :

f4 = 3 . X

	

f5 = 3 . X

	

}

	

1

	

, and so on .
10,1/41

	

'

	

(
4

.z-



hor
Obviously, (f )n

	

is bouhded in the order bornology . Nevertheless,
n ? 1

1

	

an fn	converges almost everywhere when

	

2:

	

lan 1

	

converges .

lt suffices to consider the case in which an 1 0 for all n . Moreover,

it suffices, in'this case, to prove that

	

an fn converges in

n '= 1

measure, because for an increasing sequence, both types of conver-

gence are equivalent .

For each n, we denote :

Take a fixed n . On each interval

bn
=

	

aj

	

gn =

	

ajfj2n-1 é j < 2n

	

2n-1
ij < 2n

the constant value naj for some j, 2n-1 5 j < 2n . Therefore, gn

exceeds bn on this interval if and only if aj >

	

n1 bn . But this

happens for at most n-1 of these intervals . Thus :

2 n-1

Take now an arbitrary E > 0, and choose N such that :

bn <

	

n-1

	

< E .
2

n 2 N

	

n 2 N

k

	

k+11

	

the function g takes2n ' 2n

	

n



Then :

m( { x :

	

1

	

9n (X) > E })

	

<

	

m( {

	

x :gn (x)

	

>

	

bn})_`Z

	

n

	

<

	

E .

n Z N

	

n > N

	

Zn-1
n =N

This argument proves that

	

gn converges in measure, and so

n? 1

does

	

aj fj .//

j 21
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