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A GENERALIZATION OF WRIGHT'S INEQUALITY

J-L. Garcia Roig

Let R be a commutative ring with identity, E an

R-module and x .-,x R a multiplicity system on E { see [1],

1*-

p.295 ). Then the length tR(E/(xnl ) is finite for
' 1

nr
vere Ky JE.

any positive integers nl}...,n and Wright's inequality

r!

{ see [1] p.296 ) says

E n n E

E 1 r E ST SR |

R( f(xl yeeea X, )E) 1 r R( /(xl,...,xr)E)‘
for arbitrary NysveesN,

This inequality can be written as

n, n,

LRHOK(x1 viesa X |IEY < nl...nrgmRHOK(xl,...,erE),

nl nr
where K(x1 veres Xy |E) denctes the Koszul complex defined by

n, n,
E and the elements xl ,...,xr .

In this paper we establish that for a Noetherian

meodule similar inequalities heold for the higher Koszul homo-
n n
logy modules, i.e., for i20, EHiK(xll,...,xrrIE) <

nl...nr-aHiK(xl,...,xrlE). Moreover, the same is trge_for the

higher Euler-Poincaré characteristics of the Koszul complexes
n n n
1 1

n
r . r
K(Kl e s Xy |E), i.e., for iz0, we have xi(xl veeea Xy |E) £

nl...nr-xi(xl,...,xP1E), where, by definition,
. - _1yd-i
Xi(xl,..-,erE) -.Z_.( 1} EHJK(xl’---)xrlE}-
J=zi
Actually the inequality for x, is an equality if i=0 (see [1]

p.311 ),
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_ n n
We also prove that the functions 1HiK(x11,...,xr
n n

(xll,...,erIE) increase with the exponents n,,...,n

"lE)

and xi e
In what follows R denotes a commutative ring with

identity, E is a Noetherian module over R and x "erR

10
is a system of multiplicity on E. This will ensure that all
the lengths which appear are indeed finite, though some of .the
results would also hold without assuming the lengths to be

finite. We denote the length by & or gt

Lemma 1. Let E be an R-module and xl,...,xr,y be elements of R.

Then, for any i30,

)
RHiK(xl,...,erE) £ ERHiK(xly,xa,...,xr1E).

Proof. The inequality follows from the exact sequence (ef. (2]

p.Iv-2 )
H K(X,,+0:,X_|E}
0—» —2 2 r — H,K(X, X, 3000,%X_|E) —=
x, H. K{x x_|E) i 1re r
1710 e Xy
— (0:x,) —_—— 0,
Hi—lK(xz"'°’xr|E)

and the corresponding one for HiK(xly,xe,...,erE), by obser-

ving that both (0:x1} g‘(O:xly)

Hi—lK(x2""’xr|E) Hi_lK(xe,..,xP1E)

and leiK(xz,...,xrlE);gxlyHiK(xg,...,xrlE). #

Bearing in mind that the Koszul homolegy modules do
not depend on the order of the elements defining it, we get

the following

92



Proposition 2. For any i20, the mapping from N to N defined by

n nrl

{nl,...,nr) F—ﬂ—*EHiK(xll,...,xr E}

is jincreasing, i.e., nléml,...,nrsmr imply

n

1 n_ m m
P.Hil{(xl yee e X IE) < EHiK(x

1

1 ,...,xrriE). #

Lemma 3. If asR, then we have:

i) 2(0:a™) € n e{0:a), and
E E

).

ii) n(E/anE)s nAE(E/aE

Preof. By induction on n. From the exact seguence

R, a2t R
a,

R 0,

R
! al'g > /gn-lg

if we apply Hom,{ ,E), we get i), for Hom (R/ n ,E);o:a“,
R R a R P

and if we apply .RE, we get ii), for (R/ n )aEZE/ ng - #
R a 'R R a

Propositicon 4. The following inequality holds for all iz0,

n
$HiK(x1,x2,...,xr1E) £n zHiK(xl,x2,...,xr|E}.

Proef. From the exact sequences (see [2] p.Iv-2 )

o] ~H—*HOK(a|HiK(x2,...,xrlE)}———éHiK(a,xa,...,erE)

~——;H1K(a|Hi_1K(x2,...,xrlE))———*O.

with as=x, or x? , we get

HiK(xa,...,xriE)

n
LHiK(xl,x2,...,xrlE)=1( = )+E(O:x?}

leiK(xz,...,xrlE) Hi—l(xa"'?xplE}
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H.K{X,,.::,X |E)
€ n-b(—= 2 £ )+n-1(0:xl} =

xlﬂiK(x2""’xr|E) Hi_lK(xz,...,xrlE)

= n:aHiK(xl,xa,...,xr/E),

the inequalities being by virtue of lemma 3. #

Again by the independence of the Koszul homology
modules with respect to the order of the elements, Proposition
4 yields the following theorem which generalizes Wright's

inequality.

Theorem 5. For any i30, and any nl.....nrao, we have

- n n

tHiK[xll,...,xrrlE) € np..enp tHK(X),een X [E). #

et us consider now the higher Euler-Poincaré charac

n

. n
teristics. Observe first that yx_(x 1,...,xrr|E) =

[« |

nl...nr-xo(xl,...,x

. 2 '
PiE) and that Xo(xl,...,xr1E) 0 (cf, (1]

p.311 ). For the higher characteristics we have

Propositioh 6. For all 1:0, the mapping

It n

L x JIE)

(nl;----nr)i—*xi(x r

r c s
from N to N is increasing, i.e., n, sm

1 1,...,nrsmr, imply
n n m m
1 r 1 r
Xi(xl peeva Xy |E)< Xi(xl R |IEY.

Proof. By [2] p.IV-56, we have

xi(a,xz,...,xrlE) = LH1K(alHi_1K(x2,...,xriE)]+
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+ xO(a1xi(x2,...,xrlE}).

Setting a = X, or x,¥ and using the multiplicativity of %o

( see (1] p.309 Thm.7 ), we deduce
xi(xl,xz,...,xrlE) £ xi(xly,x2,...,xrlE).
From this we get, for n<m, that
xi(xT,xz,...,erE) 5 xi(x?,xz,...,xrlEa.

Proceeding equally with the other variables ( X, does not

i
depend on the order of the elements), we get the result, #

We finish with a theorem on higher Euler-Poincaré

characteristics similar to theorem 5.

Thecorem 7. For any i20, and any n anO, we have

AL
n

n
1 r
xi(xl ves Xy |IE} ¢ nl...nr-xi(xl,...{xrtE}.

Proof. It is enough to prove
n
xi(xl,xa,...,erE) £ n-xi(xl,xz,...,xrlE),

and this can be done by considering the formula used in the

proof of the preceding proposition with a=x, or x?. We get

n
xi(xl,xz,...,xr/E} =

- . n n
= E(O-xl_)H K . /E) + x (x I (x50 a X IED)
f-1™ R Xy

£ 2D
n (O.xl)

H, K(xa,...,x [E)

+ n-XO(X1|Xi(X2.---.Xr|E)) =
i-1 I '
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= n-xi(xl,xz,...,xrlE),

the inequality being justified by lemma 3. #
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