Pub. Mat. UAB Vol. 29 № 2-3 Nov. 1985

CENTRAL EXTENSION AND COVERINGS Zdzislaw Wojtkowiak*

The theory of central extensions has a lot of analogy with the theory of covering spaces. It is mentioned for example in [1]. In this paper we show that the category of central extensions of a perfect group and a certain category of covering spaces of a certain space are equivalent (see Theorem 1). Then the facts about central extensions will follow from the corresponding facts about coverings (see Corollaries 1-3).

We start with some definitions to make this work selfcontained. <u>Definition 1</u>. (see [2] § 5) A pair (X; C) is called a central extension of a group G if C : X \rightarrow G is an epimorphism and kernel(C) c center X <u>Definition 2</u>. (see [2] § 5) The central extension (X; C) of a group G is called universal if for every central extension (Y; ψ) of G there is one and only one homomorphism h : X \rightarrow Y such that $\psi \circ h = C$.

It follows from [2] Theorem 5.3 that if a group G has universal central extension (X; C) then G and X are perfect.

We shall denote by E(G) the category of central extensions of G . Morphisms in this category are homomorphisms over G .

Now we describe a category $\operatorname{Cov}^{\operatorname{ab}}_{*}(X)$ of pointed abelian coverings over a connected space X with a base point. Objects of $\operatorname{Cov}^{\operatorname{ab}}(X)$ are principal G-fibrations over X with a base point in the fibre over the base point of X.G is a discrete abelian group. Such principal G-fibrations are regular coverings and they are induced from the universal covering of BG by a map $f: X \to BG$. If E_1 and E_2 are

145

 ^{*} Supported by Forschungsinstitut f
ür Mathematik, ETH-Zentrum, CH-8092 Z
ürich

two coverings induced respectively by $f_1: X \to BG_1$ and $f_2: X \to BG_2$ then morphisms of E_1 in E_2 in the category. Cov.^{ab}(X) are those pointed maps from E_1 in E_2 over X which are induced by maps $h: BG_1 \to BG_2$ such that $h \circ f_1$ is homotopic to f_2 . The category Cov.^{ab}(X) has an initial object. It is the universal, pointed covering.

Let us suppose now that G is a perfect group. Then the fundamental group of BG is perfect and we can apply the "+" construction to get BG^+ . BG^+ is simply-connected and therefore $\Omega(BG^+)$ is connected.

<u>Theorem 1</u>. Let G be a perfect group. Then the categories $\text{Cov}^{ab}(\Omega(\text{BG}^+))$ and E(G) are equivalent. The full subcategory of $\text{Cov}^{ab}(\Omega(\text{BG}^+))$ which objects are connected coverings and the category of central extensions (X,φ) of G such that X's are perfect, are also equivalent.

<u>Proof</u>. We shall define two functors $F : E(G) \to \text{Cov.}^{ab}(\Omega BG^{+})$ and $J : \text{Cov.}^{ab}(\Omega BG^{+}) \to E(G)$ such that the compositions $F_{\circ}J$ and $J_{\circ}F$ are natural isomorphic to the identity functors.

Let $1 \rightarrow H \rightarrow X \xrightarrow{\phi} G \rightarrow 1$ be a central extension. Then BH \rightarrow BX \rightarrow BG is a fibration. Let tr : H₂(BG) \rightarrow H₁(BH) be a transgression homomorphism in the Serre spectral sequence of this fibration. The homomorphism tr we can consider as an element t ϵ H²(BG,H) = H²(BG⁺;H) . We have the following long sequence of fibrations

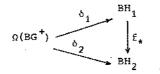
 $(*_X) \rightarrow \Omega \mathfrak{F}(X) \rightarrow \Omega BG^+ \xrightarrow{\delta=\Omega t} K(H,1) - \mathfrak{F}(X) \rightarrow BG^+ \xrightarrow{t} K(H,2)$,

where $\mathfrak{F}(X)$ is a homotopy fibre of t.

We set $F(X; \varphi) = (\delta!(EH) \rightarrow \Omega(BG^{+}))$ where $\delta!(EH) \rightarrow \Omega(BG^{+})$ is a

146

covering induced by δ from the universal covering over BH. The base point of δ !EH we choose in the fibre over the base point of $\Omega(BG^+)$. The homomorphism $f: (X_1, \varphi_1) \rightarrow (X_2, \varphi_2)$ of central extensions induces a map between sequences of fibrations $(*_{X_1})$ and $(*_{X_2})$. As a part of this map we get a commutative diagram



This diagram induces a morphism between coverings $\delta_1!(EH_1) \rightarrow \Omega(BG^+)$ and $\delta_2!(EH_2) \rightarrow \Omega(BG^+)$ in the category Cov.^{ab}($\Omega(BG^+)$).

Now we shall define a functor $J : Cov.^{ab}(\Omega BG^{+}) \rightarrow E(G)$. Let $(E \xrightarrow{p} \Omega BG^{+}) \in Cov.^{ab}(\Omega BG^{+})$ and let us suppose that $p : E \rightarrow \Omega BG^{+}$ is a principal K fibration. ($p : E \rightarrow \Omega BG^{+}$) is induced from the universal covering over BK by a map $x : \Omega(BG^{+}) \rightarrow BK$. We have the following isomorphisms

$$H^{1}(\Omega(BG^{+});K) \approx Hom(\pi_{1}(\Omega BG^{+});K) \approx Hom(\pi_{2}(BG^{+});K) \approx H^{2}(BG^{+};K)$$
.
Therefore there is $y \in H^{2}(BG^{+};K)$ which corresponds to x by thes
isomorphisms. Let us form the following sequence of fibrations

(**)
$$\rightarrow \Omega BG^{+} \xrightarrow{\Omega Y = X} K(H;1) \rightarrow Y = Fibre(y) \rightarrow BG^{+} \xrightarrow{Y} K(H;2)$$

Let $i : BG \rightarrow BG^+$ be a natural map in the "+" construction. Let

$$(***)$$
 K(H;1) \rightarrow S = i!Y \rightarrow BG

be a fibration induced by i from the fibration

$$K(H;1) \rightarrow Y \rightarrow BG^{+}$$

After applying functor π_1 to the fibration (***) we get an exact sequence

$$(****)$$
 $1 \rightarrow H \rightarrow \pi_{n}(S) = T \rightarrow G \rightarrow 1$.

The action of π_1 (BG) on the fibre in the fibration (***) is trivial because this fibration is induced from the fibration over the simply-connected space BG⁺. Therefore the extension (****) is central.

A map in the category Cov. $^{\rm ab}(\, \Omega B \, G^+)\,$ induces a homotopy commutative diagram

$$\Omega BG^{+} \longrightarrow BH_{1}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Omega BG^{+} \longrightarrow BH_{2}$$

Hence we get a homotopy commutative diagram

$$\begin{array}{cccc} \mathsf{K}(\mathsf{H}_1,1) & \longrightarrow & \mathsf{Y}_1 & \longrightarrow & \mathsf{BG}^+ \\ \downarrow & & \downarrow & & \\ \mathsf{K}(\mathsf{H}_2,1) & \longrightarrow & \mathsf{Y}_2 & \longrightarrow & \mathsf{BG}^+ \end{array}$$

and consequently a map between central extensions

$$H_1 \rightarrow T_1 \rightarrow G$$

$$\downarrow \qquad \downarrow \qquad \mu$$

$$H_2 \rightarrow T_2 \rightarrow G$$

The proof that the compositions P_0J and J_0F are natural isomorphic to the identities follows immediately from definitions of F and J and I omit it.

If a principal H-fibration $E \to \Omega BG^+$ is connected then $\pi_1(\Omega BG^+) \to \pi_1(BH)$ is an epimorphism This implies that $\pi_1(Y) = 0$ and therefore $H_1(T) = 0$. Consequently $J(E \rightarrow \Omega BG^{\dagger}) = (1 + H + T + G + 1)$ is an extension of G such that T is perfect.

If $1 \rightarrow H \rightarrow X \rightarrow G \rightarrow 1$ is a central extension with X perfect then $\pi_1(\Omega BG^+) \rightarrow \pi_1(BH)$ is an epimorphism and consequently the induced covering over ΩBG^+ is connected.

The following corollaries, usually proved in an algebraic way, follow immediately from Theorem 1 .

<u>Corollary 1</u>. There exists a universal central extension of a perfect group G .

<u>Proof</u>. The universal central extension is an initial object in the category E(G). The category $Cov.^{ab}(\Omega BG^{+})$ has an initial object. It is a universal covering. Therefore there is an initial object in E(G). <u>Corollary 2</u>. $(X:\varphi)$ is a universal extension iff $H_1(X) = 0$ and $H_2(X) = 0$. Then we have ker $\varphi = H_2(G)$.

<u>Proof</u>. The principal fibration corresponding to $(X;\varphi)$ is $\Omega BX^+ \to \Omega BG^+$. This covering is universal if and only if $\pi_0(\Omega BX^+) = 0$ and $\pi_1(\Omega BX^+) = 0$. Hence we have that $(X;\varphi)$ is universal if and only if $H_1(BX^+) = H_1(X) = 0$ and $H_2(BX^+) = H_2(X) = 0$. The fibration $\Omega BX^+ \to \Omega BG^+$ is induced from the universal covering over $B(\ker \varphi)$ by a map $\Omega BG^+ \to B(\ker \varphi)$. If it is universal then $\ker \varphi = \pi_1(\Omega BG^+) = \pi_2(BG^+) = H_2(BG^+) = H_2(G)$.

<u>Corollary 3</u>. The isomorphism classes of central extensions (X, ϕ) of G such that X's are perfect, are in one to one correspondence with subgroups of $H_2(G)$.

<u>Proof</u>. The isomorphism classes of connected coverings over ΩBG^+ are in one to one correspondence with subgroups of $\pi_1(\Omega BG^+) = H_2(G)$. Some steps in the proofs given below can be shown using the following proposition which itself seems to be interesting.

<u>Proposition 1</u>. Let us suppose that $O \rightarrow H \rightarrow X \rightarrow G \rightarrow 1$ is a central extension of a perfect group G by a group H. Then BH $\rightarrow BX^{+} \rightarrow BG^{+}$ is a fibration. (The "+" construction is done with respect to a maximal perfect subgroup of X.)

<u>Proof</u>. Let us assume first that X is perfect. Let F be a fibre of $BX^+ \rightarrow BG^+$. There is a map of a fibration $BH \rightarrow BX \rightarrow BG$ into a fibration $F \rightarrow BX^+ \rightarrow BG^+$. This map induces a map of Serre spectral sequences. This map is an isomorphism on $E^2_{\star,0}$ and on $E^\infty_{\star,\star}$ -terms. Therefore it is isomorphism on $E^2_{0,\star}$ -terms. This means that a map $H_{\star}(BH;Z) \rightarrow H_{\star}(F;Z)$ is an isomorphism. F is a fibre of a map between nilpotent spaces therefore it is nilpotent. It implies that $BH \rightarrow F$ is a homotopy equivalence.

Let now X be arbitrary and let X[†] be a maximal, perfect subgroup of X. The extension $0 \rightarrow H^{\dagger} = \operatorname{Ker}(i) \rightarrow X^{\dagger} \xrightarrow{i} G \rightarrow 1$ is also central. Moreover BX^{\dagger} is a universal cover of Bx^{\dagger} . If F is a fibre of $BX^{\dagger} \rightarrow BG^{\dagger}$ then only $\pi_1(F)$ is non-zero and it appears in the following exact sequence

$$0 \rightarrow \pi_2(BG^+) \rightarrow \pi_1(F) \rightarrow \pi_1(BX^+) \rightarrow 1$$

 $\pi_1(BX^+)$ is abelian. This implies that $\pi_1(F)$ is nilpotent. Repeating once more arguments with the Serre spectral sequence we get that F is homotopically equivalent to K(H,1).

In [3] we have introduced "+p" construction in the case if $H_1(X;Z_p) = 0$. (Zp is a ring of integers localized outside P.)

<u>Definition 3</u>. We say that G is P-perfect if $H_1(G, Z_p) = 0$.

We shall study central extensions of a P-perfect group G by finitely generated Z_p -modules. We shall denote this category by $E_p(G)$. We have the following proposition.

<u>Proposition 2</u>. Let $0 \rightarrow H \rightarrow X \rightarrow G \rightarrow 1$ be a central extension of a P-perfect group G by a finitely generated Z_p -module H. Then BH $\rightarrow BX^+P \rightarrow BG^+P$ is a fibration. (The "+p"-construction is done with respect to a maximal P-perfect subgroup of X).

The proof of Proposition 2 is exactly the same as the proof of Proposition 1. .

Let X be a P-local space. We define a category $\operatorname{Cov}_{,P}^{ab}(X)$. Objects of $\operatorname{Cov}_{,P}^{ab}(X)$ are principal M-fibrations over X with a fixed base point in the fibre over the base point of X. M is a Z_p -module.

<u>Theorem 2</u>. Let G be a P-perfect group. Then the categories $\operatorname{Cov}_{p}^{ab}(\Omega BG^{+}P)$ and $\operatorname{E}_{p}(G)$ are equivalent. The full subcategory of $\operatorname{Cov}_{p}^{ab}(\Omega BG^{+}P)$ which objects are connected coverings and the category of central extensions (X, φ) of G such that X's are P-perfect , are also equivalent. <u>Corollary 4</u>. i) There exists a universal central extension of a P-perfect group G in the category $\operatorname{E}_{p}(G)$.

ii) (X, φ) is a universal central extension of a P-perfect group G in the category $E_p(G)$ if and only if $H_1(X; Z_p) = 0$ and $H_2(X; Z_p) = 0$. Then we have that ker $\varphi = H_2(G; Z_p)$.

iii) The isomorphism classes of central extensions of G by P-perfect groups in the category $E_p(G)$ are in one to one correspondence with

 Z_p -submodules of $H_2(G, Z_p)$.

The proofs are the same as before.

<u>Proposition 3</u>. Let $H \rightarrow X \rightarrow G$ be a central extension of G. Then there is a central extension of G by $H \otimes Z_p$ together with a natural map

 $O \rightarrow H \rightarrow X \rightarrow G \rightarrow 1$ $i \downarrow \qquad \downarrow \qquad \mu$ $O \rightarrow H_{\otimes Z_p} \rightarrow X_p \rightarrow G \rightarrow 1$

where i is Z_p -localization (i(a) = a $\otimes 1$).

Proof. We have a fibration

(*) BH \rightarrow BX \rightarrow BG.

Bousfield and Kan have introduced the fibrewise localization functor. After applying it to a fibration (*) we obtain a fibration

$$(**)$$
 $(BH)_p \rightarrow (BX)_p^+ \rightarrow BG$

and a fibre map of (*) into (**).

From the fibration (**) we get the following exact sequence

$$O \rightarrow H \otimes Z_p \rightarrow \pi_1(BX_p^f) := X_p \rightarrow G \rightarrow 1$$
.

The action of $\pi_1(BG) = G$ on fibres of (*) and (**) are compatible therefore (**)is a central extension. Proposition 3 is of course a special case of a more general result proved by algebraic method in [0].Proposition 1 is of course well known.The related results about "+" construction are also in A.J. Berrick "An Approach to Algebraic K-theory",Pitman research notes in Math. 56 (London, 1982).

References

[0] P.Hilton, Relative nilpotent groups, Lecture Notes in Math. 915, Springer-Verlag 1982.

- [1] M.A. Kervaire, Multiplicateurs de Schur et K-théorie, in Essays on Topology and Related Topics, Springer-Verlag 1970.
- [2] J. Milnor, Introduction to algebraic K-theory, Princeton University Press, 1971.
- [3] 2. Wojtkowiak, On fibrations which are also cofibrations, Quart. J. Math. Oxford (2), 30 (1979), 505-512.

Rebut el 4 de març del 1985

Universitat Autònoma de Barcelona Facultat de Ciències Departament de Matemàtiques Bellaterra - Barcelona SPAIN