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PARTIALLY ORDERED GROTHENDIECK GROUPS
XK. R. Goodearll

Motivation for the study of partially ordered abelian groups has
come from many different parts of mathematics, for mathema;ical
systems with compatible order and additive {or linear) str&ctures are
guite common. This is particularly evident in functienal gkalysis.
where spaces of various kinds of real-valued functions provide impetus
for investigating partially ordered real vector spaces. In the past
decade, the observation that a Grothendieck group {such as KO of a
ring or algebra) often possesses a natural partially ordered abelian
group structure has led to new directions of investigation, whose
goals have been to develop structure theories for certain types of
partially ordered abelian groups to the point where effective
application to various Grothendieck groups is possible. Such recent
developments in the area of partially ordered abelian groups are the
subject of this note. We present a sketch of the construction of
Grothendieck groups as abelian groups equipped with pre-orderings that
are often partial orderings, together with brief sketches of several
situations in which the theory of partially ordered abelian groups can

be applied, via the Grothendieck groups K to the study of certain

0!
rings and C*-algebras. This discussion is somewhat cursery, in the

interest of avoiding technicalities, and for reasons of space. For

b This expository discussion contains an expanded version of
several lectures given at the Centre de Recerca Matemitica, Institut
d'Estudis Catalans, Barcelona, during November and December 1884, and
the author wishes to thank the CRM for arranging his very pleasant
visit. An earlier version of this material appeared in [13} in
connection with a lecture given at the International Symposium on
Algebra and Its Applications in Delhi in December 198t.
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the same reasons, we do not discuss the recent applications of
partially ordered abelian groups to topological Markov chaims [27, 3,
20, 21] or to positive pelynomials and compact group actions [22, 23,
.25, 28).

A Grothendieck group is an invariant attached to a collection of
objects, such as the vector bundles on a given topclogical space, the
finitely generated preojective modules over a given ring, or the
projection operators associated with a given C*-algebra. The
construction only reguires a collection of objects equipped with a
notion of isomorphism and with some means of combining any two objects
from the collection into a third object. While it is traditional to
develop Grothendieck groups using short exact sequences as the means
of combining chjects, in many important applications this reduces to
direct sums (or direct products). Since the construction process is
simpler using direct sums, we shall restrict our discussion to that
case.

Thus for our basic data we take a set P of objects in some
category, such that P has a zero object and every finite set of
objects in P has a direct sum (coproduct) in P. The ecasiest
algebraic system to build using this data is an abelian semigroup,
whose elements are the isomorphism classes of cbjects in P' and
whose operation is addition induced from the direct sum operation ip
P. However, the semigroup obtained in this manner need not have
cancellation, and so cannot always be embedded in an abelian group.
This problem can be circumvented either by reducing the semigroup
modulo & suitable- congruence relation, or, more conveniently, by using
an equivalence relation on F slightly coarser than isomorphism, as

follows.
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Objects A,B € P are said to be stably isomorphic (in P) if and

only if there is an object C € P such that A&C =~ BBC. Stable
isomorphism is an equivalence relation on P, and we write [a] Ffor
the stable iscmorphism class of an object A € P. lLet Grot (T

dencte the collection of all stable isomorphism classes in P. The
direct sum cperation in P induces an addition operation in Grot(P]+,
whare {a]+[B] = [A®B] fer all A,B € P, and using this éperation,
Grot(P)+ becomes an abelian semigroup with cancellation. By formally
adjeining additive inverses to Grot(P)+, we obtain an abelian group

Grot (P}, the Grothendieck group of F. ({Reminder: if short exact

sequences are available in P, the Grothendieck group constructed
from P using short exact sequences may well be different from the
group constructed here.) All elements of Grot{(F) have the form
[A]-[B] for a,B € P, andlelements [(2]-[B)] and [c]-fD] in
Grot (P} are equal if and only if KfeD is stably isomorphic to BeC.
For example, if P is the collection of all real (complex) vector
bundles on some compact Hausdorff space X, then Grot(F} is the
real (complex} K-group KO(X]. For another example, let R be a
ring with 1, and let P be the collection of all finitely generated
projective right R-modules (i.e., all direct summands of free right
R-modules of finite rank). In this case, Grot(P} is the algebraic
K-groug KO(R). Alternatively, KO(R) may be constructed by taking
P to be the category of all rectangular matrices over R. Then the
objects in P are all idempotent square matrices over R, and the
direct sum of idempotent matrices e and f is the block matrix
(g g). In case R is a C*-algebra, the set of idempotent matrices
over R may be reduced to the set of self-adjoint idempotent matrices

{see [11, Chapter 19]).
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In order not to lose track of the coriginal semigrouwp Grot(P}*
inside Grot(PF}, we make it the "positive cone" of an order relation.
MNamely, for =x,y € Grot{P), we define x £y if and only if y-x
lies in Grot(P}+. This relation is a pre-order [(i.e., a reflegive.
transitive relation) which is invariant under translation (that is,

x £y implies x+z £ y+z}. The combined structure (Grot(P),+,5} 1is

called a pre-ordered abelian group. In case the relation = is a

partial order (i.e., an anti-symmetric pre-order), Grot{f} is a

partially ordered abelian group.

Various relatively mild assumptions on P will force Grot(Fl to
he partially ordered. A common assumpticn is that all the objects in
P are “directly finite", i.e., cbjects A,B € P can satisfy ASB = A
only if B is a zero object. For example, if P is the collection
of all finitely generated projective right modules over a unital ring
R, the objects in P are directly finite if and only if all square
matrices over R that satisfy xy =1 also satisfy yx = 1. 1In
particular, this holds if R is commutative, or if R 1is a directed
union of finite-dimensional algebras, or if R 1is noetherian on
either side. It alsc holds if R is a unit-regular ring, meaning
that for any x g R there exists a unit (invertible element) u € R
such that xux = x, for in that case the objects in P may be
cancelled from direct sums [18, Theorem 2; 9, Theorem 4.5].

In the case that P 1is the collection of all finitely generated
projective right modules over a unital ring R, the module R plays
a special role in P, for every object in P is isomorphic to a
direct summand of a finite direct sum of copies of R. BAs a
consequence, [R] plays a special role in KO(R}: given any

x € KO(R) there exists a positive integer n such that x $ nl[R].
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By virtue of this property, [R] is called an order-unit of KO(R) .
We may make KO into a functer from the category of rings with
unit {and unital ring homomorphisms! into a category whose objects are
all pairs (G,u} whera G is a pre-ordered abelian group and u is

an order—-unit in G. The appropriate morphisms in this latter

category are normalized positive homomorphisms £ : {G,u} = (H,v],

: + +
that is, group homomorphisms £ : G =+ H such that £{G ) c H and

flu) = v. We call this category the category of pre-ordered abelian

groups with order-unit.

Any unital ring homomorphism ¢ : R + S induces a functor
(—)@RS from the category of finitely generated projective right
R-modules to the category of finitely generated projective right
S-modules. Since this functor preserves direct sums, it in turn
induces a positive homomorphism KO(¢) H KO(R) - KO {5}, such that

Ky (¢) ([al-[8]) = [a@ S]-[BB.S]
for all finitely generated projective right R-modules A and B. As
K0(¢)([R]} = [s], we see that Ke(tﬁ) is a normalized positive
homomorphism from (KO(R) AR} to {KO(S) ,is}1. Since the
appropriate functorial propsrties are clear, we obtain a functor from
the category of rings with unit to the category of pre-ordered abelian
groups with order-unit, given by the assignments R (KO (R} ,[R]Y and
' KON} .

The construction of KO(R) for a ring R without 1 is not
based on some class of non-unital projective modules but instead is
obtained from the "unitification"” of R, namely the ring Rl based
on the abelian group JF*R, with multiplication given by the rule
fe,r) {n,s} = (mn,ms+nr+rs), The original ring R may be identified

with the set {O0lxR, which is an ideal of Rl. and then R1/R e Z,
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Then Ko{R) is defined tc be the kernel of KO of the natural map

R1 -+ &, that is, the subgroup of KO(Rl) consisting of those
elements [A}-[B] im KO(Rl) for which &A/AR and B/BR are (stably)
iseomorphic abelian groups, and KO(R) is equipped with the
pre-ordered abelian group structure inherited from KO(RI). In
general, KO(R) need not have an order-unit., To take the place of an
order-unit, we may wse the subset D{R} of KO(R)+ "consisting of
those elements x € KO(R) for which 0 £ x £ [Rl]. In the context of

the category of not-necessarily-unital rings, Ko may be viewed
either as a functor into the categery of pre—ordered abelian groups
and positive homomorphisms, or as a functor into a categeory whose
objacts are all pairs {G,D} where G is & pre-ordered abelian group
and B 1is a suitable subset of G+.

Grothendieck groups having been constructed, two basic meta-
gquestions arise: What sort of information about the data P is
stored in Grot{P), and how may this information be retrieved? For
instance, since Grot{P) is an invariant of ¥, there can be
situations in which it can be proved that data P and P' are not
eguivalent by showing that Grot{P) and Grot(P'}) are not isomorphic.
Also, by its construction Grot(P) reflects the arrangement of direct
sum decompositions in P, and we may ask how much of the girect sum
decomposition structure of P, and what other structural information
about P, may be recovered from Grot{P). By way of illustration, we
shall discuss a number of situations in which these guestions have
been successfully answered. Due to the author's bias, thesa examples
are Ko's of certain rings andsc*—alqebras, but the patterns of these
examples are to be expected in Grothendieck groups of other

mathematical systems.
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D IRRATIONAL ROTATION ALGEBRAS. Let T be the unit circle in

the plane, and let C{T} denote the algebra of all continuocus
complex-valued functions on T. We may view the functions in C(T)

as bounded linear operators on the Hilbert space L2(T) {where a

function from C{T} acts on functions from LZ(T} by multiplication).

Given a pesitive real rumber o, lLet ;1‘3 : T+ T be counterclockwise
rotation through the angl'e 2u. The rule pu*(f) = fpa then defines
& bounded linear coperator pu* on L2 {TY, and we let Aet dancte the
norm-closed self-adjoint subalgebra of bounded linear operators on

2 *

L°{T} generated by C{(T} and Py Tnis algebra is known as “the

transformation group C*-algebra of the rotation pa“

It is fairly easy to distinguish among the algebras Aa for
rational @, and it is also easy to distinguish the raticnal cases
from the irrational cases. However, distinguishing among the
irrational cases is a subtler problem, which was only solved when
Pimspner, Voiculescu, and Rieffel calculated KO of these algebras.
Namely, for any irrational number o € (0,1}, there is an iscmorphism
{in the category of pre-cordered abelian groups with order-unit) from
(KO(AG)’[AG]) onto {F+aZ ,1}, where the subgroup Z+aZ of R
is given the usval ordering [28, Corollary 2.6; 29, Corollary 1:; 30,
Thacrem 1}.

Thus if Acx ~ A for some irrational numbers a,f € (0,1}, there

8
must be an isomorphism £ of (Z+aZ ,1} onto { Z+R8Z ,1}). (Since
the topologies in Z+aZ and Z+pl may be defined in terms of the
ordering, f must alsc be a homeomorphism.} After approximating
elements of F+nE and H+8Z by rational numbers, clearing

denominators, and using the relation f(1) = 1, it is easily seen

that ZF+eZ = #Z+F . From this a guick computation leads to the
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conclusion that either B =g or B = i-a, whence either Pg = p
-1

14

B o

0 ULTRAMATRICIAI, ALGEBRAS. Pix a field F. A matricial
F-algebra is any F-algebra that is isomorphic to a finite direct
product of full matrix algebras over F. {In case F is algebraically
closed, the matricial F-algebras are exactly the finite-dimensiocnal
semisimple F-algebras.} An ultramatricial F-algebra is any
F-algebra that is a union of a countabls ascending seguence of
matricial subalgebras {equivalently, any F-algebra that is isomorphic
to a direct limit of a countable sequence of matricial P-algebras and
F-algebra homomorphisms). ¥t is easily checked that matricial
algebras are unit-regular. Hence, any unital ultramatricial F-algebra
R is unit-regular, and so KO(R) is a partially ordered abelian
group. Using P-algebra unitifications, it follows that KO of any
ultramatricial F-algebra is partially ordered.

These partially ordered abelian groups may be used to classify
ultramatricial P-algebras, following a method of Blliott [7}. If R
and S are unital ultramatricial F-algebras, then R = § if and
only if there exists an isomorphism of (KO(RJ,[R]) onto {KO(S),[S])
in the category of pre-ordered abelian groups with order-unit [7,
Theorem 4.3; 9, Theorem 15.26}. If R and § are non-unital
ultramatricial F-algebras, then R =5 1if and only if there exists
an ordered group isomorphism of KO(R} onto KO(S) mapping D{R)
onto D(8) [7, Theorem 4.3].

The partially ordered abelian groups which can appear as KO of
altramatricial F-algebras are just those which are isomorphic {as
ordered groups) to direct limits of countablé seguences of finite

products of copies of Z [7, Theorems 5.1, 5.5]. However, it is
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usually impossible to check directly whether a glven partially ordered
abelian group is isomorphic to such a direct limit. Some cbvious
properties of these direct limits are that they are countable, they
are diructed {upward and downward), and they are unperforated {any x
satisfying nx z 0 for some n € N also satisfies x 2 0}. A more

fundamental property, also easily checked, is the Riesz interpolation

propert:.: given any xl,xz,yl,y2 such that xi = yj for all 1,3,
there enists =z such that xi £ 2 £ yj for all 1i,j. The direct
limits of {sequences of) finite products of copies of FZ were
characterized by Effros, Handelman, and Shen as exactly those
(countaklel partially ordered abelian groups which are directed and
unperforated and which satisfy the Riesz interpolation property [5,
Theorem 2.2; 11, Corollary 21.8].

Partially ordered abelian groups with the latter three properties

are now called dimension groups. Thus, given a partially ordered

abelian group G and an order-unit w € G, there exists an
isomorphism of {G,u} onto (KO(R).[R]} for some unital
ultramatricial F-algebra R 1f and only if G is a countable
dimension group. For the non-unital case, replace the order-unit u
by an upward directed subset D C G+ such that every element of G+
is a sum of elements from D, and such that any element of G+ which
lies below an element of © must lie in D. Thern there exists an
ordered group isomorphism of G ontoe KO cf some uvltramatricial
F-algebra R, with D mapping onto D{R), if and only if G is a
countaiple dimension group. (These results are obtained by combining
Ellioctt's results [7, Theorems 5.1, 5.5] with those of Effros,
Handelman, and Shen [5, Thecrem 2.2].

For example, the subgroup {a/?n | a€Z and ne€ N} of Q
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appears as KO of a direct limit of matrix algebras

M2(F) - Mq(F) - Ms(F) -+ ...
using block diagonal maps =x = (3 2). The lexicographic product of

Z with itself appears as KO of a direct limit

F ox M2(F) - F x M3(F} + F x MG(F) -+ ...

g

Y)) The subgroup £&Z+vV2Z of R  appears

using maps {x,y) » (x,(g
as KO of a direct limit
Fox Mz(F) -MB(?) x M4(F) -+ M F) x Mm(f'} - ...

using maps

x O
(x,v) = (0 y) ,

An algorithm for obtaining F+uf (where o is any positive

L=l

¢ 0
x 0O
0 v

irraticnal number} as KO of an ultramatricial algebra, by using the
partial fraction decomposition of «, was developed by Effros and Shen

{6, Thecrem 3.2].

The ability to realize any countable dimension group as K0 of an
ultramatricial algebra is an aid to constructing examples, since
dimension groups are easier to construct than ultramatricial algebras.
For instance, we may use this method to construct algebras with
various sorts of ideal-theoretic structurxe, for this corresponds
directly to ideal-theoretic structure in Ko. (an ideal in a partially

crdered abelian group G is any directed subgroup H of G such that

whenever Hy X, €H and y €EG with x, 5y £ x then y € H.} For

i 2’
any unital ultramatricial algebra R {or, more generally, for any
unit-regular ringj, the lattice of two-sided ideals of R 1is
isomorphic to the lattice of iéeals of KO(RJ {8, Corollary 15.21}.

Given any countable ordipal a, it is easy to construct a countable

dimension group, with an order-unit, whose lattice of ideals is
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isomorphic to the interval f[1,m)] (see [10, Propesiticn 1.31).
Consequently, there exists a unital ultramatricial F-algebra whose
lattice of two-sided ideals is isomorphic to [1l,a]. Similarly, there
exists a unital ultramatricial F-algebra whose lattice of two-sided
ideals is anti-isomorphic ta [1,a]. (These ideal-theoretic examples
are the basic ingredients in two corresponding module-theoretic
examples constructed by the author [10, Corollaries 1.6, 1:?].)

Any family of ultramatricial algebras defined by properties which
are reflected in KO may be classified by a corresponding famiiy of
countable dimension groups. For example, since an ultramatricial
algebra R is simple if and only if KO{R} is simple (i.e., there are
exactly two ideals in KO(R), namely KO(R) and {0}}, the family of
simple unital ultramatricial F-algebras is classified by the family of
countable simple dimension groups with order-unit. The task of
coenstructing all (countable} simple dimengion groups was initiated by

Effros, Handelman, and Shen [5, Lemmas 3.1, 3.2, Theorem 3.5] and

completed by the author and Handelman [15, Theorem 4.11].

0 APPROAIMATELY FINITE-DIMENSTONAL COMPLEX C*-ALGEBRAS. A complex

C*-algebra is approximately finite-dimensional (abbreviated AF) if it

is isomorphic {as a complex C*-algebra) to a direct limit of a
countable sequence of finite—dimensiénal complex C*-algebras. Since
all finite-dimensional C*-algebras are semisimple, any complex AF
C*-algebra A contains a dense ultramatricial complex *-subalgebra R.
Moreover, the inclusion map R =+ A& induces an cordered group
isomorphism of: KO(R) onto Ké(n) {see [11, Corellary 19.10] for the
unital case). Hence, KO of any complex AF C*-algebra is a countable

dimensicor group. Bratteli proved that complex AF C*-algebras are

determined up to isomorphism by their dense ultramatricial complex
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*-subalgebras [2, Thecrem 2.7; 11, Theorem 20.7]. Consequently,
complex AF C*-algebras are classified in terms of countable dimension

groups, via K in exactly the same manner as ultramatriecial

D!
algebras [7, Theorems 4.3, 5.1, 5.5; 5, Theorem 1.2; 1}, Theorems

20.7, 21.10].

The family R of unital direct limits of countable sequences of
finite~dimensional semisimple IR -algebras is not as easy to classify
as the family of unital direct limits of countable seguences of
finite-dimensional semisimple f—algebras, for while the latter
family consists exactly of the unital ultramatricial {—algebras, R
contains, in additicn to the unital ultramatricial R-algebras, direct
limits in which matrix algebras over ﬂ: and H may appear. The
invariant [KD(*J,{‘J) does not contain enough information to
distinguish among the algebras in R even at the most basic lewvel,
since for any division ring D we have (KO(D),[D]) ~ {Z,1). Thus a
more complicated invariant is needed. We may construct such an
invariant for algebras R € R by using KOKR} together with KO of
the complexifications R and KO of the quaternionifications Rh
Specifically, for sach R € R 1let B{R) denote the diagram

(K, (R),[R]) = (x, (R%), [&D = (KO(Rh),[Rh]).
where the maps KO(R) - KD(RC) -+ KO(Rh) are obtained by applying the
functor KO to the natural maps R - RS o Rh. Then f2 becomes a
functor from R to a category whose objects are all diagrams of the
form

(Gl,gl) nd (Gz,uz} -+ (G3.n3)

within the category of pre-ordered abeslian groups with order-unit.

Since K0 of any semisimple ring is isomorphic {(as an ordered
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group) to a finite direct product of copies of F [9, Lemma 15.22],
it follows that K, of any algebra in R 1is a countable dimension
group. FPFor any R € B, the algebras RS and Rh also lie in R.
Thus all three pre-ordered abelian groups appearing in the diagram
R{R} are countable dimension groups.

For example, k of the n*n matrix algebras Mn(R), Mn(ﬂ:l. and

Mn[H-I) are iscmorphic to the following diagrams:

1 1
{Z,n) —— (£,n) —— (Z,n)

diag sum

(Z.,n) ————— (Z,n) x (Z,n}

(Z:ED)

2 2
(Z,ny — (Z.,2n) —— (Z ,4n)

{16, Propositions 2.2, 2.6].

That R contains enough information to classify the algebras in R
was proved by the author and Handelman [16, Theorem 5.1]: If R,S € R,
then R =~ 5 if and only if RI{R) = k(S), and in fact any isomorphism
of R(R) onto R(S) may be obtained as R of an isomorphism of R
onta S,

The question of exactly which diagrams appear as k of algebras in
R has remained open., However, the form of k  of those algebras in R
which can be constructed using matrix rings over only one of R, C,
or M  is known (provided, in the second case, that only € -algebra
maps are allowed). MNamely, an algebra R € R is isomorphic to {(a) an
ultramatricial MR-algebra, (b) an ultramatricial C-algebra, or (c)

a direct limit of a countable seguence of finite direct products of

full matrix rings over I, 4if and only if k{R) 1is isomorphic to

1 1
{a) {G,u} — {G,u} —— (G,u)
diaqg Siun
(b} {G,u} ——— (G,u) x (G,u) — (G,2u)
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2 2
{c) {G,u) —— (G,2u) — (G,d0)

for some countable dimension group (G,u) with order-unit [16,
Theorems 7.1, 7.2, 7.5].

As an application, consider an algebra R € R whose center
contains a copy of €. with some computation, it may be shown that
E(R) has the form (b}, ‘whare (G,u} = (KO(R),[R]), as done in {16,
Proposition 2.4]. Since G 1is a countable dimension group, there
exists a unital ultramatricial E—algebra % such that
(KO(S),[S]) ~ {G,u)l. Then £(S) has the form (b), whence Rk(R)] o R({S}
and so¢ R = 5. Thus the only complex algebras in R are the unital

ultramatricial complex algebras [16, Theorem 7.2].

O APPROXIMATELY FINITE-DIMENSIONAL REAL C*-ALGEERAS, In parallel

with complex AF C*-algebras, we may dafine a real C*-algebra to be AF
if it is isomorphic (as a real C*-algebra) to a direct limit of a
countable sequence of finite-dimensional real C*-algebras. &Any unital
real AF C*-algebra contains a dense unital real *-subalgebra from the
family R* of unital direct limits of countable sesquences of those
finite-dimensional semisimple real *-algebras for which the inwvolution
arises from the conjugate transpose involution on matrices over R,
@, H. 1n parallel with the classification of the unital direct
limits of countable sequences of finite-dimensional semisimple real
algebras, the functor R c¢lassifies both the algebras in R* and the
real AF C*-algebras. In particular, for real AF C¥%-algebras A and

E we have A=~ B (as real C*-algebras) if and only if k{a) = k{B)
[16, Theorem 9.1]. The form of k of real AF C*-algebras constructed
using matrix rings over only one of R, ﬁ, or H alse follows

the same pattern as in the previous section. For instance, a real AF
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C*-algebra R is isomorphic to a complex AF C*-algebra if and only if
k{R} is isomorphic to a diagram of the form

diag sum
{G,u) —— {G,u} % {G,u} — {G,2u),

for some countable dimension group (G,u) with order-unit.

o PSEUDO-RANK FUNCTIONS. A ring R is {von Neumann) regular

provided that for each = £ R there exists y € R such that xyx = xX.
{This ensures a large supély of idempotents, for whenever xyx = X, the
elements xy and yx are idempotent.) A (normalized] pseudo-rank
function on a regular ring R with 1 is any map N from R to the
unit interval [0,1] such that {(a} H(1} = 1; ({b) Nixy} $ N{x} and
Nixy) £ N{y)} for all x,y € R; ({c} N{e+f} = N{e)+N{f} for all
crthogonal idempotents e,f € R, For example, if R is the ring of all
nXn matrices over a field F, then normalized matrix rank defines a
pseudo-rank function N on R (that is, N{x} = rank{x)/n for all
matrices x £ R}. For another example, if R 1is a ring of subsets of
some set X, and X € R, then a pseudo-rank function on R is just a
nonnegative finitely additive measure ¥ on R such that p(xX) = 1.
Pseudo-rank functions on R correspond to normalized positive
homomorphisms from (KO(R),{R]) to {(R,1). In general, given a
pre-ordered abelian group {G,u) with order-unit, a state on {G,u} is
any morphism {G,u) - (R ,1} in the category of pre-ordered abelién
groups with order-unit. There is a canonical bijection between the set
of states on (KO(R},[R]) and the set of pseudo-rank functions on R
{14, Proposition 2.4; 9, Proposition 17.12]. Thus duestions of
existence and/or unigueness for pseudo-rank functions may be translated

into guestions of existence and/or unigqueness for states.
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For example, the author and Handelman showed that any nonzero
partially ordered abelian group with an order-upnit has at least one
state {14, Coroliary 3.3; 9, Corollary 18.2]. Since KO of any
nonzero unit-regular ring is nonzero and partially ordered, it follows
that any nonzero unit-reqular ring has at least one pseudo-rank
function [i4, Corollary 3.5; 9, Corollary 18.5]. The auther and
Handelman also developed various criteria for a nonzero partially
ordered abelian group G with an order-unit u to have a unique
state. For instance, this happens if and only if there exist integers
s » £ *» 0 such that given any x,y € G+ with x+y = u, there is scme
n € N for which either ntx £ nsy or nty % nsx. AsS a conseguence,
a nonzerc unit-regular ring R possesses a unique pseudo-rank function
if and only if there exist integers s > t > 0 such that given any
orthogonal idempotents e,f € R with e+f = 1, there is some n € M
for which either the direct sum of nt copies of eR embeds in the
direct sum of ns copies of fR or the direct sum of nt copies of
fR embeds in the direct sum of ns copies of eR [14, Theorem 4.6;

9, Theorem 18.6].

g PSEQDO-RANK FUNCTION SPACES AND TRACE SPARCES. The collection

P(R) of all pseudo-rank functions on a regular ring R {with 1}
can be viewed as & subset of the real vector space mR cf all real-
valued functions on R. If IRR is given the product topology, it is
a locally convex Hausdorff linear topological space, and PR} is a
compact convex subset of HQR [9, proposition 16.17]. In fact,

(R} is a rather special kind of compact convex set known as a
“Choqueﬁ simplex" [9, Theorem 17.5). (Choguet simplices are infinite-
dimensional analogs of classical finite-dimensional simplices, and may

be characterized as exactly those compact convex subsets of locally
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convex Hausdorff linear topological spaces which arise as inverse limits
of finite-dimensional simplices.}

In a similar fashion, the collection S({G,u) of all states on a
pre-ordered abelian group (G,u} with order-unit, called the state
space of (G,u), is a compact convex subset of the product space RG
{9, Proposition 17.11]. If G is a dimension group (more generally, if
G satisfies the Riesz interpolation property), then S(G,u) is a
Choguet simplex [17, Taeorem I.2.5; 5, Proposition 1.7].

For the case cf K, of the regular ring R, the canonical

3
bijecticon between the state space S(KO(R),[R]) and the pseudo-rank
function space P(R) is an affine homeomorphism [9, Proposition
17,121, i.e., an isomorphism in the category of compact convex sets.
Hence, to realize a given Choguet simplex X as P(R) for some
regular ring R, it suffices to realize K as S(KO(R)ffR]}- In the
metrizable case, this was done by the author {8, Thecorem 5.1; 2,
Thegrems 17.19, 17.23]. wWe sketch an easier proof of this result,
taking advantage of our ability to realize any countable dimension group
as KO of an ultramatricial algebra.

Thus let ¥ be an arbitrary metrizable Choguet simplex, and let
Aff(X) be the partially ordered real Banach space of all affine (i.e.,
convex-combination-preserving) continuous real-valued functions on K.
{The oxdering in Af£(K) is the pointwise ordering of-functions, and
the norm is the supremum norm.} From the metrizability of K, it
follows that Aff{K) is separable. B&Alsc, since ¥ 1s a Choguet
simplex, Aff{¥K) satisfies the Riesz interpolatiomn property {4,
Théoréme; 32, Thecrem 5]. Conseguently, we may construct a countable
dense additive subgroup G of Aff(X) such that ¢ contains the

constant function ! and G has the Riesz interpolation property.
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Then G is a dimension group and 1 is an order-unit in G. Since G
is densa in Aff(K}, the restriction map S{AFf{K}),1} =+ S{G,1) 1is an
affine homeomorphism. On the other hand, a standard folklore result is
that the evaluation map K = S(Aff{X),1) is an affine homeomorphism,
and thus K ig affinely homeomorphic to S$({G,1l). As there exists a

unital ultramatricial algebra R for which (K. {R)},[R]} = (G,1}), we

4]
conciude that |P(R) is affinely homeomorphic te K. By using the
strict ordering on Aff({K} f{under which £ < g only if f£i{x) < g{x)
for all x € K}, we can ensure that the dimension group G is simple,
whence R is a simple algebra.

Parallel procedures can be used to realize metrizable Choguet
simplices as trace spaces of unital C*-algebras. Given a wnital complex
Cr-algebra A, the set Asa of self-adjoint elements of A becomes a
partially ordered real vector space with positive cone

Al ={x€n_ | trun(x) ¢ R’}

sa ® sa spectrumix} <
and ord@er-unit 1 [11, Proposition 6.1}. A state en A is any linear
functional A - € which restricts to a state on (Asa,l). Since all
states on (Asa,l) extend uniquely to states on A, the collection of
all states on A may be identified with the state space of (hsa,l). A

tracial state on A is any state t such that t{xx*} = t{x*x) for

all x € A, and a normalized finite trace on A is the restriction to

A;a of any tracial state. The trace space of A is the collection
T{A} of all normalized finite traces on A. We identify T{A} with
the collection of all tracial states on A, which is a compac; convex
subset of S(Asa,ll. In fact, T(A) is a Choquet simplex {31,lTheorem
3.1.18].

For a matrix algebra MnKC), the trace space T(Mn(¢)3 is a

singleton, as is the state space of (KO(Mn(C}).[Mn(E)]). Using the
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chservation that the functors T{—) and S(Kof—),f~l) convert finite
products to finite coproducts and convert direct limits to inverse
limits, it follows that the trace space of any unital complax AF
C*-algebra A is affinely homeomorphic te S(KO(A),[A]) [1, Corollary
3.2]. Given any metrizable Choquet simplex K, there is a countable
simple dimension group (G,u) with order-unit such that S(G,u) is
affinely homeomorphic to K, as indicated above. Hence, b} choosing &
simple unital complex AF E*—alqebra A for which (KO(A),[AI} = (G,1),
we obtain Blackadar's result that any metrizable Chogquet simplex K is
affinely homeomorphic to T{A)} for some simple unital complex AF

C*-algebra A [1l, Theorem 3.9].

O METRICALLY COMPLETE REGULAR RINGS. A norm-like function NY may

be defined on any requiar ring R {with 1) by setting N*(x} equal
to the supremum of the values N(x) for N € P(R). It is easily
checked that the rule d(x,y} = N*{x-y} then defines a pseudo-metric d
on R [12, Lemma 1.2]. In case d is a metric and R is complete
with respect to d, we say that R is E*-COmgle;;. For instance, if
there exists a positive integer n such that all nilpotent elements
x € B satisfy xn = (, then ¥*(y) 2 1/n for all nonzero elements
y €ER, and s¢ R is N*-complete {12, Theorem 1.3). fThis occurs, for
instance, if R can be embedded in é direct product of n¥n matrix
rings over division rings. The function N* on R corresponds to a
norm-like function on KO(R)' defined using states in place of
psaeudo-rank functions, as follows.

Given any pre-ordered abellan group (G,u} ‘with order-uait,’ we may
define

Iell = sup{lstx}| : s € 5{G,u}}

for all x € G. Alternatively, }Ixl] may be computed as
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lixl] = inf{k/n | k,mn € N and -ku £ nx § ku}
[17, Lemma I.6.1]. Then [{-}| is a nonnegative real-valued function
on G such that |lmx}l = [m|-[Ix]] and [lx+yil € lIxli+ily!'] for
all m€ Z and 211 x,y £ G [ibid]. If the pseudo-metric d4' on G

defined by ad'{x,y) = |lx-yi] is actually a metxic, and if G is

complete with respect to d', we say that (G,u) 1is norm-compleke.

Because of the canonical bijection between PR} angd
S(KO{R),[R}), it follows that };[xr]j] = N*{x) for ali x £ R, and
so N*-completeness of R is related to norm-completeness of KO(R).
Specifically, in case the regular ring R is N*-complete, the author
proved that (KO(R},[R]) iz an archimedean norm-complete dimension
group [12, Theorem 2.11}. (For a partially ordered abelian group G to
be archimedean means that whenever x,y € 6 with nx §y for all
positive integers n, then x £ 0.} Conseguently, some structure
theory for N*-complete regular rings may be obtained from correspending
structure theory for archimedean norm-complete dimension groups.

For example, there exists a complete representation of any
axchimedean norm-complete dimension group (G,u} in terms of affine
continuous real-valued functions on its state space. The only
restrictions placed on the functions appearing in this representation
are the values allowed at discrete extremal states. (A state s on
{G,u} is discrete if 5{G} is a discrete subgroup of R. & point x
in a convex set K is extremal if x does not lie in the interior of
any line segment within K.) Setting

A= {qg € AfE(S(G,w)} | qls) € s{G} for all
discrete extremal states s},
the author and Handelman proved that the evaluvation map G —+ Aff{S{G,u))

gives an isomoxphism of {G,u) onto (A,1) {as ordered groups with
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order-unit} {15, Theorem 5.1t].
This affine continucus function representation for archimedean
norm-complete dimension groups in turn provides an affine continuous

function representation for K of the N¥-complete regular ring R.

0
Under the canonical affine homeomorphism hetween S(KO(R},[R]) and
PR}, ~a discrete extremal state s on (KO(RJ,{R]) corresponds to an
extremal pseudo-rank function P with a discrete range of values.
Specifically, if s(KO(R)) = {(1/m)Z for some m € M, then

P(R) = {0,1/m,2/m,...,1}, and this cccurs if and only if R/ker(P) is
isomorphic to an m*m matrix ring over a division ring. Set

B, = (1/m}Z in this case, and for all other extremal pseudo-rank

functions P set BP = R . Then there is a natural isomorphism of
(KD(R)r[R]) onte (B,1), where
B = {q € Aff{P(R)) | q(P) € B, for all
extremal pseudo-rank functions P}
[12, Theorem 4.11}.

To give an easy application of this affine continuous function
representation of KO(R), assume, for some fixed positive integer ¢,
that all simple artinian factor rings of R (if there are any) are tXt
matrix rings (over some cther rings, not necessarily over division
rings). Then if P 1is an extremal pseudo-rank function and R/ker{F)
is isomorphic to an mXm matrix ring over a division ring, t must
divide m, whence 1/t € BP' As a result, the constant function 1/t
belongs to the group B given above. From the isomorphism of
{KOtR),[R]) onto (B,1}, it follows that [R] = t[¢] for some
[c] € KO(R)+. Since R is unit-regular [12, Theorem 2.3], the module
R is isomorphic to a direct sum of t copies of ¢, whence the ring

R is isomorphic to a tXt watrix ring (over the endomorphism ring of
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cy [12, Corollary 4.14]. 1In particular, if R has no simple artinian
factor rings, then R is a tXt matrix ring for all positive integers

t.

0 ALEPH-NQUGHT-CONTINUOUS REGULAR RINGS. In any regular ring R,

the collection L(RR) of principal right ideals forms a lattice, with
finite intersections for finite ipnfima and finite sums for finite
suprema [9, Thecrems 1.1, 2.3]. The ring R is said to be
?{O—continuous if the lattice L(RR) is ?ﬂo—continuous in the sense

that {a) every countable subset of L(RR) has an infimum and a supremum

" < < i
in L[RR). (b} whenever A E L(RR) and B1 2 52 2 ... in L(RR)f
then hA(VBﬂ = anBJ: {c) whenever A € LmR) and
> > ; = i
By 2By 2 ... in L(RR), then Ay (A Bi} Aav Bil. {Since L(RR)

is anti-isomorphic to the lattice of principal left ideals of & [9,
Theorem 2.5], this definition is left-right symmetric.) Equivalently,

R is ?Eo—continuous if and only if given any countably generated right
{left) ideal Y of R, there exists a principal right {left} ideal

J 2 I such that every nonzerc right (left) ideal contained in J has
nonzerc intersection with I [9, Corollary 14.4].

Handelman proved that every 2?0—continuous regular ring is unit-
regular [19, Theorem 3.2; 8, Theorem 14.24], and the author proved that
eVEry ?Qo-continuous reqular ring is N*-complete [12, Theorem 1.8].
Hence, the structure theories for archimedean norm—complete dimension
groups and N*-complete regular rings yield a structure theory for
?Qo-continuous reqular rings. However, a structure theory for
Ro-continuous regular rings.was first derived from a structure theory
for monotone O-complete dimension groubs, as follows., (A partially

ordered set P 1s monctone O-complete provided that every ascending

{descending) sequence x4 s X, & ... f{x, 2 x,2 ...} in P which is
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boundced above {below) in P has a supremum {infimum} in P.}

Handelman, Higgs, and Lawrence proved that KO of any
?Qo-continuous regular ring R 1is a monotone g-—complete dimension
group [24, Proposition 2.1], and that such groups are archimedean [24,
Theorem 1.3). Since KG(R) is archimedean, they obtained

nixer(p) | p € P} = {0},

fyom which it follows that the iptersection of the maximal two-sided
jdeals of R is zero [24, Theorem 2.3]. If ¥ is any maximal two-
sided ideal of R, then the existence of a state on (KO(R/M),[R/M])
implies the cxistence of a pseudo-rank function P on R/M, and
ker(P) = {0} because R/M is a simple ring. As a conseguence, R/M
contains no uncountable direct sums of nonzerc principal right or left
ideals, and using this countability condition, Handelman proved that
R/M is a right and left self-injective ring [19, Corollary 3.2]. Thus,
since the intersection of the maximal two-sided ideals of R is 2ero,
R is a subdirect product of simple right and left self-injective rings.

A structure theory for monotone O-complete dimension groups was
developed by the author, Handelman, and Lawrence f17] and applied to
KO(R). For example, the affine continuous function representation for
such groups led to a complete representation of KO(R) in terms of
affine continucus functions on FI(R) [17, Theorem I1I.i5.1]. As a
conseguence, if all simple factor rings of R are txt matrix riﬁgs
{for some fixed positive integer t}, then R is a txt matrix ring

{17, Theorem II.15.3].

0 FINITE RICKART C*-ALGEBRAS. A Rickart C*-algebra is a C*-algebra

A in which the right annihilator of any element x (that is, the right
ideal {a € A | xa = 01} equals the principal xight ideal generated by

. . ; 2 Lo :
some projection p (that is, p = p* = p ). This is a generalization
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af the concept of an AW*-algebra, which is a C*-algebra in which the
right annihilator of any subset is a principal right ideal generated by
& prejection. In particular, all von Neumann algebras {W*-algebras} are
Rickart C*-algebras. A finite C¥-algebra is a unital C*-algebra &

such that all elements x € A satisfying xx* = 1 also satisfy

x*x = 1.

The K-theory of a finite Rickart C*-algebra A can be investigated
with the aid of an auxiliary EYO—continucus regular ring R which is
alsc *—regular, i.e., there is an involution * on R such that every
principal right ideal of R is generated by a projection. Handelman

proved that A is a *-subring of an N -continucus *-regular ring R

0
such that the only projections in R are those in A (19, Theorem
2.1]. The ring R is essentially unique {up to a2 *-ring isomorphism
which is the identity on A}, and is called the regular ring of A.
Handelman alsc proved that the inclusion map A - R induces an
isomorphism of (KO(A),[A]) onto (KOKR),{R}). {A proof for the case
that A has no one—dimensional representations is given in [13, Theorem
5.2].}

In particular, KO(A) is a monotone g-complete dimension group,
and the structure theory for such groups vields a corresponding
structure theory for A, in exactly the same manner as for
?Qo—continuous regular rings. {However, this structure theory was first
derived from the structure theory for ?Qo—continuous regular rings, wvia
the regular ring of A.} For example, A is a subdirect product of
simple AW*-algebras, and so A can be embedded in a finite AW*-aligebra
[24, Theorem 3.1]. For another example, if the dimension of every
finite-dimensiocnal irreducible representation of A (if there are any)

is divisible by a fixed positive integer ¢, then A is a tXt matrix
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ring over some other finite Rickart C*-algebra [17, Theorem III.16.8].
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