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PARTIALLY ORDERED GROTHENDIECK GROUPS
K . R . Goodearl1

Motivation for the study of partially ordered abelian groups has

come from many different parts of mathematics, for mathematical

systems with compatible order and additive (or linear) strlk'ctures are

quite common . This is particularly evident in functional analysis,

where spaces of various kinds of real-valued functions provide impetus

for investigating partially ordered real vector spaces . In the past

decade, the observation that a Grothendieck group (such as KD of a

ring or algebra) often possesses a natural partially ordered abelian

group structure has led to new directions of investigation, whose

goals have been to develop structure theories for certain types of

partially ordered abelian groups to the point where effective

application to various Grothendieck groups is possible . Such recent

developments in the area of partially ordered abelian groups are the

subject of this note . We present a sketch of the construction of

Grothendieck groups as abelian groups equipped with pre-orderings that

are often partial orderings, together with brief sketches of several

situations in which the theory of partially ordered abelian groups can

be applied, via the Grothendieck groups KO , to the study of certain

rings and C*-algebras . This discussion is somewhat cursory, in the

interest of avoiding technicalities, and for reasons of space . For

1) This expository discussion contains an expanded version of
several lectures given at the Centre de Recerca Matemática, Institut
d'Estudis Catalans, Barcelona, during November and December 1984, and
the author wishes to thank the CRM for arranging his very pleasant
visit . An earlier version of this material appeared in [13] in
connection with a lecture given at the International Symposium on
Algebra and Its Applications in Delhi in December 1981 .



the sane reasons, we do not discuss the recent applications of

partially ordered abelian groups to topological Markov chains [27, 3,

20, 21] or to positive polynomials and compact group áctions [22, 23,

25, 26] .

A Grothendieck group is an invariant attached to a collection of

objects, such as the vector bundles on a given topological space, the

finitely generated projective modules over a given ring, or the

projection operators associated with a given C*-algebra . The

construction only requires a collection of objects equipped with a

notion of isomorphism and with some means of combining any two objects

from the collection into a third object . While it is traditional to

develop Grothendieck groups using short exact sequences as the means

of combining objects, in many important applications this reduces to

direct sums (or direct products) . Since the construction process is

simpler using direct sums, we shall restrict our discussion to that

case .

Thus for our basic data we take a set P of objects in some

category, such that P has a zero object and every finite set of

objects in P has a direct sum (coproduct) in P. The easiest

algebraic system to build using this data is an abelian semigroup,

whose elements are the isomorphism classes of objects in P, and

whose operation is addition induced from the direct sum operation in

P. However, the semigroup obtained in this manner need not have

cancellation, and so cannot always be embedded in an abelian group .

This problem can be circumvented either by reducing the semigroup

modulo a suitable-congruence relation, or, more conveniently, by using

an equivalence relation on P slightly coarser than isomorphism, as

follows .
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Objects A,B E P are said to be stably isomorphic (in P) if'and

only if there is an object

	

C E P such that MC = BOC .

	

Stable

isomorphism is an equivalence relation on P, and we write [A] for

the stable isomorphism class of an object A E P . Let Grot(P)

denote the collection of all stable isomorphism classes in P . The

direct sum operation in P induces an addition operation in Grot(P) ,

where [A]+[B] = [A®B]

	

for all A,B E P, and using this operation,

Grot(P) +

	

becomes an abelian semigroup with cancellation .

	

By formally

adjoining additive inverses to Grot(P) , we obtain an abelian group

Grot(P), the Grothendieck group of P .

	

(Reminder : if short exact

sequences are available in P, the Grothendieck group constructed

from P using short exact sequences may well be different from the

group constructed here .) All elements of Grot(P) have the form

[A]-[B] for A,B E P, and elements [A]-[B] and [C]-[D] in

Grot(P) are equal if and only if A®D is stably isomorphic to B®C .

For example, if P is the collection of all real (complex) vector

bundles on some compact Hausdorff space X, then Grot(P) is the

real (complex) K-group K0 (X) . For another example, let R be a

ring with 1,

	

and let P be the collection of all finitely generated

projective right R-modules (i .e ., all direct summands of free right

R-modules of finite rank) . In this case, Grot(P) is the algebraic

K-group

	

K0 (R) .

	

Alternatively,

	

K0 (R)

	

may be constructed by taking

P to be the category of all rectangular matrices over R . Then the

objects in P are all idempotent square matrices over R, and the

direct sum of idempotent matrices e and f is the block matrix

\0 f) . In case R is a C*-algebra, the set of idempotent matrices

over R may be reduced to the set of self-adjoint idempotent matrices

(see [11, Chapter 19]) .



In order not to lose track of the original semigroup Grot(P) +

inside Grot(P), we make it the "positive cone" of. an order. relation .

Namely, for x,y E Grot(P), we define x <_- y if and only if y-x

lies in Grot(P) . This relation is a pre-order (i .e ., a reflexive,

transitive relation) which is invariant under translation (that is,

x 5- y implies x+z = y+z) . The combined structure (Grot(P),+,5) is

called a pre-ordered abelian group . In case the relation < is a

partial order (i .e., an anti-symmetric pre-order), Grot(P) is a

partially ordered abelian rou .

Various relatively mild assumptions on P will force Grot(P) to

A common assumption is that all the objects in

P are "directly finite", i .e ., objects A,B E P can satisfy A®B - A

only if B is a zero object . For example, if P is the collection

of all finitely generated projective right modules over a unital ring

R, the objects in P are directly finite if and only if all square

matrices over R that satisfy xy = 1 also satisfy yx = 1 .

particular, this holds if R is commutative, or if R is a directed

union of finite-dimensional algebras, or if R is noetherian on

It also holds if R is a unit-regular ring, meaning

be partially ordered .

either side .

that for any x E R there exists a unit (invertible element) u E R

such that xux = x, for in that case the objects in P may be

cancelled from direct sums [18, Theorem 2 ; 9, Theorem 4 .5] .

In the case that P is the collection of all finitely generated

projective right modules over a unital ring R, the module R plays

a special role in P, for every object in P is isomorphic to a

direct summand of a finite direct sum of copies of R . As a

consequence, [R] plays a special role in K0 (R) : given any

x E KG (R) there exists a positive integer n such that x 1 n[R] .
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By virtue of this property,

	

[R] is called an order-unit of K0 (R) .

We may make K0 into a functor from the category of rings with

unit (and unital ring homomorphisms) into a category whose objects are

all pairs (G,u) where G is a pre-ordered abelian group and u is

an order-unit in G . The appropriate morphisms in this latter

category are normalized positive homomorphisms f : (G,u) -+ (H,v),

that is, group homomorphisms f : G

	

H such that f(G+ ) c H+ and

f(u) = v .

	

We call this category the category of pre-ordered abelian

groups with order-unit .

Any unital ring homomorphism

	

: R -> S induces a functor

(-)ORS from the category of finitely generated projective right

R-modules to the category of finitely generated projective right

S-modules . Since this functor preserves direct sums, it in turn

induces a positive homomorphism

	

K0 (~)

	

: K0 (R) -> K0 (S),

	

such that

K0(~)([A]-[B]) = [A®RS]-[B®RS]

for all finitely generated projective right R-modules A and B . As

K0 (¢)([R])

	

= [S],

	

we see that

	

K0 (¢)

	

is a normalized positive

homomorphism from (K0(R),[R]) to (K0(S),[S]) . Since the

appropriate functorial properties are clear, we obtain a functor from

the category of rings with unit to the category of pre-ordered abelian

groups with order-unit, given by the assignments R¡-> (K0(R),[R])

	

and

K0W
The construction of

	

K0 (R)

	

for a ring

	

R

	

without

	

1

	

is not

based

obtained from the "unitification" of R,

on the abelian group 7LxR,

(m,r)(n,s) = (mn,ms+nr+rs) .

with the set {0}xR,

on some class o£ non-unital projective modules but instead is

namely the ring R1 based

with multiplication given by the rule

The original ring R may be identified

which is an ideal of R1

	

1,

	

and then R /R - 7l .



Then

	

K0 (R)

	

is defined to be the kernel of

	

K0	of the natural map

R 1 1

	

7L,

	

that is, the subgroup of

	

K0 (R1 )

	

consisting of those

elements

	

[A]-[B]

	

in

	

K0(R1 )

	

for which

	

A/AR

	

and

	

B/BR

	

are (stably)

isomorphic abelian groups, and

	

K0 (R)

	

is equipped with the

pre-ordered abelian group structure inherited from

	

K0 (R 1 ) .

	

In

general,

	

K0 (R)

	

need not have an order-unit .

	

To take the place of an

order-unit, we may use the subset

	

D(R)

	

of

	

K0 (R)

	

consisting of

those elements

	

x E K0 (R)

	

for which

	

0 <-- x <-_ [R 1 ] .

	

In the context of

the category of not-necessarily-unital rings, K0 may be viewed

either as a functor into the category of pre-ordered abelian g.roups

and positive homomorphisms, or as a functor into a category whose

objects are all pairs (G,D) where G is a pre-ordered abelian group

and D is a suitable subset of G+ .

Grothendieck groups having been constructed, two basic meta-

questions arise : What sort of information about the data P is

stored in Grot(P), and how may this information be retrieved? For

instance, since Grot(P) is an invariant of P, there can be

situations in which it can be proved that data P and P' are not

equivalent by showing that Grot(P) and Grot(P') are not isomorphic .

Also, by its construction Grot(P) reflects the arrangement of direct

sum decompositions in P, and we may ask how much of the direct sum

decomposition structure of P, and what other structural information

about P, may be recovered from Grot(P) . By way of illustration, we

shall discuss a number of situations in which these questions have

been successfully answered . Due to the author's bias, these examples

are KO 's of certain rings and C*-algebras, but the patterns of these

examples are to be expected in Grothendieck groups of other

mathematical systems .
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a IRRATIONAL ROTATION ALGEBRAS . Let T be the unit circle in

the plane, and let C(T) denote the algebra of all continuous

complex-valued functions on T . We may view the functions in C(T)

as bounded linear operators on the Hílbert space

	

L2 (T)

	

(where a

function from

	

C(T)

	

acts on functions from

	

L2 (T)

	

by multiplication) .

Given a positive real number

	

a,

	

iet

	

p a : T -+ T

	

be counterclockwise

rotation through the angle tira . The rule poc*(f) = fpa then defines

a bounded linear operator pct* on L2 (T), and we let Aa denote the

norm-closed self-adjoint subalgebra of bounded linear operators on

L2 (T) generated by C(T) and pa* . This algebra is known as "the

transformation group C*-algebra of the rotation pa" .

It is fairly easy to distinguish among the algebras

	

Aa

	

for

rational a, and it is also easy to distinguish the rational cases

from the irrational cases . However, distinguishing among the

irrational cases is a subtler problem, which was only solved when

Pimsner, Voiculescu, and Rieffel calculated K0 of these algebras .

Namely, for any irrational number a E (0,1), there is an isomorphism

(in the category of pre-ordered abelian groups with order-unit) from

(K0 (ACC),[A a])

	

onto

	

( 71. +a 7L ,1) ,

	

where the subgroup

	

71+aF

	

of

	

IR

is given the usual ordering [28, Corollary 2 .6 ; 29, Corollary 1 ; 30,

Theorem 1] .

Thus if Aa - A6 for some irrational numbers a,s E (0,1),

	

there

must be an isomorphism

	

f

	

of

	

( 7L+aZ , 1)

	

onto

	

( lZ+OF- , 1) .

	

(Since

the topologies in

	

71+a1Z

	

and

	

7+gJ- may be defined in terms of the

ordering, f must also be a homeomorphism .) After approximating

elements of

	

71+a1Z

	

and

	

lZ+BZ by rational numbers, clearing

denominators, and using the relation f(1) = 1, it is easily seen

that

	

7L+a/Z =

	

1+11 .

	

From this a quick computation leads to the



conclusion that either S = a or S = 1-a, whence either p s = pa
-1or

ps
= pa

F-algebra that is a union of a countable ascending sequence of

matricial subalgebras (equivalently, any F-algebra that is isomorphic

to a direct limit of a countable sequence of matricial F-algebras and

F-algebra homomorphisms) . It is easily checked that matricial

algebras are unit-regular . Hence, any unital ultramatricial F-algebra

R

	

is unit-regular, and so

	

K0 (R)

	

is a partially ordered abelian

group . Using F-algebra unitifications, it follows that K0 of any

ultramatricial F-algebra is partially ordered .

These partially ordered abelian groups may be used to classify

ultramatricial F-algebras, following a method of Elliott [7] . If R

and S are unital ultramatricial

	

F-algebras, then R c S

	

if and

only if there exists an isomorphism of (K0(R),[R])

	

onto

	

(K0(S),[S])

in the category of pre-ordered abelian groups with order-unit [7,

Theorem 4 .3 ; 9, Theorem 15 .26] . If R and S are non-unital

ultramatricial F-algebras, then R = S

	

if and only if there exists

an ordered group isomorphism of

	

K0 (R)

	

onto

	

K0 (S)

	

mapping

	

D(R)

onto D(S) [7, Theorem 4 .3] .

The partially ordered abelian groups which can appear as KU of

ultramatricial F-algebras are just those which are isomorphic (as

ordered groups) to direct limits of countable sequences of finite

products of copies of 71

	

[7', Theorems 5 .1, 5 .5] . However, it is

84

O ULTRAMATRICIAL ALGEBRAS . Fix a field F . A matricial

F-algebra is any F-algebra that is isomorphic to a finite direct

product of full matrix algebras over F .

	

(In case F is algebraically

closed, the matricial F-algebras are exactly the finite-dimensional

semisimple F-algebras .) An ultramatricial F-algebra is any



usually impossible to check directly whether a given partially ordered

abelian group is isomorphic to such a direct limit . Some obvious

properties of there direct limits are that they are countable, they

are directed (upward and downward), and they are unperforated (any x

satisfy -_ng nx ? 0 for some n E (N also satisfies x ? 0) . A more

fundamental property, also easily checked, is the Riesz interpolation

propert"" : given any xl'x2'yl'y2 such that xi --- y j for all i,j,

there e ;:ists z such that xi <-_ z <_- y j for all i,j . The direct

limits of (sequences of) finite products of copies of 1 were

characterized by Effros, Handelman, and Shen as exactly those

(countable) partially ordered abelian groups which are directed and

unperforated and which satisfy the Riesz interpolation property [5,

Theorem 2 .2 ; 11, Corollary 21 .8] .

Partially ordered abelian groups with the latter three properties

are now called dimension groups . Thus, given a partially ordered

G and an order-unit u E G, there exists an

(G,u) onto (K0(R),[R]) for some unital

F-algebra R if and only if G is a countable

For the non-unital case, replace-the order-unit u

such that every element of G

abelian group

isomorphism of

ultramatricial

dimension group .

by an upward directed subset D c G

and such that any element of G+ which

lies below an element of D must lie in D . Then there exists an

ordered group isomorphism of G onto K0 of some ultramatricial

F-algebra R, with D mapping onto D(R), if and only if G is a

countable dimension group .

	

(These results are obtained by combining

Elliott's results [7, Theorems 5 .1, 5 .5] with those of Effros,

Handelman, and Shen [5, Theorem 2 .2] .

For example, the subgroup

	

{a/2n 1 a E 71

is a sum of elements from D,

and n E M }

	

of



appears as K0 of a direct limit of matrix algebras

using block diagonal maps

	

x H
(x

	

0),

	

The lexicographic product of

¡E with itself appears as K0 of a direct limit

F x M2 (F)

	

-, F x M3 (F)

	

-a F x M4 (F)

	

-~ . . .

using maps

	

(x,y) H (x,(00

	

y

o»-

as

	

subgroup

	

71+V771

	

of (+Z

	

appears

as K0 of a direct limit

using maps

An algorithm for obtaining j1+a71

	

(where a is any positive

irrational number) as K0 of an ultramatricial algebra, by using the

partial fraction decomposition of a, was developed by Effros and Shen

[6, Theorem 3 .2] .

The ability to realize any countable dimension group as K0 of an

ultramatricial algebra is an aid to constructing examples, since

dimension groups are easier to construct than ultramatricial algebras .

For instance, we may use this method to construct algebras with

various sorts of ideal-theoretic structure, for this corresponds

directly to ideal-theoretic structure in K0 .

	

(An ideal in a partially

ordered abelian group G is any directed subgroup H of G such that

whenever x 1 ,x2 E H and y E G with x 1 ? y : x2 , then y E H .) For

any unital ultramatricial algebra R (or, more generally, for any

unit-regular ring), the lattice of two-sided ideals of R is

isomorphic to ,the lattice of ieleals of

	

K0 (R)

	

[9, Corollary 15 .21] .

Given any countable ordinal a, it is easy to construct a countable

dimension group, with an order-unit, whose lattice of ideals is

86

M2 (F)

	

-+ M4 (F)

	

-+ M8 (F)

	

-a . . .

F x M2 (F)

	

-+ M3 (F)

	

x M4 (F)

	

-~ M7 (F)

	

x M10 (F)

	

-~ . . .

x 0 0)) .
0 x 0
0 0 y



isomorphic to the interval [1,a] (see [10, Proposition 1 .3]) .

Consequently, there exists a unital ultramatricial F-algebra whose

lattice of two-sided ideals is isomorphic to [1,a] . Similarly, there

exists a unital ultramatricial F-algebra whose lattice of two-sided

[1,a] . (These ideal-theoretic examplesideals is anti-isomorphic to

are the basic ingredients in

examples constructed by the author [10,

two corresponding module-theoretic

Corollaries 1 .6, 1 .7] .)

Any family of ultramatricial algebras defined by properties which

classified by a corresponding family of

For example, since an ultramatricial

only if

	

K0 (R)

	

is simple

	

(¡ .e ., there are

K0 (R)

	

and

	

{0}),

	

the family of

simple unital ultramatricial F-algebras is classified by the family of

countable simple dimension groups with order-unit . The task of

constructing all (countable) simple dimension groups was initiated by

Effros, Handelman, and Shen [5, Lemmas 3 .1, 3 .2, Theorem 3 .5] and

completed by the author and Handelman [15, Theorem 4 .11] .

are reflected in K0 may be

countable dimension groups .

algebra R is simple if and

exactly two ideals in K0 (R), namely

o APPROXIMATELY FINITE -DIMENSIONAL COMPLEX C*-ALGEBRAS . A complex

C*-algebra is approximately finite-dimensional (abbreviated AF) if it

is isomorphic (as a complex C*-algebra) to a direct limit of a

countable sequence of finite-dimensional complex C*-algebras . Since

all finite-dimensional C*-algebras are semisimple, any complex AF

C*-algebra A contains a dense ultramatricial complex *-subalgebra R .

Moreover, the inclusion map R y A induces an ordered group

isomorphism of-'

	

K0 (R)

	

onto

	

Kd(A)

	

(see [11, Corollary 19 .10] for the

unital case) . Hence, K0 of any complex AF C*-algebra is a countable

dimension group . Bratteli proved that complex AF C*-algebras are

determined up to isomorphism by therr dense ultramatricial complex



*-subalgebras [2, Theorem 2 .7 ; 11, Theorem 20 .7] . Consequently,

complex AF C*-algebras are classified in terms of countable dimonsion

groups, via KO , in exactly the same manner as ultramatricial

algebras [7, Theorems 4 .3, 5 .1, 5 .5 ; 5, Theorem ' .2 ; 11, Theorems

20 .7, 21 .10] .

o DIRECT LIMITS OF FINITE-DIMENSIONAL SEMISIMPLE REAL ALGE.BRAS .

The family R of unital direct limits of countable sequences of

finite-dimensional semisimple

	

[R -algebras is not as easy to classify

as the family of unital direct limits of countable sequences of .`

finite-dimensional semisimple

	

C-algebras, for .vhile the latter

family consists exactly of the unital ultramatricial

	

C-algebras,

	

R

contains, in addition to the unital ultramatricial IR-algebras, direct

limits in which matrix algebras over C and H

	

may appear . The

invariant (KO does not contain enough information to

distinguish among the algebras in R even at the most basic level,

since for any division ring

	

D we have

	

(K0(D),[D]) - ( 7,1) .

	

Thus a

more complicated invariant is needed . We may construct such an

invariant for algebras

	

R E R

	

by using

	

K0 (R)

	

together with

	

KO	of

the complexifications Rc and KO of the quaternionifications Rh .

Specifically, for each

	

R E R

	

let

	

UR)

	

denote the diagram

(K0(R),[R]) -> (K0(RC),[RC])

	

- (K0 (Rh),[Rh]),

where the maps

	

K0 (R) - K0 (RC ) ~ K0 (Rh )

	

are obtained by applying the

functor

	

KO	tothe natural maps

	

R - Rc , Rh .

	

Then

	

k

	

becomes a

functor from R to a category whose objects are all diagrams of the

form

(G 1 ,u1 ) (G 2 ,u2 ) (G3 ,u3 )

within the category of pre-ordered abelian groups with order-unit .

Since KO of any semisimple ring is isomorphic (as an ordered
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group) to a finite direct product of copies of 7-

	

[9, Lemma 15 .22],

it follows that K0 of any algebra in R is a countable dimension

group . For any R E R, the algebras Rc and Rh also lie in R .

Thus all three pre-ordered abelian groups appearing in the diagram

I2 (R)

	

are countable dimension groups .

For example,

	

k

	

of the

	

nxn

	

matrix algebras

	

Mn (IR ), Mn (C),

	

and

Mn 0H)

	

are isomorphic to the following diagrams :

1

	

1
( ZZ,n) - ( I,n) --+ (Z,n)

diag

	

sum
(Z,n)

	

--" (Z,n) X (Z,n)-.. (9,2n)

2

	

2
(lZ,n) - (Z,2n) -+ (Z,4n)

[16, Propositions 2 .2, 2 .6] .

That fZ contains enough information to classify the algebras in R

was proved by the author and Handelman [16, Theorem 5 .1] : If R,S E R,

then R - S if and only if k(R) - k(S),

	

and in fact any isomorphism

of

	

(2 (R)

	

onto

	

h(S)

	

may be obtained as

	

k

	

of an isomorphism of

	

R

onto S .

The question of exactly which diagrams appear as k of algebras in

R has remained open . However, the form of k of those algebras in R

which can be constructed using matrix rings over only one of

	

IR,

	

C ,

or

	

H-I

	

is known (provided, in the second case, that only

	

C-algebra

maps are allowed) . Namely, an algebra R E R is isomorphic to (a) an

ultramatricial

	

{R -algebra,

	

(b) an ultramatricial

	

C-algebra, or (c)

a direct limit of a countable sequence of finite direct products of

full matrix rings over

	

Hi,

	

if and only if

	

I2 (R)

	

is isomorphic to

1

	

1
(a)

	

(G,u) - (G,u) -% (G,u)

diag

	

sum
(b)

	

(G,u) - (G,u) X (G,u) -(G,2u)



2

	

2
(C)

	

(G,u)

	

- (G,2u) : (G,4u)

for some countable dimension group (G,u) with order-unit [16,

Theorems 7 .1, 7 .2, 7 .5] .

As an application, consider an algebra R E R whose center

contaiñs a copy of

	

C . With some computation, it may be shown that

h(R) has the form (b),'where (G,u) = (K0(R),[R]), as done in [16,

Proposition 2 .4] . Since G is a countable dimension group, there

exists a unital ultramatricial C-algebra S such that

(K0(S),[S])

	

- (G,u) .

	

Then

	

MS)

	

has the form

	

(b), whence

	

UR) _ )Z(S)

and so R - S .

	

Thus the only complex algebras in R are the unital

ultramatricial complex algebras [16, Theorem 7 .2] .

o APPROXIMATELY FINITE-DIMENSIONAL REAL C*-ALGEBRAS . In parallel

with complex AF C*-algebras, we may define a real C*-algebra to be AF

if it is isomorphic (as a real C*-algebra) to a direct limit of a

countable sequence of finite-dimensional real C*-algebras . Any unital

real AF C*-algebra contains a dense unital real *-subalgebra from the

family R* of unital direct limits of countable sequences of those

finite-dimensional semisimple real *-algebras for which the involution

arises from the conjugate transpose involution on matrices over R,

~i . In parallel with the classification of the unital direct

limits of countable sequences of finite-dimensional semisimple real

algebras, the functor k classifies both the algebras in R* and the

real AF C*-algebras . In particular, for real AF C*-algebras A and

B we have A - B (as real C*-algebras) if and only if HA) _ UB)

[16, Theorem 9 .1] . The form of k of real AF C*-algebras constructed

using matrix rings over only one of {R,

	

C, or H also follows

the sane pattern as in the previous section . For instance, a real AF
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C*-algebra R is isomorphic to a complex AF C*-algebra if and only if

h(R)

	

i.s isomorphic to a diagram of the form

diag

	

sum
(G,u) ----+ (G,u) x (G,u) - (G,2u) ,

for some countable dimension group (G,u) with order-unit .

o PSEUDO-RANK FUNCTIONS . A ring R is (von Neumann ) regular

provided that for each x E R there exists y E R such that xyx = x .

(This ensures a large supply of idempotents, for whenever xyx = x, the

elements

	

xy

	

and

	

yx

	

are idempotent .)

	

A (normalized)

	

sp eudo-rank

function on a regular ring R with 1 is any map N from R to the

unit interval [0,1] such that (a) N(1) = 1 ;

	

(b) N(xy) < N(x) and

N(xy) <- N(y) for all x,y E R ;

	

(c) N(e+f) = N(e)+N(f) for all

orthogonal idempotents e,f E R . For example, if R is the ring of all

nxn matrices over a field F, then normalized matrix rank defines a

pseudo-rank function N on R (that is, N(x) = rank(x)/n for all

matrices x E R) . For another example, if R is a ring of subsets of

some set X, and X E R, then a pseudo-rank function on R is just a .

nonnegative finitely additive measure p on R such that )1(X) = 1 .

Pseudo-rank functions on R correspond to normalized positive

homomorphisms from (K0(R),[R]) to (íR,1) . In general, given a

pre-ordered abelian group (G,u) with order-unit, a state on (G,u) is

any morphism (G,u) - (IR,1) in the category of pre-ordered abelian

groups with order-unit . There is a canonical bijection between the set

of states on (K0(R),[R]) and the set of pseudo-rank functions on R

[14, Proposition 2 .4 ; 9, Proposition 17 .12] . Thus questions of

existence and/or uniqueness for pseudo-rank functions may be translated

into questions of existence and/or uniqueness for states .



For example, the author and Handelman showed that any nonzero

partially ordered abelian group with an order-unit has at least one

state [14, Corollary 3 .3 ; 9, Corollary 18 .2] . Since K0 of any

nonzero unit-regular ring is nonzero and partially ordered, it follows

that any nonzero unit-regular ring has at least one pseudo-rank

function [14, Corollary 3 .5 ; 9, Corollary 18 .5] . The author and

Handelman also developed various criteria for a nonzero partially

ordered abelian group G with an order-unit u to have a unique

state . For instance, this happens if and only if there exist integers

s .> t > 0 such that given any x,y E G + with x+y = u, there is some

n E [N for which either ntx 1 nsy or nty < nsx . As a consequence,

a nonzero unit-regular ring R possesses a unique pseudo-rank function

if and only if there exist integers s > t > 0 such that given any

orthogonal idempotents e,f E R with e+f = 1, there is some n E 11`1

for which either the direct sum of nt copies of eR embeds in the

direct sum of ns copies of fR or the direct sum of nt copies of

fR embeds in the direct sum of ns copies of eR [14, Theorem 4 .6 ;

9, Theorem 18 .6] .

o PSEUDO -RANK FUNCTION SPACES AND TRACE SPACES . The collection

fP(R) of all pseudo-rank functions on a regular ring R (with 1)

can be viewed as a subset of the real vector space

	

IRR

	

of all real

valued functions on

	

R .

	

If

	

1R R

	

is given the product topology, it is

a locally convex Hausdorff linear topological space, and

	

JP(R) is a

compact convex subset of RR [9, Proposition 16 .17] . In fact,

IP(R)

	

is a rather special kind of compact convex set known as a

"Choquet simplex" [9, Theorem 17 .5] . (Choquet simplices are infinite-

dimensional analogs of classical finite-dimensional simplices, and may

be characterized as exactly those compact convex subsets of locally
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convex Hausdorff linear topological spaces which arise as inverse limits

of finite-dimensional simplices .)

In a similar fashion, the collection S(G,u)

	

of all states on a

pre-ordered abelian group (G,u) with order-unit, called the state

space of

	

(G,u),

	

is a compact convex. subset of the product space

	

[ñ G

[9, Proposition 17 .11] . If G is a dimension group (more generally, if

G satisfies the Riesz interpolation property), then S(G,u) is a

Choquet simplex [17, Theorem 1 .2 .5 ; 5, Proposition 1 .7] .

For the case of S of the regular ring R, the canonical

bijection between the átate space S(K0(R),[R])

	

and the pseudo-rank

function space

	

JP(R) is an affine homeomorphism [9, Proposition

17 .12], i .e ., an isomorphism in the category of compact convex sets .

Hence, to realize a given Choquet simplex K as

	

FP(R) for some

regular ring R, it suffices to realize K as S(K0(R),[R]) . In the

metrizable case, this was done by the author [8, Theorem 5 .1 ; 9,

Theorems 17 .19, 17 .23] . We sketch an easier proof of this result,

taking advantage of our ability to realize any countable dimension group

as K0 of an ultramatricial algebra .

Thus let K be an arbitrary metrizable Choquet simplex, and let

Aff(K) be the partially ordered real Banach space of all affine (i .e .,

convex-combination-preserving) continuous real-valued functions on K .

(The ordering in Aff(K)

	

is the pointwise ordering of functions, and

the norm is the supremum norm.) From the metrizability of K, it

follows that Aff(K) is separable . Also, since K is a Choquet

simplex, Aff(K)

	

satisfies the Riesz interpolation property [4,

Théoréme ; 32, Theorem 5] . Consequently, we may construct a countable

dense additive subgroup G of Aff(K)

	

such that G contains the

constant function 1 and G has the Riesz interpolation property .



Then G is a dimension group and 1 is an order-unit in G . Since G

is dense in Aff(K), the restriction map S(Aff(K),1) - S(G,1) is an

affine homeomorphism . On the other hand, a standard folklore result is

that the evaluation map K -> S(Aff(K),1)

	

is an affine homeomorphism,

and thus K is affinely homeomorphic to S(G,1) . As there exists a

unital ultramatricial algebra R for which (K0(R),[R]) - (G,1), we

conclude that

	

FF>(R) is affinely homeomorphic to K . By using the

strict ordering on Aff(K)

	

(under which f < g only if f(x) < g(x)

for all x E K), we can ensure that the dimension group G is simple,

whence R is a simple algebra .

simplices as trace spaces of unital C*-algebras . Given a unital complex

C*-algebra A, the set Asa of self-adjoint elements of A becomes a

partially ordered real vector space with positive cone

and order-unit 1 [11, Proposition 6 .1] . A state on A is any linear

functional

	

A y C

	

which restricts to a state on

	

(Asa' l) .

	

Since all

states on

	

(Asa,1)

	

extend uniquely to states on

	

A,

	

the collection of

all states on

	

A

	

may be identified with the state space of

	

(Asa,1) .

	

A

tracial state on A is any state t such that t(xx*) = t(x*x) for

all x E A, and a normalized finite trace on A is the restriction to

A

	

of any tracial state . The trace space of A is the collectionsa

T(A) of all normalized finite traces on A . We identify T(A) with

the collection of all tracial states on A, which is a compact convex

subset of

	

S(Asa ,1) .

	

In fact,

	

T(A)

	

is a Choquet simplex [31, Theorem

3 .1 .18]

For a matrix algebra Mn (C), the trace space T(Mn (E)) is a

singleton, as is the state space of

	

(K0 (Mn((E)),[Mn( C)]) .

	

Using the
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observation that the functors T(-) and S(KO convert finite

products to finite coproducts and convert direct limits to inverse

limits, it follows that the trace space of any unital complex AF

C*-algebra A is affinely homeomorphic to S(K0(A),[A}) [1, Corollary

3 .2} . Given any metrizable Choquet simplex K, there is a countable

simple dimension group (G,u) with order-unit such that S(G,u) is

affinely homeomorphic to K, as indicated above . Hence, by choosing a

simple unital complex AF C*-algebra A for which (K0(A),[A}) - (G,u),

we obtain Blackadar's result that any metrizable Choquet simplex K is

affinely homeomorphic to T(A) for some simple unital complex AF

C*-algebra A [1, Theorem 3 .9} .

o METRICALLY COMPLETE REGULAR RINGS . A norm-like function N* may

be defined on any regular ring R (with 1) by setting N*(x) equal

to the supremum of the values N(x)

	

for N E {P(R) . It is easily

checked that the rule d(x,y) = N*(x-y) then defines a pseudo-metric d

on R [12, Lemma 1 .2] . In case d is a metric and R is complete

with respect to d, we say that R is N*-complete . For instance, if

there exists a positive integer n such that all nilpotent elements

x E R satisfy xn = 0, then N*(y) k 1/n for all nonzero elements

y E R, and so R is N*-complete [12, Theorem 1 .3} . This occurs, for

instance, if R can be embedded in a direct product of nxn matrix

rings over division rings . The function N* on R corresponds to a

norm-like function on K0 (R), defined using states in place of

pseudo-rank functions, as follows .

Given any pre-ordered abelian group

	

(G,u) `with order-unit,`we may

define

Ilxll = sup{Is(x)I : s E S(G,u)}

for all x E G . Alternatively,

	

Ilxll may be computed as



lixll = inf{k/n l k,n E IN and -ku <_ nx <_ ku}

[17, Lemma 1 .6 .1] . Then II-ll is a nónnegative real-valued function

on G such that IImxII = ImI .llxll and llx+yll < llxll+lly!I for

all m E 71 and all x,y E G [ibid] . If the pseudo-metric d' on G

defined by d'(x,y) = lix-yll is actually a metric, and if G is

complete with respect to d', we say that (G,u) is norm-complete .

Hecause of the canonical bijection between

	

FP(R) and

S(K0(R),[R]), it follows that i¿[xR]II = N* (x) for all x c' R, and

so N*-completeness of R is related to norm-completeness of. B :0 (R) .

Specifically, in case the regular ring R is N*-complete, the author

proved that (K0(R),[R]) is an archimedean norm-complete dimension

group [12, Theorem 2 .11] .

	

(For a partially ordered abelian group G to

be archimedean means that whenever x,y E G with nx S y for all

positive integers n, then x <_ 0 .) Consequently, some structure

theory for N*-complete regular rings may be obtained from corresponding

structure theory for archimedean norm-complete dimension groups .

For example, there exists a complete representation of any

archimedean norm-complete dimension group (G,u) in terms of affine

continuous real-valued functions on its state space . The only

restrictions placed on the functions appearing in this representation

are the values allowed at discrete extremal states .

	

(A state s on

(G,u) is discrete if s(G)

	

is a discrete subgroup of IR . A point x

in a convex set K is extremal if x does not lie in the interior of

any line segment within K .) Setting

A = {q E Aff(S(G,u)) l q(s) E s(G)

	

for all

discrete extremal states s},

the author and Handelman proved that the evaluation map G - Aff(S(G,u))

gives an isomorphism of (G,u) onto (A,1)

	

(as ordered groups with
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order-unit) [15, Theorem 5 .1] .

This affine continuous function representation for archimedean

norm-complete dimension groups in turn provides an affine continuous

function representation for K0 of the N*-complete regular ring R.

Under the canonical affine homeomorphism between S(K0(R),[R]) and

?(R),a discrete extremal state s on (K0(R),[R]) corresponds to an

extremal pseudo-rank function P with a discrete range of values .

Specifically, if s(K0 (R)) = (1/m)j

	

for some m E H, then

P(R)

	

= {0,1/m,2/m, . . . . l},

	

and this occurs if and only if

	

R/ker(P)

	

is

isomorphic to an mxm matrix ring over a division ring . Set

BP = (1/m)3: in this case, and for all other extremal pseudo-rank

functions P set BP = FR . Then there is a natural isomorphism of

(K0(R),[R]) onto (B,1), where

B =

	

{q E Aff(IP (R))

	

q (P)

	

E Bp	forall

extremal pseudo-rank functions P}

[12, Theorem 4 .11] .

To give an easy application of this affine continuous function

representation of K0 (R), assume, for some fixed positive integer t,

that all simple artinian factor rings of R (if there are any) are txt

matrix rings (over some other rings, not necessarily over division

rings) . Then if P is an extremal pseudo-rank function and R/ker(P)

is isomorphic to an mxm matrix ring over a division ring, t must

divide

	

m,

	

whence

	

l/t E BP .

	

As a result, the constant function

	

l/t

belongs to the group B given above . From the isomorphism of

(K0(R),[R]) onto (B,1), it follows that [R] = t[C] for some

[C] E K0 (R)

	

.

	

Since

	

R

	

is unit-regular [12, Theorem 2 .3], the module

R is isomorphic to a direct sum of t copies of C, whence the ring

R is isomorphic to a txt matrix ring (over the endomorphism ring of



C)

	

[12, Corollary 4 .14] . In particular, if R has no simple artinian

factor rings, then R is a txt matrix ring for all positive integers

t .

the collection L(RR ) of principal right ideals forms a lattice, with

finite intersections for finite infima and finite sums for finite

suprema [9, Theorems 1 .1, 2 .3] . The ring R is said to be

-continuous i£ the lattice

	

L(RR)

	

is

	

'Ng-continuous in the sense

that (a) every countable subset of L(RR ) has an infimum and a supremum

in L(RR) ;

	

(b) whenever A E L(RR ) and B1 <- B2 ~-l . . . in L(RR),

then

	

A n (V Bi)

	

=

	

v(An B i ) ;

	

(c)

	

whenever

	

A E L(RR )

	

and

B 1	?B2 .1

	

. . .

	

in

	

L(RR) ,

	

then

	

A V (A Bi )

	

=

	

MAV Bi) .

	

(Since

	

L(RR)

is anti-isomorphic to the lattice of principal left ideals of R [9,

Theorem 2 .5], this definition is left-right symmetric .) Equivalently,

R is ieo-continuous if and only if given any countably generated right

(left) ideal I of R, there exists a principal right (left) ideal

J =) I such that every nonzero right (left) ideal contained in J has

nonzero intersection with I [9, Corollary 14 .4] .

Handelman proved that every !?C-continuous regular ring is unit-

regular [19, Theorem 3 .2 ; 9, Theorem 14 .24], and the author proved that

every izo-continuous regular ring is N*-complete [12, Theorem 1 .8] .

Hence, the structure theories for archimedean norm-complete dimension

groups and N*-complete regular rings yield a structure theory for

Xo-continuous regular rings . However, a structure theory for

-continuous regular rings was first derived from a structure theory

for monotone a-complete dimension groups, as follows .

	

(A partially

ordered set P is monotone a-complete provided that every ascending
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bounded above (below) in P has a supremum (infimum) in P .)

Handelman, Higgs, and Lawrence proved that K0 of any

-continuous regular ring R is a monotone 6-complete dimension

group [24, Proposition 2 .1], and that such groups are archimedean [24,

Theorem 1 .3] .

	

Since

	

K0 (R)

	

is archimedean, they obtained

f){ker(P)

	

I P E

	

[P (R) } = {0},

from which it follows that the intersection of the maximal two-sided

ideals of R is zero [24, Theorem 2 .3] . If M is any maximal two-

sided ideal of R, then the existence of a state on (K0 (R/M),[R/M])

implies the existence of a pseudo-rank function P on R/M, and

ker(P) = {0} because R/M is a simple ring . As a consequence, R/M

contains no uncountable direct sums of nonzero principal right or left

ideals, and using this countability condition, Handelman proved that

R/M is a right and left self-injective ring [19, Corollary 3 .2] . Thus,

since the intersection of the maximal two-sided ideals of R is zero,

R is a subdirect product of simple right and left self-injective rings .

A structure theory for monotone C-complete dimension groups was

developed by the author, Handelman, and Lawrence [17] and applied to

K0 (R) . For example, the affine continuous function representation for

such groups led to a complete representation of

	

K0 (R)

	

in terms of

affine continuous functions on

	

[P(R)

	

[17, Theorem 11 .15 .1] . As a

consequence, if all simple factor rings of R are txt matrix rings

(for some fixed positive integer t), then R is a txt matrix ring

[17, Theorem II .15 .3] .

o FINITE RICKART C*-ALGEBRAS .

	

A Rickart C*-algebra is a C*-algebra

A in which the right annihilator of any element x (that is, the right

ideal {a E A 1 xa = 0}) equals the principal right ideal generated by

some projection

	

p

	

(that is,

	

p = p* = p2 ) .

	

This is a generalization



of the concept of an AW*-algebra , which is a C*-algebra in which the

right annihilator of any subset is a principal right ideal generated by

a projection . In particular, all von Neumann algebras (W*-algebras) are

Rickart C*-algebras . A finite C*-algebra is a unital C*-algebra A

such that all elements x E A satisfying xx* = 1 also satisfy

x*x = 1 .

The K-theory of a finite Rickart C*-algebra A can be investigated

with the aid of an auxiliary

	

?~O-continuous regular ring

	

R

	

which is

alsó *-regular , i .e ., there is an involution * on R such that every

principal right ideal of R is generated by a projection . Handelman

proved that

	

A

	

is a *-subring of an

	

?~O-continuous *-regular ring

	

R

such that the only projections in R are those in A [19, Theorem

2 .1] . The ring R is essentially unique (up to a *-ring isomorphism

which is the identity on A), and is called the regular ring of A.

Handelman also proved that the inclusion map A ~ R

	

induces an

isomorphism of

	

(K0(A),[A])

	

onto

	

(K0(R),[R]) .

	

(A proof for the case

that A has no one-dimensional representations is given in [13, Theorem

5 .2] .)

In particular,

	

K0 (A)

	

is a monotone

	

Q-complete dimension group,

and the structure theory for such groups yields a corresponding

structure theory for A, in exactly the same manner as for

?ZO-continuous regular rings .

	

(However, this structure theory was first

derived from the structure theory for

	

c¿0-continuous regular rings, via

the regular ring of A .) For example, A is a subdirect product of

simple AW*-algebras, and so A can be embedded in a finite AW*-algebra

[24, Theorem 3 .1] . For another example, if the dimension of every

finite-dimensional irreducible representation.of A (if there are any)

is divisible by a fixed positive integer t, then A is a txt matrix

100



ring over some other finite Rickart C*-algebra [17, Theorem 111 .16 .8] .

REFERENCES

1 . B . E . Blackadar, "Traces on simple AF C*-algebras"
J . Func . Anal . 38 (1980) 156-168 .

2 . O . Bratteli, "Inductive limits of finite-dimensional C*-algebras"
Trans . Amer . Math . Soc . 17 1 (1972) 195-234 .

3 . J . Cuntz and W . Krieger, "Topological Markov chains with dicyclic
dimension groups"

J . reine angew . Math . 320 (1980) 44-51 .

4 . D . A . Edwards, "Séparation des fonctions réelles définies sur un
simplexe de Choquet"

C . R . Acad . Sci . Paris 261 (1965) 2798-2800 .

5 . E . G . Effros, D . E . Handelman, and C .-L . Shen, "Dimension groups and
their affine representations"

Amer . J . Math . 102 (1980) 385-407 .

6 . E . G . Effros and C .-L . Shen, "Approximately finite C*-algebras and
continued fractions"

Indiana Univ . Math . J . 29 (1980) 191-204 .

7 . G . A . Elliott, "On the classification of inductive limits of
sequences of semisimple finite-dimensional algebras"

J . Algebra 38 (1976) 29-44 .

8 . K . R . Goodearl, "Algebraic representations of Choquet simplexes"
J . Pure Applied Algebra 11 (1977) 111-130 .

9 .

	

, _Von Neumann Regular Rings
London (1979) Pitman .

10 .

	

, "Artinian and noetherian modules over regular rings"
Communic . in Algebra 8 (1980) 477-504 .

11 .

	

, Notes _on Real _and Complex _C*-Algebras
Nantwich (Cheshire) (1982) Shiva .

12 .

	

, "Metrically complete regular rings"
Trans . Amer . Math . Soc . 27 2 (1982) 275-310 .

13 .

	

, "Partially ordered Grothendieck groups"
in Algebra _and _Its Applications (H . L . Manocha and J . B . Srivastava,

Eds .),

	

pp.

	

71-90
New York (1984) Dekker .

14 . K . R . Goodearl and D . E . Handelman, "Rank functions and K0 of
regular rings"

J . Pure Applied Algebra 7 (1976) 195-216 .



"Metric completions of partially ordered abelian groups"
Indiana Univ . Máth . J . 29 (1980) 861-895 .

16 .

	

, "Classification of direct limits of finite-dimensional
semisimple real algebras and of approximately finite-dimensional
real C*-algebras"

(in preparation) .

17 . K . R . Goodearl, D: E . Handelman, and J . W . Lawrence, "Affine
representations of Grothendieck groups and applications to
Rickart C*-algebras and

	

?~?o-continuous regular rings"
Memoirs Amer . Math . Soc . No . 239 (1980) .

18 . D . Handelman, "Perspectivity and cancellation in regular rings"
J. Algebra 48 (1977) 1~16-

19 .

	

, "Finite Rickart C*-algebras and their properties"
Studies in Analysis, Advances in Math . Suppl . Studies, Vol . 4 (1979)

171-196 .

20 .

	

, "Positive matrices and dimension groups affiliated to
C*-algebras and topological Markov chains"

J . Operator Theory 6 (1981) 55-74 .

21 .

	

, "Reducible topological Markov chains via KO-theory and Ext"
Contemp . Math . 10 (1982) 41-76 .

22 .

	

, "Positive polynomials and product type actions of compact
groups on C*-algebras"

Memoirs Amer . Math . Soc . (to appear) .

23 .

	

, "Deciding eventual positivity of polynomials"
(to appear) .

24 . D . Handelman, D . Higgs, and J . Lawrence, "Directed abelian groups,
countably continuous rings, and Rickart C*-algebras"

J . London Math . Soc . 21 (1980) 193-202 .

25 . D . Handelman and W . Rossman, "Product type actions of finite and
compact groups"

Indiana Univ . Math . J . 33 (1984) 479-509 .

26 .

	

, "Non-product type actions of compact groups on AF algebras"
Illinois J. Math . (to appear) .

27 . W . Krieger, "On dimension functions and topological Markov chains"
Invent . Math . 56 (1980) 239-250 .

28 . M . Pimsner and D . Voiculescu, "Exact sequences for K-groups and
Ext-groups of certain cross-product C*-algebras"

J. Operator Theory 4 (1980) 93-118 .

29 .

	

"Imbedding the irrational rotation C*-algebra into an
AF-algebra"

J . Operator Theory 4 (1980) 201-210 .

102



30 . M . A . Rieffel, "C*-algebras associated with irrational rotatiohs"
Pacific J . Math . 93 (1981) 415-429 .

31 . S . Sakai, _C*-Algebras _and _W*-Algebras
Ergebnisse der Math ., Band 60
Berlin (1971) Springer-Verlag .

32 . Z . Semadeni, "Free compact convex sets"
Bull . Acad . Sci . Polon . 1 3 (1965) 141-146 .

Note : A slightly different version of the material in this

paper will appear in the book "Partially Ordered
Abelian Groups with Interpolation" by the author,
copyright © 1986 by the American Mathematical Society .

Rebiri el 14 de geneA del 1985
Department of Mathematics
University of Utah
Salt Lake City, Utah
84112 USA




