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ON THE MEAN VALUES OF AN INTEGRAL FUNCTION

REPRESENTED BY DIRICHLET SERIES

Poonam Sharma®*

1. Consider the Dirichlet series

(1.1} f(s}) = £, a expls A ],
where s = o+ it, A, 20, Aa_ <& — o, as n —> ®
1 n n+l
and
(1.2) lim sup ;%9~E‘= D < oo,
T+ oo n

Let o and 9, be the abscissa of convergence and the
abscissa of absolute convergence, respectively, of £f(s). Let
G, = and N will a2ilso be infinite, since according to a
known result ([1l], p.4) a Dirichlet series which satisfies
(1.2} has its abscissa of convergence egual to its abscissa of

absolute convergence, and so, f{s} is an integral function.

*This work has been suported by J.R.P. of C.S.I.R., (New Delhi}.



Let E = {f(s)}: defined by (1.1}, satisfying (1.2) and
6, = w}. Let the maximum modulus cof £i{s), £f{s} ¢ E, over a

vertical line be

1

Mio) = 2% P e v a0l

The (Ritt) order p and the lower order A are defined

by Ritt ({ 2], p.78} as

{1.3) lim sup log 10g Mo}
g+oo inf

and he also defined the type 7 and the lower type & as

{1.4} lim sup log M(a)

Froe inf

Let the mean values of |fis}|, £{s) € E, be

- _ 1lim 1 iy ®
(L.5)  I(e.8) = Iglo) = ' lps S 1E( 4 it)”  at
and

2 ¢ kx
(1.6} | mﬁ,kta’f) = ma,k(o) = ;EF fO I, (x)e "dx,

where §,k ¢ R+, the set of positive real numbers.

Some properties of these mean values were also studied

by Rizvi, M.I. [3] and he obtained a number of valuable results.



In this paper we have obtained some inequalities, growth
properties and asymptotic relations involving ma'k(o,f) and
Igzto,f) for <£(s) € E. The results cobtained are best possible.
The results of ([4],pp. 43-48) and ([5],pp. 51.56) follow

from curs.

Dikshit [6] in 1972 established the following thecrems.
Theorem A, 18(01 increases steadly with ¢ and log 18(0) is
a convex function of ¢ for o > g, = oO(f) > 0.

0

Proof: - Let 0 < o < 2 < o, < 0y and h{t) and F{s) be

defined as

nit) (£(o, +16)1% = 1£@o, + i001%, (o<t <o)
and
lim 1 T 5
F(s) = 23y Lo {£{s +it)} h(t} de.

Then F(s) is regular for 0 < % < Re{s) < vy and its least
upper bound is obtained on its boundary say at s = oyt it3.

Hence,

Igloy) = Fla,) < floy + it )l < Ig(04),

which proves the first part. To prove the second part we choose

«, such that



oG
1 _ o63
=3 IB (Ul} = & Ia (03).

Therefore,
ao g l.u.b.
2 _ 2 s
e I;(0, = e jﬂoﬁ%_w<t<mte fis)l <
xaT (')
1 ~ 3
< e IG(Ul) = e 15(03)
which gives on eliminating «,
0,0, 0,704
lOg 15 {02) Q%—_ui log 15 (O‘l) 03—_01- ].0(] I5 [03}

and the result follows.

Theorem B. ekU 16(0) is a convex function of ekoma k(0] and
log mg k{0) is a convex function of o, for o > 0, = 00(f1>0.
Proof: — We have
aiek? I5(a}} k ek? Igio) + ko 1;{0)
" ko = ko
d{e ma’k(o)} 215(019
I:(0)
=2ike 21—
Ig(0}

for ¢ >0, = oo{f) > 0 and increases with ¢ by Theorem A,
since loy IB(U} is a convex function of 0. This proves the

first part. To prove the second part, we have

215(0} - k ma'k{o)

d
—=_ {log m,  {0)}=
dfo} 5,k mg k(o)



zxaw)

= o = k)
g
m'a,k(
for ¢ > 05 = Go(f) > 0 and increases with ¢, since
ekg IB(of is a convex function of eko Mg k(a).

2. In theorem 1 we estimate the ratio of mg k(0) for any two
r

positive values of ¢ in terms of the ratio of Igz(0) and

me k(0) for those values of 0.

Theorem 1. If fig) ¢ E and 0‘100 < gy < G s then
I, {0,) m {0} I {c,)

(2.1) 81 Ke 1 logbek "2 < 672 % )

m&,k(cl) 2 2(02—01) m&,k(ol) m&,k(°2)

Proof. From (l1l.6), we have

ko o I (x}
(2.2} {log ke mﬁ'k{o}} = logfe 0 mS,k{GO}}+2 I 8

4]

— dX
m {x) "
o Ok

Therefore,

J.
k{v.,-0.} m, , (a,) 2 Igix)
log te T gy ie 2 gy
S,x 1 @, 8,k
2 Izt

0. >0

lay-0,3, 0479,

Z (6,7
my 4 (0,
and

k(GZ_Ul}mﬁ,k(g2} 2 15(02) ©

log e ﬂol}, oy >0

mg (017 mg (o) 2 0

From Theorem B, we have eko I5(¢) is convex function
I:(c)
of eka m (¢}, and therefore { ——— } increase for ¢ >0c,.
§,k g k(ﬁ} 0
+

9



Corollary. If f£{s) ¢ E, other than a constant and 0 <& <1,
then

m faal
(2.3) lim | ok } = 0.

gree g mg k(ﬂ)
If we put ai =a¢ and ¢, =0 in (2.1}, then

15(0) Ry k(ﬂﬂ} ; .
exp [ -2{-———— lo{l - a}] € —"—5~— . expl ko fu-1
ma,kf") ma’k(o)
Ia{rw)
éexp[-2{W}o(l—a}]

¥

The result follows on taking limits of both the sides after

dividing by ek&a'

3. Theorem 2. If £{s) ¢ E and is of Ritt order p»p{0 <p < o),
type 1 and lover type t, then
Ts (o)
{——1 5 2
sup ma,k(o) < e p T/

{3.1) lim
groe inf &P ep b £/2

Procf. From (2.2} we have for h > O

c+h I, {x}
k {o+h) ﬁ S
log {e m&,k(0+h)} = D(1) + 2 fc g k{x) dx
0 r
g+h IS(X)
>2 7 —_— aéx , a >0,
o m&,k(x) 0
I,{c)
>2 —% __n.
ms'k(a)



Hence,

Ig (o)
{ —— 1}
y SUP Mg (o) < SPh Y log m('i,k{{”hj
im im -
g—+we inf e‘oo 2h g—+oe eJD (e+h)
h
5 of . log M{o+h)
= lim
2h g oa P {o+h)
-5 &M rson
5 M t/2n

Taking h = %, we get (3.1).
4. Let L{e”) be a slowly changing function, i.e.

(i) L(ea) > 0 and is continuous for o > 00,

(ii) L{ze®) ~ L(e’) as o — = for every constant £ > 0,

lLet, for 0 <p < oo,

sup log mg k(o) T
(4.1) lim —_—t— =, {0t ST < ™;
o—eint &% L(e) t
Ig(o)
sup { Mg k(u] ) L3
lim — 2k =, (0<qgsp <.
o—owinf e’ ’L(e”) g

4. Theorem 3. If f(s) e E and is of Ritt order p(0 < p < o),

then



(1) Wee<rTlR
3 p
(11) t é%q log {%qE), and

(1ii) T > 2B /P
ep

Proof. Writlng (2.2) as

k{o+h)
log l e m&,k(o+h)}
o Ialxj o+h Ia(x)
= 0(1) + 27 ——— dx + 2] — aX, {0 > 0]
54 mﬁ,k{X) o mﬁ,k(x) 0
[V I, {o+h)
&
< 0(1) + 2(p+& f €% Lie®rax + 2 TR P
[+ &,k
0
e’ -1 Ia(o+h)
=0(1) + 2(p+te) f x*77 Lix)dx + 2 ————h
P ms k(0+h)
e 0 r
20 I, {o+h)
- e 4 8 7
2(p+e) P Lie’) + 2 my; k(o+h) R,

by [([7}, Lemma 5).

Dividing by e’ L%y, taking limits and using (4.1), we get

(4.2) M < 22+ an &M,
(4.3) &R té%f— + 2n &Py,

Similarly, we cbtain

(4.4) ™ v > 29 4 2np,



(4.5) e £ > %? + 2hg.

It can be seen that minima of the right hand expressions

of (4.2) and (4.3) occur at h = 6 and et = p/q. Substitu-

ting h =0 in {4.2) and Pl = p/q in (4.3} we get second

part of (i) and (ii} respectively. Taking h = (ifégi) in (4.4}

and h = 0 in (4.5}, we get (iii} and first part of (i) respec

tively.

5. Thecorem 4. If log mg k(o}'vT e”C L{e’), then
f

I.{0)
& Tp _po [+
_;_;TET ~ 5 oe Lie ).

Proof. Suppose now T = t. If 0 <n < 1, we have from {2.2)

for ¢ > o0,..

0
Igton < }-G*TI Ig{x) dx
Mg (1 T mg (X
N k{o+n) 1 ko
=3 log e mslk(o+n) - 5 log (e mﬁ,k{o)}

=2 P15 o™+ 0y {1+ 0(1)} L) -

-7
2

- e?? nie?) + 0P’ L(&%)).

I
z

Hence,
8,
M5,k (O b
1lim supp—o'——?——éi(p+ﬁn),
oo e L{a )



where H 1is a coristant. Since ®# is arbitrary, we get

I (o) }
m (¢}
lim sup % = T_g .
g—r e & Lie }

. 1 ko 1 k{e-n) .
Considering 3 log {e m%'k{a)} 5 log {e m&,k{o_ﬂ)’
amb proceeding as above, we get

A I
m {e)
tim ing 0k o W
G—* oo 1)
and hence, Ia(o)'~!§-epo Le” ).
16(0} 0o o
Corcllary. If —————~p € L{e }, then
ms ,x 0)

-~ 2p _pa o
log n%'k(a) s e Lie ).

From (i} of Theorem 3, if p =g, T =t = 2p/p.

It is my privilege to thank Dr. S5.N. Srivastava for his
valuable suggestions and guidance in the preparation of this pa

per.
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