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Abstract. Extending results of Billingsley and Chentsov,
Bickel & Wichura proved some fluctuation inequalities for pro-
cesses with milti-dimensional time parameter. In the same order
of ideas we give here an extension to the case that the marginals

of the control measure are not necessarily continuous,

Applications of this results to get some useful convergen
ce criteria for [O,l]q indexed processes are given, as well as
a theorem on regularity of right stochastically continuous proce

55e5.,

AMS subject ¢lassification (1.983). 6QF05, 60G0S
Key words and phrases: Fluctuation inequalities, weak convergen

ce, D[O,llq—valued random variables, regularity.
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0. Introduction.

In {1} P. Bickel & M. Wichura prove fluctuation inequali
ties for processes indexed by a ¢g-dimensional parameter set,
extending results of Chentsov and Billingsley, (2}, (3). Here
we extend their theorem 3 to the case where the marginals of m
are not necessarily continucus. Bickel & Wichura (op. cit,
pg. 1665, final) announce a possible extension to the case that
m _depends on n, and the measures m, converge weakly to a
measure with continucus marginals. Our extension has a different
character: m will be fixed (independent of n), we will
suppose instead that processes in question have independent
increments, and the constants that appear in their theorem 1
. will depend on m,q,y and B, in our case. This is the con-
tent of point 2. Point ’3 is devoted to give applications of
the fluctuation inequalities to the convergence of processes
indexed by [0,11%. At point 4 we see an application to the
regularity of processes with independent increments over
[0,11%. oOn this later result it is.worthy to say that R. Mor-
kvenas {6}, using Dynkin-Kinney's type conditiens, proves that
all processes with independent increments and stochastically
continuous have versions in DI[0,11%, oQur Thm. (4.1) is not
enclosed in his result because we only impose right stochastic

continuity.

1. Definitions and previous results. Notation is much

as in {1). Let g be a positive integer and Tl,TZ,...,Tq
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subsets of [0,1] each of which contains 0 and 1, and is

finite or [0,1]. Let {Xt}te - be a stochastic process

indexed by T = 'I‘l x T2 oy X Tq, with values in a normed
space (E, |.l). We suppose X is separable and vanish on the
lower boundary of T, ainfT" i,e, the points of T having

some coordinate egual to 0.

For each p, l<p<gq, and each tE'I‘_p we define

() A
P! . JE— .
X, : Tl X...X Tp Xaow.X Tq E by

(p} -
xt (tlr LI rtp_l 'tp"'l' - --t—q) - X(tlr .- .’tp—l't'tp"‘l' - -rtq) -

If s<t<u in TP, we define
m (s,t,u) (X) = min(IxP) - x®hy,px (P! - x P

t u

Where || . | is the supremum norm.

Definition (l.1):

M;(X) = sup {mp(s,t,u) (X) : s=t<u; s,t,uGTp}

M(X) = max  MI(X)
l€psg
MIX) = sup {|X{&)] : teT) O
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The following proposition is very useful and guite ele-

mentary.

q
Proposition (1.2}: If lq = (l,...,1}, then
q
MIX}] < Z M"(X) + [ X{L ) <
p=l p q
< g .M"{X) + lX(lq)I a

We say that B CTT 1is a block if

=0

B = 5 ,%t
I (st ]

we also write B = (5,t] where s= (sl,...,sq) and

o

L = (tl,...,t I

Denote X(B) the rectangular increment of X over the

block B, i.e.:

q
1 L 1 q—Péep
X(®B) = eigo ejio ces ﬁ;zo (-1} x(sl+el{tl~sl),...,sq+eq{tq-sqn

We say that X has independent increments if X{B} and X(C)
are independent random variables whenever B and { are

disjoint blocks.

Definition (1.3}): We write }{ECT(ﬁ,T} if X has

independent increments and
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P{IX(B) A=’ (m(an’s, Ya>o0

for all B C T, block of T, where ¥ and B are fixed
positive reals, and m is a finite measure over T . vanishing
over ainfT O

Evidently if xech (#,7) then the pair (%X,m) belongs

to C{2B3,24 in the sense of Bickel & Wichura (1).

Theorem (l.4): If (X,m)ec(f,Y), i.e. 4if for all pair

of disjoint blocks B,C of T we have
pUX(B) 2N, (2@ >M<A T m@uenf, va>o
then YAZ>0
PMY (X) B R}«Kq(ﬁn).h"’(m(mnﬂ
for a-ll pr l1<p=g, and

fq

P” (%) > A ISL_(B,7) AT (miT))

This is theorem 1 of Bickel and Wichura(l}.

Introduction ¢f the following moduli is suggested by the

identification

- q, = .
Dq = D{[9,1]*; R) pilo,1]: Dq_l) .
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Definition (1.5): 1If xEDq and 8§ >0 we define

u {p) - . (p) __(p) (p)__(p)
W (5) sup min (x5 =x 2% x0)
s, t,ucSTp
sEt=u, u-s= §
w"(§) = max w5y D
X X

1€ p &g

In what follows we shall alsoc need the following result
on tightness in the space (D{0,1}7; D), whose proof may be
found in Neuhaus {7}.

Theorem (1.6/): A sequence {Pn}mJ of probability

n=1
measures on (D[0,1]%, Dq) is tight if and only if:

i} For all 5 >0, there exists a€® such that
Pn{x : suptlx(t)l ra) s, for all n=1l.

ii) For all € >0, 17 >0, there exist &, 0<8<1l, and

n_, such that for n2n,

o

P {(x :w!{8) 2e¢] =1 (]
n x

2. Fluctuation inequalities

Theorem {2,1): There exists a constant K,

K = X(g,8,7y, m(T}), such that for all process XECT(B,‘Y}.

88 ‘



{see Def. (1.3)), is

8
JP[O,II]

P{M" (X} 2 ?\}éx(r“ va?T) mio,1 )25 1 -
P P mp[O,l]

for all p, 1< p<q, where J,[0,1] is the maximum jump of

the distribution function F_ of the p-th marginal, mp, of
P

m, and v means "the greatest of".

Proof:

Step 1. g=1 and T finite. Let 0 = £<t; <...<t;=

be the points of T, Define the process

m-1

Y(u) = I, X(t;)T

fu) + X{t )1 fu)
Iti-t ) m {tm}

i+i

over |0,1]1. Then, if

t 43<ti€thgt<3ﬁ1gtkéu<tk+

i-1 1

k
£ omie, P =

h
Pimis, t,w {¥) =A< X 27 T mie, NP
=i J =h+1 J

3

-29,h
AR mieamie, P <
j=i,j'=m+1l ) J

k k k h .
<2 7z m{t,}( 2 m{tj.])]BJ’\ (2 m{t )2 m{tj}]l's] <
z )

j=1 jr=n+l jr=i j
=27 X
<V (mem - gmy 2 omelf <
§=1
k-1
<2 mem -3, M) (2 2mieenie) -nte )’ -
=i
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k- i-1
A= 27 (m{T} =J, (T))’3 ( E 2m{t }+m{t} -z 2m{t} - m{t }J'B
i=1 i=1

=227 - 3 m)® (Fre) - Fee, )P <
k i
AT mm- g @ @ - e’
where F, continuous, is defined by the relations

-1
tj]°

Fi(C} = 0, F(tj] - F(tj Yy = m{tj} + m{tj-—l} and is linear over

the intervals [tj-l'

Hence, the proces Y, together with the measure, m',
associnted to the distribution function F' = {m(T} - Jm(T)]F,

belongs to CI(f,2¥). By theorem (l.4) we have
. . Y, .8
P{MI(X) Z A} = P{MI{Y] & A}SKA (m* {1y =
= kv m -5 @m)f ru)fs

-27

<2® k2" me)? @i - 5 m)

where we have used F(l) €2m(T). This proves the theorem in this

case.

Step 2., g =1, T =[0,1]1, m arbitrary. Let

0=t <t1<... <t =1, and Y the process X restricted to

{t ,eeest 1.
Iﬂ m

Define v as in step 4, proof of theorem 1, in
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Bickel & Wichura (1}:

vt} =m(tj_1,tj] if 421,

U{to} = 07
Then YiéCE[ﬁ;?), as a process aver {t_,t ,...t }.
Step 1 now implies

i}
IR S S
PM (2N < AV YR(ult Lt ,....t DBl - 202 B =
1 o 1 m
U@Or---rtm}

J, [0.1] r

= K A (mem)) 28] -
m[0,1]}

If now we take limit when m —* o, the set
{to'tl""’tm} increasing to a dense subset of (0,1] that

contains the points of discontinuity of F , we obtain {(by se-

parability):
s10,1n?
P (M) (¥) > A} £ K)C’*""(m(m)z'3 (1- LN

Step 3} g #2, T and m arbitrary. WwWe know that the theorem

is true for g = 1. We now will show our result tc be true for

p = 1; for other p the argument is the same.

Like in step 5 of Bickel & Wichura's proof of theo-
rem 1, the key point is that the wversion for g=1 of our theo
rem works for the function valued proces {xél)}teT . To

1
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show this it is enough to find bounds of its increments.
Remember that
m (s,t,w {X) = min (4x® - xPy gx® - x@ oy,
P t [ u t
Let T*= T x...xT and Y=x" - x® over T*. Then
2 q t s
paixM - xMiear=pmm » g <

SP{g-M (V) + 1Y (1 )l > Ay <

SP {{g=1IM" (¥) >?\r1} + P{l Y(lq_l M >?\r2}

r., + r2 = 1.
If B' is a block of T*, Y¥Y(B') = X {(s,t] x B'), hence
PUY(B)I 30 <X mi(s,t) »80P =0 A7 (m* (B))f

*
So YECT (B,¥), and by thm. (1.4}

PeM (v) 2 A (q-170) <Ak (%82 m (s, 61 <

< A%k (m(T))'6 727 (m (s,t])ﬁ.
g 1 1

Now if B = (s,t] x T*%*

Y{l ) =X(t;1q } = X{B) .

. ) - X(s,1

-1 -1
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This implies
=T .- B
PHY{lqi)IERrZ}S A r, (mﬂs,ﬂ) .
Putting together our inequalities we get finally:
(1} _ i1 -2 B =Yy (227 -7 i
PLIX, X Eh ) € (7 (m(T)) K oo, 0 Ted M) dm (s,£])" .

By the theorem in dimension 1:

i}
) o : I (T,)
M 00 2 M<e Y (meryPr_vr, ) 2V XYy mn?P |1 -1
1, q o m.(T.)
1Y
where T, is the solution of the eguation 2Kq[m(Tnﬁ(l-rl)7+1=
[#]
=ri""l over (0,1) and r. =1-7r, O

2 ls

Remark. In step 3 we have in fact used a slight modificaticn
of the result of step 2, +to cover the (?\_2 vA 7y  situation.
As a referee has pointed out, this proof works only in case

f > 1. As we need this theorem with B = 1 1later on, we remark
that an independent easy proof may be given for f§ > 1/2 using

induction on ¢ and Billingsley (3), Thm 12.6.

3. Convergence of processes indexed by [0,119,

Theorem {(3.1): Let {Xn}:;l be processes over

T = (0,119 wvanishing on 9,,¢T+ Suppose that X ECT(ﬁ,'T]

for some B >1/2, n =1,2,... .

93



Then:

{3.1.1) limuo lim sup P {w)'{' (§) =€ }1=0

n— o n

for all € >0:

Proof: It is enouwgh to show that

. : " (p) =
limg, =~ 1lim sup P {wy (8)= e}=10

n—* oo n

for all p , l<p<g, and e2>0.

Let

R L

i1y A ar i {p} (p} {p) (p}
{3.1.2.) wie,rim) = sup {min (eg) P - Pk Pon) PR
0 sSERNusT

Now, an application of theorem (2.1} to the process Y

n
defined over T* = [O,llp_lx [6,71 x [0,1]19°P in such a way

that for o €£t<r

{p) _ (pl _ (p)
(v (P = x) (x),' P

{observe that Yn vanishes over ain“T" has the same incre-
kS

ments that X, over T* s blocks and that, as a consequence,

it verifies condition CT*(.G,T) over T*, where

m*(.) =m(.) -m (.03, T%) ),
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gives us

8
J. . {o,r]
(3.1.3) Plwio, 7 2l SRe T mto s |1 - 2
m {o,7]
P
for all ¢, 0<e<1l.
If &= 1/2u then
whp)
{3.1.4) {wxn (S)Be}CALUAz
where
u-1
Al = U {w{218,{21+2)5:n} > ¢} and
i=0
u~2
A, = {w{(2i+1)8,(2i+3)8;:n) ¢ ).
i=0

From {3.1.3} and {3.1.4) we get

{3.1.5} Pluw PH sy = e e %Y (1. +1)
xn i 2
where
u-1 28 Jp(215,(21+2)61
I, = Z <mp{215,(21+2}51} 1 -
1 i=0 mp(2i6,(2i+2)5]
and
u-2 28 J ((2i+1)8, (24+3}8]
I, = £ (m_{(2i+1)8,(2i+3)8]) 1 - B
i=0 B ' mP{{2i+l) 8, (21+3)8]
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Now all follow as in Billingsley (5}, pg. 133-134 O

Remark: The previocus theorems also held if condition

X€E C? 8,v}) 1is replaced by: X defined over (U, xU, P, xP,)

2
and for all U.lEU ' xt(ul")ECT B ,7). We then say that

xe'c"’;'mm.

, of probability

Theorem (3.2}: A seguence, {Pn}:zl

measures over (Dq, Dq} is tight if:
i} For all 5 >0, there exists a€ R such that:
?n{ X @ suptlx(t}l >a ) =np, n=1,2....

ii) For all positive ¢,3, there exist §, 0<3 <1,

and no, such that for all n?noz

a} Pn{x : wx{ﬁ)Be}Qn.
b) Pn{x . wip){O,B) # ¢, for some p, 1<p<g} <1
<) Pn{x H w)(;p)[ 1-5,1) > ¢, for some p, 1<p<g } <n.

Procf: We show that a), b} and c} imply
ii} of thm. {1.6). The argument of Billingsley (2), thm,

{14.4), applied to the functions t — ||Xép)" ; lead to

(3.2.1) P _{x : w;‘P’ (8/2) >e¢/q }<P_{x : w:‘pJ[O,ﬁ) 2 e/6q ) +
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+B (X : w)‘f’ [1-8,1) > /6g} +B {x : W% P (5> e/6q}

q
Now our theorem follows from w' (8) < I w Plsy. O
X le X
As an application of the previous results we get the fo-
llcwing theorem, which generalizes theorem (2.3) of Gin& & Mar-

cus (4), to processes indexed by [0,1] a,

Theorem (3.3}: Let {xn}:_l, X, be Dq—va'_-ued rangdom

variables, wvanishing on a.i.nfT' and such that:

i} The finite dimensional distributions of the xn

converge wealkly to the corresponding distributions of X.

ii} xneE’i“(ﬁ,T), n=1,2,..., for some B>1/2, and

¥ >0.

(iii) For all € > 0

lim lim sup P {x:wtp){l—ﬁ,l) > e, for some p, 1<Xp<qgl=0
5&0 n— n X

-]

Then (P = L(Xn)}n=l converge weakly to L{X), as a

sequence of probability measures on (Dq,ﬁq} .

Proof: It is an induction on g. We verify conditions

i) and 1ii) of the previous thm.
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With respect to 1i): a) is a consequence of thm. (3.1),

¢) 1s the hypothesis iii}. Let us see i).

Ix(£)] >a }= p{sup I x Pl >a)
telo,1]

P{ Sup, .

Hence:

(X 0¢l > a} =2 { sup tx 11> a) <

P{sup
t€r0,1] °°

teT

<pluwi™ (8)>1)+p{max  sup |(xn):” (£)1>a ) <
n 1515k t‘Esz..qu

k
<p{w" 8)>11 +Z P { sup [(X )} 1>a }.
X . nti o

n =1 t*eT. x...xT
2 =

Now because of

p{wg;; pl1-81)>¢€ for some p', 2<Sp'<qg <
t
i

QP{W}({p’[l— §,1)> €, for some p, l<p<qg!l

n

1 . .
the processes (xn)é_’ satisfy i), ii) anrd iii} of our
1

theorem, i = 1,2,...,k. By induction hypothesis there exists
{aj_}k such that
i=1

1
Plsupeal (X001 > a;} < n/2k.
1

Given % >0, let & >0 be such that

1
P{w;( Y By >11<n2.

n

98



1 such that t, -t < b5 and

choose 0 = to<t1<"' t, Lol
a = -

max a,

i=l,...kK

P{suptET|(Xn)t|>a}€ﬁ .

This proves that i), ii) and iii} imply i) of thm.

{3.2), by induction on qg.
It only rests to verify condition b) of ii).

By induction hypothesis (}(n}épJ N (x)ép) . Hence,

Hex )P 1 1) Pk also. Now observe that

(p) Pr.
(X3 g li 1o o

as a consequence of the right continuity of (X)épj and

x) ‘P = 0.
o

Given positive 7 and €, let 50>D be such that if
6 < 8

P (I (x)ép’ | 2e} < 2.
Then
limsup B{l (x )P 1 Zey <ol (0P | Ze) < w2,

n—r o0
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Now from
x:uwlP0,8)24e) Cix !B (8) 2e) Uln 1 lxg® - x{PTh2e)
we get:
lim sup P {x:w'P[0,5)>¢) <n
f —— o0 n ¥®
This proves b) and the theorem. O
In applications quite frequently we don't know that
erDq. It is then useful tc have the following variant of the

previous thm., whose proof reguires the same argument as above.

Theorem (3.4): Let {X“}:"l be as in thm. (3.3}, Su-

ppose:

i) The finite dimensional distributions of xn are

weakly convergent and

lim  lim sup P {x:lxPli>e) =0
n — n

élo

o

for all e>0 and 2all p, lsp=g.

ii) XnECT(B,7),n=1,2,..., for some $ >1/2 and

¥ >0,
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iii} lim  lim swp Pn{x:w(p)[l—ﬁ,l) >€, for sawe p, 1Spsqgl =0
dio n—>* oo ®

for all e >40.

Then {Pn =L {Xn)}n=1 is. weakly convergent [J

4. Regularity of processes with independent increments.

Theorem (4.1): If xec:’(ﬁ.ﬂ, where B >1/2, x>0,

then X has a version with sample paths in p(o,11%,

Procf: Let 60‘( 1/2. Por t€[0,11? Qdefine:

£ (&) = (Eprevvety yot ;T 18 ) (80 *8 Tg 5,7 (8 ¥
o < Q
“'_60)1(1—Bo,l](ti)'_ti+1“"'tq)

for all i, 1<i<q,
— -1 -1 -1
fao[t)=((l—2ﬁo) (=8, (1m20) 7 (= B eeee s (1-28) (=8, )
) (E).

. q
We first prove that the proces Y, = Xfa (¢y on [o,117,

R L]
has a version with sample paths in blo,1]%

Observe that Y€ C’f $B,vy, if

m () = m(f6 {.0[50,1-5O]q))
© 101



For each n we define a proces ¥, on [0,1]%, cons-
tant over each rectangle of the dyadic net of order n, and

equal to the value of Y at “south-west" vertex, i.e.:
= _ -n : _ ~T
Yﬁ(t} Y {{il 1)2 ....,{1q 132 )

for all tel (i, - 1)2'n,112_n)x...x[(iq - 12" ,iq2'“). where

1<i, <2%,..., 1< 1 <27,
) 4

oo
We show that (Y}

argument like that in the proof of thm. (3.1) shows that

is a tight sequence. First, an

{4.1.1) lim lim sup P{w; (#8) ¢} =10

flo n —* o n

In fact: If 2 is defined over ™ = [0,17 Y x (o,r] x

x [0,L1TP  from ¥Y,, as in thm. (3.1) Y, is defined from

X, zm{Z)

n n represents the restriction of Zn to the diadic net,

™, of T, and »™  is defined over T* like the
w{2) m(2)

v of step 2, in the proof of thm. (2.1), then:

P{M"(z ) ®A}= lim bB{M"(z"? ) =r) <
p n P n

m —»= oo
Jum (7] B
< lim K A4 %, 2F 1 - 2| -
m —r oo P um{g"r]
7 8
J (o, 7]
=k AT w2y - ]
P mP(O: T]



Hence, {Yn} satisfies (3.1.3), and now all follows as

in thm. (3.1)'s proof,

1f 27%<b and T (;, denote the set of points of the

2% _ayadic net in T =[0,1]%, then

sup 1Y (£)t < mak by (t)i+gwy, (8).

te Tk(Z] n n

te T

Moreover, observe that the variables

max 1Y (&)t , n=%k, XK+ 1l,...
t ETk(Z) n

are identically distributed. This, together with (4.1.1} gives
condition i) of our thm. (3.2). Besides, {¥,} . satisfies

b} and ¢} of ii}, thm. (3.2), by construction.

n=l is tight. If W is the weak limit of

Hence, {Yn}
some subsequence, then it is easy to see that W is a version
of ¥, looking first at dyadic points, and approaching then

any point by dyadics.

The application fso being bijective and continuous
- q 1 = - -
between [60,1 801 and [90,1]>, and xt Y(fﬁo) Ligy
the theorem is proved. O
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Remarks and comments.

a) It will be very interesting to get a result like
thm. (2.1}'for processes whose increments are not necessarily

independent. I don'tknow at present how to do this.

b) All previous results extend easily to [0,%)%-indexed
processes using well known results on DB[0,%) T (see B.G.

Ivanoff (5)).

¢) Using above results and some ofhers, (which constitu-
te my Doctoral Thesis, as presented at the Universitat Autdnema
de Barceléna, Spain), we can prove the Central Limit Theorem
for processes that admit a representation as stochastic inte-
grals w.r.t. L&vy processes with multidimensional time parame-

ter. This will appear elsewhere.

d} Finally T want to express my indebtness and gratitude
to Prefessor E. Giné&, that suggested this problems to me and

has given efficient help, whenever needed.
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