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Abstract . Extending results of Billingsley and Chentsov,

Bickel & Wichura proved some fluctuation inequalities for pro-

cesses with multi-dimensional time parameter . In the same order

of ideas we give here an extension to the case that the marginals

of the control measure are not necessarily continuous .

Applications of this results to get some useful convergen

ce criteria for [0,1] 5 indexed processes are given, as well as

a theorem on regularity of right stochastically continuous proce

sses .
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0 . Introduction .

In (1) P . Bickel & M . Wichura prove fluctuation inequali

ties for processes indexed by a q-dimensional parameter set,

extending results of Chentsov and,Billingsley, (2), (3) . Here

we extend their theorem 3 to the case where the marginals of m

are not necessarily continuous . Bickel & Wichura (op . cit .

pg . 1665, final) announce a possible extension to the case that

m depends on n, and the measures mn converge weakly to a

measure with continuous marginals . Our extension has a different

character : m will be fixed (independent of n), we will

suppose instead that processes in question have independent

increments, and the constánts that appear in their theorem 1

will depend on m,q,y and P, in our case . This is the con-

tent of point 2 . Point 3 is devoted to give applications of

the fluctuation inequalities to the convergence of processes

indexed by [0,1] q . At point 4 we see an application to the

regularity of processes with independent increments over

[0,1] °- . On this later result it is~worthy to say that R . Mor-

kvenas (6), using Dynkin-Kinney's type conditions, proves that

all processes with independent increments and stochastically

continuous have versions in

	

D [0,1] q .

	

Our Thm . (4 .1) is not

enclosed in his result because we only impose right stochastic

continuity .

1 . Definitions and previous results . Notation is much

as in

	

(1) .

	

Let

	

q

	

be a positive integer and

	

T1,TZ, . . . . Tq
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subsets of (0,1] each of which .contains 0 and 1, and is

finite or

	

[0,11 .

	

Let

	

{Xt}tE T

	

be a stochastic process

indexed by T = T1 x TZ x . . .x Tq , with values in a normed

space (E, I .I) . We suppose X is separable and vanish on the

lower boundary of T, ainfT, i .e-. the points of T having

some coordinate equal to 0 .

For each

	

p,

	

1 <p <q,

	

and each

	

t E T_

	

we define
P

n
XtP) : T 1 x . . .x Tp x . . .x Tq - E

	

by

(P)Xt	(tl , . . . . t

	

l ,t

	

, . . .t

	

)

	

= X(tl~ . . . .tp-l,t,tp+lr . . .,tq) .
P' P+1 q

If

	

s 6t 9u

	

in

	

T ,

	

we define
P

m

	

(s,t, u) (x)

	

=

	

min(11x (P)	-

	

x ( P ) II,IIx (P )	-

	

x(P)II)
p

	

t s u t

Where II . II is the supremum norm.

Definition (1 .1) :

M" (X)

	

= sup {mp (s,t,u) (X)

	

:

	

s<t<u;

	

s,t,uETP}

M' , (X)

	

=

	

máx

	

Mp (X)
1 <p Qq

M (X)

	

=

	

sup

	

{ 1 X(t) 1

	

:

	

tE T}

	

0



mentary .

The following proposition is very useful and quite ele-

q
Proposition (1 .2) : If lq = (1,

	

l), then

q
M (X)

	

<

	

E

	

M" (X)

	

+

	

I X(1

	

)I
p=1 P

	

q

5

	

q.M" (X)

	

+

	

I X(1
q

) I

	

0

We say that

	

B C T

	

is a block if

q
B = II (s t ]

p=1 p p

we also write B = (s,t] where s= (s 1 , . . .,S ) and
4

Denote X(B) the rectangular increinent of X over the

block B, i .e . :

q
1

	

1

	

1

	

q- ElpX(B)

	

=

	

E

	

E

	

. . .

	

E

	

(-1)

	

P~

	

X(s +e

	

(t -s

	

), . . .,S + e

	

(t -s

	

))el=0 e2=0

	

e
q
=0

	

1

	

1

	

1

	

1

	

q

	

q

	

q

	

q

TIe say that X has independent increments if X(B) and X(C)

are independent random variables whenever B and C are

disjoint blocks .

Definition - (1 .3) :

	

We write

	

X ECm (P,y)

	

if

	

X

	

hasi
independent increments and



P { I X (B)

	

(m (B) )p,

	

a x> 0

for all B C T, block of T, where y and p are fixed

positive reals, and m is a finite measure over T . vanishing

over

	

a infT
Evidently if

	

X ECm (p ,y)

	

then the pair

	

(X,m)

	

belongs

to C(2p,2y) in the sense of Bickel & Wichura (1) .

Theorem (1 .4) :

	

If

	

(X,m) E C(P .,'Y) , i .e .

	

if for all pair

of disjoint blocks B,C of T we have

then

	

d X > 0

P{IX(B)I >X,

	

IX(C)I

	

X}:Q X-y (m (BUC)) p,

	

yx>0

for all

	

p,

	

1 Sp <q,

	

and

P{MB
(X)

	

}6Kq (P Y)

	

-y(m(T) ) R

P {M" (X) > T}6Lq (p,y)

	

X-y (m(T)) p

	

O

This is theorem 1 of Bickel and Wichura(1) .

Introduction of the following moduli is suggested by the

identification

D q	=

	

D (I 0, l) q ;

	

R)

	

=

	

D([0,11 ;

	

Dq_1 )



n0

Definition

	

(1 .5) :

	

If

	

x EDq	and

	

S >0

	

we define

w" (P)

	

(S)

	

=

	

sup

	

min (II x
(p) -x (p)

II ,II x (P)-x(P) II )x

	

t G u t
s,t,uETp
s St-<u, u-s 5 S

w" (S) = máx

	

w., (P) (S)
x

	

x

1-<P !t~q

In what follows we shall also need the following result

on tightness in the space (D[O,l] q ; D q ), whose proof may be

found in Neuhaus (7) .

Theorem (1 .6) : A sequence {Pn}n=1

	

of probability

measures on (D[0,1 q, Dq ) is tight if and only if :

i)

	

For all

	

i? >O,

	

there exists

	

a ER

	

such that

P n {x : supt1x(t)I >a}-<r1,

	

for all n>1 .

ii) For all

	

e >O,

	

77 >O,

	

there exist

	

S, 0 < S<l,

	

and

such that for

	

n >_n.

Pn {x : w , (S) >e } S1

2 . Fluctuation inegualities

Theorem (2 .1) :

	

There exists a constant K,

K = K(q,R,y,

	

m(T)),

	

such that for all process

	

X E Cm(0 y),



(see Def . (1 .3)), is

Jp[ 0,11

	

Q

m
P

[ 0,1]1

for all

	

p, 1 < p -<q,

	

where

	

Jp[0,1]

	

is the maximum jump of

P{M" (X) > ñ}<K(?~47

	

V

	

X27 )

	

(m
P

[ 0,1] )2R

	

I1

	

-p

the distribution function Fm	ofthe p-th marginal, mp , of
P

m, and v means "the greatest of" .

Proof :

Step 1 .	g= 1

	

and

	

T

	

finite .

	

Let

	

0 = to<t1 <. . . <tm= 1

be the points of T . Define the process

m-1
Y (U)

	

=

	

iE0

	

X(t i ) I[ ti

	

ti+1)(u)

	

+

	

X(tm) I{ tm} (u)

over 10,11 . Then, if

ti-1 <8<ti<th<t<th+l<tk<u<tk+l

= 7~ -27 ( 2:

	

m{t j}m{t j ,})R <
j=i .j =h+1

h
<X -27 [( E m{t . } ( E

	

m{t .~}))0 A ( E

	

m{t .~} (

	

m{t M)01 5
j=i

	

7

	

j=h+l

	

7

	

j=i

	

7

	

j =1

	

7

< x-2'Y

	

[(m (T)

	

-

	

Jm (T) )
k
E m{t .}l R
j=i 7

k-1
C

	

27 (m (T) - Jm (T) )~

	

(

	

E

	

2 m {t j } + m{tk} -m{ti})R

	

=
j=i



-- a-27 (m (T) -Jm (T) )l)

	

( kE1 2m{tj } +m{tk}

	

-12; 1 2m{tj}

	

- m{ti} )Q

	

=

_ X-27 (m (T)

	

-

	

Jm(T) )0

	

(F (tk )

	

-

	

F(ti ) )Q <

< X-27 (m (T)-

	

J

	

(T) )R (F (u)

	

-

	

F (s) )Qm

where F, continuous, is defined by the relations

F(0)

	

= 0,

	

F(tj )

	

- F(tj-1)

	

= m{tj }

	

+ m{tj_1}

	

and is linear over

the intervals

	

[tj .~-1 ,

	

tj

Hence, the proves Y, together with the measure, m',

associated to the distribution function F' = (m(T) - Jm(T))F,

belongs to C(R,27) . By theorem (1 .4) we have
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P{ML (X)

	

} = P{M1 (Y) T

	

}

	

KX-2^i (m' (T)

=

	

K~27

	

(m (T)

	

-

	

J

	

(T) )R

	

(F (1) )R6m

< 20

	

K X-27 (m (T) )R

	

(m(T)

	

- J

	

(T) 1Rm

where we have used

	

F(1) < 2m (T) .

	

This proves the theorem in this

case .

Step 2 .	g= 1,

	

T = [0,11, m

	

arbitrar .

	

Let

0 = to <t1 < . . . <tm = 1,

	

and

	

Y

	

the process

	

X

	

restricted to

{t , . . .,t } .
o m

Define u as in step 4, proof of theorem 1, in



Bickel & Wichura (1) :

u

	

{t
J
.}

	

=

	

m(t
J
.
-l

,t
7
.]

	

if

	

j ól,

u {to } = 0 .

Then

	

Y ECi

	

as

	

a process over

	

{to , ti r . . . tm } .

Step 1 now implies

J{t ,t , . . .,t } R
P{ML (Y)>X}<

	

X-2yK(u{to .tl, . . . . tm }) 2R

	

1 -

	

u

	

o

	

i

	

m

í

	

u (to . . . . . tm}

K

	

X-27 (m (T) ) 20

	

1

	

Ju[0 .1]

	

R

í
-

m(0,1]

If now we take limit when

	

m -- " the set

{to,tl, . . .,tm}

	

increasing to a dense subset of [0,1]

	

that

contains the points of discontinuity of F , we obtain (by se-

parability) :

(

	

]
P{M1

(Y)

	

] X}

	

K X- 2'y (m(T) )2R 11-

	

Jm( 0, 1

m (T)

Step 3) q >-2, T

	

and

	

m

	

arbitrary.

	

We know that the theorem

is true for q = 1 . We now will show our result to be true for

p = 1 ; for other p the argument is the same .

Like in step 5 of Bickel & Víichura's proof of theo-

rem 1, the key point is that the version for

	

q = 1 of our theo

rem works for the function valued proces

	

{X t(l)}
tE T

	

To
1



show this it is enough to find bounds of its incremehts .
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Remember that

mP(s,t,u) (X)

	

= min

	

(IIXtp
)	- . X (p) II,IIXúp )	- XtP) II) .

Let

	

T* = Tzx . . .xTq

	

and

	

Y = X (t1) - X5(1)

	

over

	

T* .

	

Then

P {11 x
(1)

	

-

	

X sl) II
> x } =

	

P{M (Y) % A }

	

S

~P {(q-1)M" (Y)

	

+

	

I Y(1q-1 ) I

	

x}<

-<P{(q-1)M"(Y) >?,r1} + P{IY(lq-1 )I %%r2}

If B' is a block of T * , Y(B 1 ) = X ((s,t] x B'), hence

P {I Y (B' ) 1

	

>X } S ?jy (m(( s,t] x_ B'))R = .

	

x-y (m* (B') )Q

So YECi * (0,y), and by thm . (1 .4)

P{M" (Y)% Xr 1 (q-1)-1 } 9 X ZyK q (y,0)r 12y (m 1(s,t])20 -

s
x-ZyKq

	

(m(T) )

	

ri2y

	

(m l(S,t])R .

Now if B = (s,t] x T

Y(1q-1 )

	

= X(t,l q-1 )

	

-

	

X(s,l q-1 )

	

= X(B)



This implies

P{I Y(1 q-1 )I

	

>ar2}

	

?-' r27

	

(m 1 (s, t] )R .

Putting together our inegualities we get finally :

P {11 x(1)

	

-

	

Xs1)II >X

	

}

	

(r127 (m(T) )P K
q
+ r27 ) (a -27 "a -7 ) (m 1(s,tj )~ .

By the theorem in dimension 1 :

P{M" (X) > X}c(r-27 (m(T))0 K +r

	

) (~-27v X74'Y) (m(T)) 20 1
-J1(Tl)

1

	

10	q 20

	

m1(T1)

R

where

	

r

	

is the solution of the equation

	

2K

	

(m (T))O(1-r )7 1=
l0

	

q

	

1
= ri7+1

	

over

	

(0,1)

	

and

	

r2
0
=

	

1

	

- r1 0

Remark . In step 3 we have in fact used a slight modification

of the result of step 2, to cover the (X -2 vX -7 ) situation .

As a referee has pointed out, this proof works only in case

R > 1 . As we need this theorem with Q = 1 later on, we remark

that an indépendent easy proof may be given for R > 1/2 using

induction on q and Billingsley (3), Thm 12 .6 .

3 . Convergence of processes indexed by [0,1)q

00Theorem (3 .1) :

	

Let {Xn}n=1

	

be processes over

T = [ 0,1]q

	

vanishing on

	

a infT .

	

Suppose that

	

Xn ECm(P,7)

for some

	

0 >1/2,

	

n = 1,2, . . . .



limsyo	limsup P { wX (s) > e } = 0
n

for all e >O :

Then :

Proof : It is enough to show that

Let

limsyo	limsup P { wX (P)(s) > e } = 0
nn --> o0

for all

	

p

	

,

	

1 <p ,q,

	

and

	

e >0 .

~. . + ...~

	

_

	

f

	

m, ; n,

	

(II (Xn ) (P)-(_X_n ) (P)I, I ;II (X ia ) (P) -(X_~) (P)If-( .3 .1 .2 . ) w ( .,, . 1 -, -

	

sui; ,

	

t

	

s

	

u

	

t
O <-s,<t<u 9T

Now, an application of theorem (2 .1) to the process

defined over

	

T* _ [ 0,1]P-1 x [ a ,T ]

	

x [ 0,1] q - P

	

in such a way

that for

	

a <t<r

(Yn) (P)

	

=

	

(Xn)t
P)

	

-

	

(X)a(P) .

(observe that Yn vanishes over

ments that Xn over

it verifies condition

m* ( .) = m( .) - m ( . nainfT*) ),

Yn

a
iniT* ,

	

has the same incre-

blocks and that, as a consequence,

(a,y) over T* , where



gives us

7

	

r 1
(3 .1 .3)

	

P{w (a ,r ;n) >e} <K e_4(mp(a,r

	

20

	

JP (a

	

r
])

l
1 -

m
P
(a, r]

for all e, 0<eE1.

where

where

and

u-2
I2 -_ E

i=0

If

	

S = 1/2u then

(wX(P)
(S) Ze } C

Al
U A2

n

u-1
A1

	

=

	

U

	

{w (21b, (2i+2) S ;n)

	

> e }

	

and
i=0

u-2
A2 = U

	

{w((2i+1)S,(2i+3)8 ;n) >e} .
i=0

From (3 .1 .3) and (3 .1 .4) we get

(3 .1 .5)

	

P{wX (P) (S ) > e }<K e-47

	

(I 1 +I 2 )
n

u-1 20Il =

	

E (mp (2iM2i+2) S1)
i=0

a
Jp (2i S, (2i+2)S] 1

L -
m

	

(2i b, (2i+ 2)S]
P

R

(m ( (2i+1) S, (2i+3)S] )
20

	

1 -
JP((2i+1)S,(2i+3)S]

p

	

mP ( (2i+1) S, (2i+3) S1



Remark : The previous theorems also hold if condition

X E Cm

	

((3 ,y)

	

i s replaced by :

	

X

	

defined over

	

(U1 xUZ , P 1 x P2 )

and for all

	

ui U , X
t (u l , .) E Cm ((i ,-y) .

	

We then say that

XE Cm

	

-y) "i

Theorem (3 .2) :

	

A sequence, {Pn }w-1 , of probability

measures over (Dq , D q ) is . tight if :

96

Now all follow as in Billingsley (5), pg . 133-134 O

i)

	

For all

	

7¡ >O,

	

there exists

	

aE R

	

such that :

Pn { x : supt 1 x(t)I >a } <r¡, n= 1,2 . . . .

ii) For all positive

	

e ,n ,

	

there exist

	

S , 0 <S <l,

and

	

n ,

	

such that for all

	

n : n0

	

0

a)

	

Pn {x . wX(S) >e}<71.

b)

	

Pn {x : W ( P )[0,S) ? e , for some p, 1<p<q } < n.

c)

	

Pn{x ' : wXP ) [ 1- 8,1) > e,

	

for some p,

	

1 <p <q } <r¡ .

Proof : We show that a), b) and c) imply

ii) of thm . (1 .6) . The argument of Billingsley (2), thm .

(14 .4), applied to the functions t -> IIxtp ) ll, lead to

(3 .2 .1)

	

P {x : w' (P) (S/2) >e/q }<P {x : w(P) [ 0,8) > e/6q } +n x

	

n x



llowing theorem, which generalizes theorem (2 .3) of Giné & Mar-

cus (4), to processes indexed by [0,1]`7 .

Theorem (3 .3) : Let {X n } n 1' X, be Dq -va'.ued random

variables, vanishing on ainfT,
and such that :

converge weal:ly to the corresponding distributions of X .

y >O .

+P {x : wXPI [1-b,1) > E/6q} + P {x : w'X (P) (S) > e/6q}

q
Now our theorem follows from wX (S) <

	

E wX~P I (S) . O
P=1

As an application of the previous results we get the fo-

i) The finite dimensional distributions of the Xn

ii) X ECT(p,y), n = 1,2, . . ., for some Q >1/2,

	

and
n 1

(iii) For all e > 0

lim

	

lim sup P {x :w ( P ) [ 1-5,1) >e, for some p,

	

1 cp <~ q}=0
610 n -- w

	

n

	

x

Then

	

{Pn = L(Xn )} n=1

	

converge weakly to

	

L(X),

	

as a

sequence of probability measures on (Dq ,Dq ) .

Proof : It is an induction on

i) and ii) of the previous thm.

q . we verify conditions



With respect to ii) : a) is a consequence of thm_ (3 .1),

c)

	

is the hypothesis iii) . Let us see i) .
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Hence :

P{ suptET

	

I x(t) I

	

> a

	

} =

	

P{ sup II x (P) II > a}

tE[0 .11

P{suptET

	

I (Xn)tl > a } = P {

	

sup

	

II (X n )t
l .) II > a }

tE[ 0,11

<P{w" (1) (S) > 1 } +P{máx

	

sup

	

I (X

	

) (1)

	

(t* ) I > a

	

}
x

	

n t

	

on

	

l IQ i<, k

	

t *ET2x. . . x Tq

(1)

	

kSP{w"

	

(8) >1 }

	

+ E

	

P {

	

sup

	

I

	

(x

	

I> ao } .
n

	

i=1

	

t*ET2x. . . x Tq

Now because of

P{w«Xn)
(1) [ 1 - ó,l) > e,

	

for some p' ,

	

2<p' <q } 6
t .1

6P{wXP )[1 - 8,1)> e, for some p, 16p<q }
n

the processes .
(Xn)tl) satisfy i), ii) and iii) of our

i
theorem, i = 1,2, . . . .k . By induction hypothesis there exists

{ ai }k	suchthat

P{supt *I (X,) (1) I > ai } 6 n/2k .

Given

	

n >O,

	

let

	

S >0

	

be such that

P{WX(1)

	

(S ) > 1 }

	

X1/2 .
n



choose

	

0 = t0 < tI < . . .

	

tk = 1

	

such that

	

ti - ti-1 <

	

ó

	

and

a = máx

	

a.
o

	

i
. .k

Then if a = a + 1
0

P{suptET I (Xn )
t

1 > a } < n

This proves that i), ii) and iii) imply i) of thm.

(3 .2), by induction on q .

0

E < S
0

It only rests to verify condition b) of ii) .

By induction hypothesis (Xn )SP) .W; (X)á P) . Hence,

II (Xn ) 6( p ) II -~ II (X)s
(P)r

	

also .

	

Now observe that

as a consequence of the right continuity of

	

(X) (P) and

Given positive

	

n

	

and

	

e,

	

let

	

S
0
> 0

	

be such that if

Then

II (X)8(P)II
ó

0

P{II(X)(P)I1 :e}<n/2 .

lim sup

	

P{II (xn ) ( P ) II ~e } <P{II (X) (P) II >e }

	

n/2 .
n -, o0



{x : wXP ) I 0,6) > 4E } C {X :
w" (P) (S } ~ E } U {x : II x8(p) -

X0
(p) II ~lE }

ppose :

y>0 .

Now from

we get :

lim

	

sup __

	

Pn{x : wXP)( 0,8 )

	

4e } :!Z 17

This proves b) and the theorem .

In applications quite frequently we don't know that

X E D .

	

It is then useful

	

to have the following variant of the
q

previous thm .., whose proof requires the same argument as above .

Theorem (3 .4) : Let
00 be as in thm�� , (3 .3) . S

i) The finite dimensional distributions of Xn are

weakly convergent and

lim

	

lim sup

	

P {x : IIx (P ) II >E} =0
Slo

	

n-' oo
n

for all

	

E > 0

	

and all

	

p,

	

1 <p <q .

ii)

	

Xn ECi (Q y) ,

	

n = 1, 2, . . . ,

	

for some

	

Q >112

	

and



iii) lim

	

lim sup

	

Pn{X :W (P ) [ 1-5,1) >e, for sume p, 1<p<q} = 0
640

	

n--~

for all e >O .

Then

	

{Pn = L(Xn)}n=1

	

is.weakly convergent

	

O

4 . Regularity of processes with indlQendent increments .

Theorem (4 .1) :

	

If

	

X EC°' (R ,Y) ,

	

where

	

R > 1/2,

	

y>0,
i.

then

	

X

	

has a version with sample paths in

	

D[ 0,1]q .

Proof :

	

Let

	

80< 1/2 .

	

For

	

t E=- [ 0,1] q

	

define :

f60 (t)

	

_

	

(t1 , . . . ,ti-1 ,ti I [S o , 1-So] (ti )

	

+ So I [ 0

	

So] (t i ) +

for all

	

i,

	

1 <i <q .

( 1-8 0) 1 (1 -50,1] (t i ),

	

ti+l, . . . . tq)

fS	(t) = ((1-250) 1 (t1 0), " . ., (1-2 ó)-1 (ti - S0), . . ., (1-250 ) 1 (t q_80) )
0

f 8	(t)

	

_

	

(f8

	

0

	

fS
0

0

	

fa

	

0 . . . a

	

fs

	

) (t) .
o

	

0

	

0

	

0

We first prove that the proces

	

Yt = Xf
S (t)

has a version with sample paths in

	

DIO, llq .

	

0

Observe that

	

YE Cm

	

if1

m ( .) = m(f8 ( . n[8o,1-8o]q))
0

on

	

10, 1] q ,



For each n we define a proces Yn on [0,1,q, cons-

tant over each rectangle of the dyadic net of order n, and

equal to the value of Y at "south-west" vertex, i .e . :

for all tE[ (i1 - 1)2-n ,i1 2 -n )x . . .x[(iq - 1)2-n,ig2-n),

1. < i 1 6 2n , . . .,

	

15

	

i
g

	

<2n.

argument like that in the proof of thm . (3 .1) shows that

(4 .1 .1)

	

lim

	

lim sup

	

P{w"

	

(ó ) > e } = 0
64 0

	

n -

	

0o

	

Yn

lor

	

-. l l

	

1

	

I1avi

	

n-

	

c

	

~

	

v .

In fact : If Z

	

is defined over T* = [0,1] P-l x [a,r] xn
x [0,1]g

-P

	

from Yn , as in thm_ (3 .1) Yn is defined from

X , Z m(2)

	

represents the restriction of Z

	

to the dyadic net,n n

	

n

Tm(2)
, of T*, and v (m)

	

is defined over Tm*(2)

	

like the

v of step 2, in the proof of thm . (2 .1), then :

Yn (t)=Y((i 1 - 1)2-n , . . . . (i

	

- 1)2n)
g

00
We show that {Yn}n=1 is a tight sequence . First, an

P{M" (Z ) > X} = lim

	

P{M" (Zm(2) ) >ñ } S
P

	

n

	

m -s 00

	

P

	

n
,T] -IRJvm (a '

lim

	

K X-4y (v
m
(a~ r1) 2 01 -

	

P

	

=
m -~

	

00

	

P

	

vm(a,T ] j

r]
-_ K X_47 m 2Q(arr]

	

1

	

-
J
P
(a,

P

	

mp(a .7]

where



Hence, {Yn } satisfies (3 .1 .3), and now all follows as

in thm. (3 .1)'s proof .

If

	

1 -k <b

	

and

	

Tk(2)

	

denote the set of points of the

.2-k -dyadic net in

	

T = [ 0,1] q,

	

then

suptETIYn(t)I < maxtET

	

IYn(t)I+qw'Y (s)
k(2)

	

n

Moreover, observe that the variables

max t E

	

I Y

	

(t) I ,

	

n = k,

	

k +

	

1, . . .
Tk(2) n

are identically distributed . This, together with (4 .1 .1) gives

condition i) of our thm . (3 .2) . Besides, {Yn}n=1 satisfies

b) and c) of ii), thm. (3 .2), by construction .

Hence, {Y }°°

	

is tight . If W is the weak limit of
n n=1

some subsequence, then it is easy to see that W is a version

of Y, looking first at dyadic points, and approaching then .

any point by dyadics .

The application fg ^ being bijective and continuous

between [S . ,l -S o ] q and [O,l]q, and X t = Y(Póo)-1(t) ,

the theorem is proved . 0



Remarks and comments .

a) It will be very interesting to get a result like

thm . (2 .1) for processes whose increments are not necessarily

independent . I don'tIMow at present how to do this .

b) All previous results extend easily to [0,_) q-indexed

processes usina well known results on D[0,-) q (see

	

B.G .

Ivanoff (5)) .

c) Using above results and some others, (which constitu-

te my Doctoral Thesis, as presented at the Universitat Autónoma

de Barcelona, Spain), we can prove the Central Limit Theorem

for processes that admit a representation as stochastic inte-

grals w.r .t . .Lévy processes with multidimensional time parame-

ter . This will appear elsewhere .

d) Finally I want to express my indebtness and gratitude

to Professor E. Giné, that suggested this problems to me and

has given efficient help, whenever needed .
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