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A THEOREM ON SCHAUDER DECOMPOSITIONS IN BANACH SPACES

Abstract . In this paper we prove that in a Banach space all Schauder

decompositions are slirinking iff all Schauder decompositions are

boundedly complete .

1 . Definitions and preliminary results

A sequence (x )m

	

in a Banach space X is called a Schaudern n=1

basis

	

if

	

for

	

every x E X there exists a unique sequence

	

(an)n=1 in R

such that x =

	

anxn , and this series converges with respéct the
n=1

norm

	

of X .

	

A sequence

	

(yn)mn--1

	

is called a basic sequence

	

if it is a

basis of his closed linear span .

tions Pn :

	

X -. X

	

defined by
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A

	

Schauder

	

decomposition

	

of X

	

is

	

a sequence

	

(X.)m

	

of closedi i=1

subspaces of X such that for every x in X there exists a unique se-.

quence

	

(xi)i=1

	

mth

	

x iE Xi	for

	

all

	

i

	

and x =

	

~

	

xi .

	

Every Schauder
i=1

decomposition of X is related with a sequence of continuous projec-

Pn(x) -_ Pn( ~ xi ) _
i=1

In all

	

this paper,

	

the

	

linear span of an element x E X is denoted

mby

	

[x]

	

and

	

the

	

closed

	

linear

	

span

	

of

	

the

	

subspaces

	

(Xi ) i=n

(l< n <m< m) is denoted by [X . ] m-

	

i i=n'

The following theorem characterizes the Schauder decompositions

and it can be found in [5] .



1 .

	

Theorem :

	

Let X be a Banach space and (Xn ) n=1 a sequence of closed-
subspaces of X . The following are equivalent :

i) (Xn)n=1 is a Schauder decomposition of X .

ii) There exists a sequence

	

(Pn)n=1

	

of continuous

	

projections Pn :
n

such that

	

Pn pm = Pmin(m n) and lim P (x)=x for.
,

X -- " [Xi] i=1

every x in X .

iii) There exists a sequence (Pn )ñ 1 of continuous projections Pn :-
n

~such that Pn Pm = Pmin(m,n)

	

and

	

(Pn ) n=1

	

is uniformly-

bounded .

that
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To suplIPn11 is called norm of the decomposition .

nim n

A Schauder decomposition (X )m

	

in a Banach space X is calledn n=1
boundedly complete if for every

n
sup11~ xi ll <m
n i=1

towards an element x in X . And it is called shrinking if for every

x* E X

	

,

	

limm 11 x*l~ = 0,

	

where

sequence (xn)n=1 with

	

x,n E Xn	such

the sequence (~ x .)m

	

converges
i=1 1 n=l

llx*Iln = sup{Ix * (x)I

	

with xE[ Xi] i=n+1 and 11 x11< 1} .

Boundedly complete and shrinking basis and basic sequences

ned in a similar way .

Singer

	

(cf.

	

[ 6] )

sequences are boundedly complete if and only if all basic

are shrinking . Afterwards Zippin (cf . [7]

theorem for Schauder basis of X . Our purpose in this paper is to

prove that in a Banach space all Schauder decompositions are boun-

dedly complete iff all Schauder decompositions are shrinking .

are defi-

has proved that in a Banach space all basic

sequences

and [3]) proved a similar



If X is a locally bounded F-space, then there exists

	

p (0<p<1)

such that the topology of X is originated by a p-norm . In this case X

is called p-Banach space (cf . [1] and [4]) . Let X be a p-Banach space
**

such

	

that

	

X

	

separates

	

points

	

of

	

X

	

and

	

let

	

J : X- X

	

be

	

the

canonical imbedding of X into its bidual . We define in X the norm

n x 11** = nj(x)II if

	

x E X .

The Mackey topology of X is criginated by this norm (cf . [2]) and it

is called the Mackey norm of X . The Mackey completion of X is denoted

by J(X) .

All the above definitions for Banach spaces can be extended to

p-Banach spaces .

2 . Shrinking and boundedly complete Schauder decomposition .

2 . Lemma . Let (Xn)n=1 be a Schauder decomposition of a Banach space X

and let (Pn)n=l be its sequence of projections . We suppose that each

Xn admits a topological decomposition Xn = Yn e Zn . The following are

equivalent :

i)

	

(Yl,Zl' . . .,Yn'Zn � - ) is a Schauder decomposition of X .

ii) If An is the continuous projection from Xn into

sup ¡¡A 11 < m
n n

Yn , then

Proof : i > ii . If (Qn)n=1 is the sequence of projections of (Y1 ,Z1 , . .

. .. ,Yn'Zn, . . .)' as An = Q 2n-1'X ' the

	

statement ii is proved .
n



i . If sup lIA 11 <-, we define
n n

Q2n Pn

Ql

	

A1P1

and thus (Q )~

	

is a uniformly bounded sequence of projections whichn n=1
defines the decomposition (Yn,Zn)n=1 because of theorem 1 .

	

//

Remark that if any of the Drevious subspaces is 0, it must be taken

away in the decomposition .

Q2n+1 = Pn + An(Pn- Pn-1 )

	

n> 1

3 .

	

Corollary .

	

Let

	

(Xn )nm

	

be

	

a Schauder

	

decomposition

	

of

	

a Banach- -_1

space X and

	

(Xn)n=1 a normalized sequence in X with xn E Xn . For every

there exists

	

an hyperplane

	

Wn of Xn such that ([xll,Wl' . . . . [xnl,Wn'

. . .) is a Schauder decomposition - of X .

Proof : As

	

11x 11 = 1, we can define

	

A (x) = u* (x)x , wheren

	

n n n

u* E X*

	

and

	

u*(xn)

	

uñII = 1 .

4 . Lemma . Let X be a Banach space and a Schauder decomposition of the

form ([y1),W1, . . .,[yn]'Wn' . . .) where (yn)n=1 satisfies

n
inf li yn 11 = C

	

> 0

	

and

	

sup ~~

	

yiII

	

= M < m .

	

We

	

define

	

the

	

sequence
i=1n

(vn)n=1

	

vn = 2 Yi.

decomposition of X .
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Then

	

([v1],W1, . . . . lvnl'Wn' . . .)

	

ls a Schauder

Proof : Let (Pn )n=1 be the sequence of projections of (Xn )n=1 and

let K be its norm . Each P2n-1 P2n-2 (the projection over [yn1) is

originated by a y* e X* according ton



and thus

i) Yn (Ym ) = an .m

v° (v ) = ó
n m n,m

(P2n-1 - P2n-2)(x) = Yñ(x)Yn	if

	

xEX.

ii) II Yn¡I II Yn II

	

< 2K

	

for

	

every

	

n,

	

and

iii) ynlW = 0 for every n and m .
m

As

	

inf IIyn II = C > 0,

	

from

	

ii) we obtain that

	

sñp IIYn II < 2K/C .
n

Let (vn)n-1

	

be defined be

	

vñ = Y*-Y*+l' It is easy to check that

We define the sequence of projections by

n

	

n

A2n(x) _ Y- (P2k P2k-1 )(x) + ~ vk(x)vk
k=1

	

k=1

A2n+1(x)
= A2n (x) +

vn+l(x)vn+l'

Because of the theorem 1 we only need to prove that (An ) n=1 is uni-

formly bounded, and, because of the last considerations, it shall be

proved if we prove that

	

sñp II A2n 1 I <

	

.

n

	

n

	

k
II A2n(x) II = II P2n (x)

	

-

	

Y

	

yk(x)Yk +

	

Y-

	

(Yk(x)-Yk+1(x))(L

	

Y¡ ) II

	

<
k=1 k=1

	

i=1

<

	

K II xII +

	

II -

	

Yk(x)Yk +

	

Z

	

(y'k(x)

	

- Yn+1 (x) )Yk II
k=1 k=1

n
<Klixll+Ilyñ+1 lIIIxIIII~ yk ll<_

	

(K+~K M)pxll
k=1



5 . Lemma . Let X be a Banach space and ([Y1]'W1'"''[Yn] ,Wn' . ..) a

Schauder decomposition of X, where (yn )n-l satisfies sup II yn ll = M< ~ .
n

We define the sequence (vn)n=1 bY vl-Yl and

following are equivalent :

i)

	

([vl],Wl, . . . . [vn],Wn, . . .)

	

is a Schauder decomposition of X .

ii) There exists

	

x*E X* such that

n--1
v* = x*

	

and

	

v= x* -ñ

	

L Ykk=1

the orthogonal relations v*(v ) = ó

	

. hold .n m n,m

prove

	

that

	

sñp II A2n II <
m

.

we have

vn_yn-yn-1 - Then the

a) x*(yn ) = 1

	

for every n

b) x* I W = 0

	

for every m
m

Proof : If, for every n, there is a continuous projection from X

into

	

[vn ]

	

parallel

	

to

	

the

	

other

	

subspaces,

	

the existente

	

of

x* E X* satisfying a) and b) is necessary . We suppose that there-exists a

such x* . We define (y*) n=1 as in the preceding lemma, and if we consider

the sequence

Let (An)n=1 be a sequence of projections as in the preceding lemma .

We must prove that sup II An 1I < m . Por every m, x*1W

	

= 0, and hence
m

x*(x) _

	

y* (x) for every x in X and so (vn)n-1 converges weakly to
n=1 n

0

	

and

	

sup II

	

Z

	

YkII

	

= M1 < °° .

	

lso

	

sñp II vn II <

	

2M,

	

again we must only
k=1

n

	

n

	

n k-1
1(yvk (x k = x*(x) +

	

x*(x)(Yk-Yk-l)

	

y*)(x)k-Yk-l) _
k=1

	

k=2

	

k=2 i=1



and thus

And finally :

and

n-1

	

n-1
x*(x)Y, + x*(x)(Yn-y1) -

	

1

	

yk(x) Yn + Y-

	

y* (x)Yk =
k=1

	

k=1

n

	

n
yk(x)Yk + x* (x)Yn - 1 Yk(x)Yn '

k=1

	

k=1

n
A2n (x)

	

= P2n (x)

	

+ x * (x)Yn -

	

X

	

Yk(x)Yn .
k=1

~~

	

A2n(x) ~~

	

11 P2n1111 X II

	

+

	

11 x*11

	

11 XII

	

11 Yn"

	

+ 111

	

Yk

	

11

	

11

	

x 1111 YnII
k=1

11 A2n 11 < K + M 11 x*11 + M1M

Now we can prove the main result :

n

6 . Theorem . Let X be a Banach space . The following statements

	

are

equivalent :

i) All Schauder decompositions of X are shrinking

ii) All Schauder decompositions of X are boundedly complete

Proof .

	

i ~ ii .

	

Let

	

(Xn )~n=1

	

be

	

a

	

non boundedly complete Schauder

decomposition of X . There exists then a sequence (xi)i=1 with xi exi

n

	

n
such that

	

sup 11 Z

	

x .11

	

= 1 and ( Z

	

x . )m

	

is not a Cauchy sequen-
n

	

i=l 1

	

i=1 1 n=l

ce, and thus, there exist

	

e and a strictly increasing sequence

mk
(mk)k=1 such that e < 11 1

	

x 11 <_ 2

	

for every k . We define
i=mk-1 +1 i

mk

	

mk
Y

	

= [X .]

	

and

	

y

	

=

	

x .

	

if

	

k >1 . (Y )m

	

is a
k 1 i=mk-l+1 k i=m7k-1+

Schauder

	

decomposition of X with yk E Yk .

	

Because of the corollary 3,

for each k there exists a hyperplane Wk of Yk such that ([Yl],W1' . . .



" . ., [ Yn) , Wn, . . .) is a Schauder decomposition . Because of the lemma
n

4, the sequence (vk)k=1 defined by vn =

	

Yi originates the Schau-
i=1

der decomposition([vl],W1, """ ,[vn],Wn, . . .) which is not shrinking

because of y* (vk ) = 1 for every k> 1 .

ii = i .

	

Let

	

(Xn ) n=1

	

be

	

a non shrinking Schauder decomposition of X .

There exist_

	

then

	

x* E X

	

with Ilx*I) = 1,

	

s > 0, a strictly

increasing sequence of índex (mk)k=1 and a sequence (Yk)k=1 with
m

Yk E Yk	[Xi ] ikm

	

+1 such that :
k-1

a) 1 < II Yn ll < 1/E

b) x*(Yn ) = 1 .

We

	

can

	

choose

	

the

	

hyperplane Wk=Yk n Ker x*

	

and using the lemma

5,

	

if

	

v1=y1 and vn -_
yn_yn-1,

	

then ([vl],W1, . . . . [vn],Wn, . . .)

	

is a

Schauder decomposition of X which is not boundedly complete because of

while

80

n

	

n
II Y-k=2

	

k=2

where K is the norm of (Xn)n=1'

II vk II = II Yk-Yk-1 1 I ? k II Yk-1 11

With certain modifications, this theorem has an extension to

p-Banach spaces (if i .t s dual separates points) . The Mackey topology

of this spaces plays an important role in this extension . We need

before a definition : we shall say that a Schauder decomposition

(Xn)n=1 in a p-Banach space is an almost boundedly complete decomposi-

tion

	

if

	

for

	

every

	

sequence

	

(xn)n=1

	

with

	

xnE Xn	such

	

that
n

	

n
Sñpll Y-

	

xk il<°° ,

	

the sequence (~

	

xk )m

	

converges in (J(X) , II . II * ) .
k=1

	

k=1 n=1



We must point out that if (Xn)n=1 is boundedly complete then it

is also almost boundedly complete . Almost boundedly complete basis of

X are defined in a similar way .

7 . Theorem . Let X be a p-Banach space . The following are equivalent :

i) All Schauder decompositions of X are shrinkinp_ .

ii) All Schauder decompositions of X are almost boundedly complete .

[3]

[4]

[ 5]

[ 6]

[ 7]

Proof : Similar to the proof of Theorem 6, and it can be found in 12]
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