Pub. Mat. UAB Vol. 29 № 1 Abril 1985

A CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY Oscar Blasco de la Cruz

\$1. INTRODUCTION.

The aim of this paper is to give a new characterization of the Radon-Nikodym property in terms of martingales in X-valued Orlicz spaces.

Let X be a Banach space and put \sum , the Lebesgue measurable sets in [0,1]. It is well known (see [1]):

(1.1). X has the Radon-Nikodym property with respect to [0,1] if and only if every bounded uniformly integrable martingale in $L_X^4[0,1]$, (f_n,B_n) where $\sigma(UB_n) = \Sigma$, is convergent in $L_X^4[0,1]$.

We are interested in a generalization of this fact.

In this paper we shall prove the following

Theorem (1.2).

Let ϕ be a Young function with the Δ_2 -condition. X has the Radon-Nikodym property if and only if every bounded martingale in L_X^{ϕ} , (f_n, B_n) where $\sigma(UB_n) = \sum$, is convergent in L_X^{ϕ} .

The definitions and the main results relating to Xvalued martingales and Orlicz spaces may be found in [1] and [2] respectively. We are going to denote by ϕ a Young function, and $\widetilde{L}_X^{\phi} = \{f:[0,1] \rightarrow X \text{ strongly measurable with respect Lebesgue}$ measure s.t. $\rho(f,\phi) = \int_0^1 \phi(||f(x)||) dx < \infty\}$. Let ψ be the complementary Young function of ϕ . We shall write $||f||_{\phi} = \sup \left\{ \int_0^1 ||f(x)|| |g(x)| dx \text{ with} \right\}$ $g \in \widetilde{L}_R^{\phi}, \rho(g,\psi) \leq 1\}$ and $L_X^{\phi} = \{f:[0,1] \rightarrow X \text{ strongly} \}$ measurable with $||f||_{\phi} < \infty\}$. It is well known that L_X^{ϕ} is a vector space and $||f||_{\phi}$ is a norm on it.

Besides, $\widetilde{L}_X^{\phi} = L_X^{\phi}$ if and only if ϕ verifies the Δ_2 -condition. It is easy to prove that the convergence and the boundedness in \widetilde{L}_X^{ϕ} and L_X^{ϕ} are equivalent using the following fact:

(1.3) Suppose ϕ verifies Δ_2 -condition, i.e. there exists K > 0 and $T \ge 0$ such that $\phi(2t) \le K\phi(t)$ for all $t \ge T$.

If there exists m belongs to (N with $\rho(f,\phi) \leq 1/K^{m}$ then $||f||_{\phi} \leq \frac{\phi(T)+2}{2^{m}}$. See [2], page 158 for a proof.

\$2. PREVIOUS LEMMAS .

Lemma 1.

If $(f_n, n \in N)$ is a bounded sequence in \widetilde{L}^{ϕ}_X , then . ($f_n, n \in N$) is a bounded uniformly integrable sequence in L^1_X . Proof.

For a Young function we have

(2.1) $\frac{\phi(t)}{t} \longrightarrow \infty$ as $t \to \infty$, and by (2.1) we obtain $||f_n|| \stackrel{4}{_{L_X}} = \rho(f_n, \phi) + A$, where A is a constant. We have only to show that $\int_E ||f_n(x)|| dx \longrightarrow 0$ as $m(E) \longrightarrow 0$. Given $\varepsilon > 0$, by (2.1), there exists $\tau > 0$ such that

 $(2.2) \quad \frac{\phi(t)}{t} > \frac{2c}{\varepsilon} \quad \text{for } t > \tau \quad \text{where } \sup_{n} \rho(f_{n}, \phi) \leq C.$ Let $\delta = \varepsilon/2\tau$. If $m(E) < \delta$ and denoting $A_{n} = \{x : ||f_{n}(x)|| \leq \tau\} \cap E \quad \text{and}$ $B_{n} = \{x : ||f_{n}(x)|| > \tau\} \cap E \quad \text{we obtain}$ $\int_{E} ||f_{n}(x)|| = \int_{A_{n}} ||f_{n}(x)|| dx + \int_{B} ||f_{n}(x)|| dx \leq \varepsilon$

Lemma 2.

If ϕ verifies the Δ_2^- condition then the simple funce tions are dense in \widetilde{L}_X^φ .

Proof:

Given f $\in \widetilde{L}^{\phi}_{\chi}$, since (is strongly measurable, there exists a sequence (f_n, n \in N) of countably valued functions such that

(2.3) $||f_n(x) - f(x)|| < \frac{1}{n}$ for almost all $x \in [0,1]$ and for all $n \in \mathbb{N}$. Suppose $f_n = \sum_{m=0}^{\infty} x_{n,m} x_{E_{n,m}}$ where $x_{n,m} \in X$ and $\chi_{E_{n,m}}$ are the characteristic functions of disjoint measurables sets.

Since $2||f_n(x)|| < 2||f(x)|| + \frac{2}{n}$ a.e. and ϕ is a convex function, we have $2f_n \in \widetilde{L}_X^{\phi}$. Therefore, there is a number $p_n \in N$ such that

(2.4)
$$\int_{\substack{m=p\\m=p}} E_{n,m} \phi(2||f_n(x)||) dx < \frac{1}{n}$$

We consider the simple function $g_n = \sum_{m=0}^{P_n} x_{n,m} x_{E_{n,m}}$. By (2.3) and (2.4)

$$\int_{0}^{1} \phi(||\mathbf{f}(\mathbf{x}) - \mathbf{g}_{n}(\mathbf{x})||) d\mathbf{x} \leq \frac{1}{2} - \int_{0}^{1} \phi(2|||\mathbf{f}(\mathbf{x}) - \mathbf{f}_{n}(\mathbf{x})|| d\mathbf{x}$$
$$+ \frac{1}{2} - \int_{0}^{1} \phi(2|||\mathbf{f}_{n}(\mathbf{x}) - \mathbf{g}_{n}(\mathbf{x})||) d\mathbf{x} \leq \frac{1}{2} \phi(\frac{2}{n}) + \frac{1}{n}$$
Since $\phi(\mathbf{t}) + 0$ as $\mathbf{t} + 0^{+}$ the proof is finished.

Lemma 3

Let $(B_{\tau}, \tau \in I)$ be a family of sub- σ -fields of Σ . Suppose ϕ with Δ_2 -condition.

If f_n convergs to f in L_{χ}^{ϕ} then $E(f_n/B_{\tau})$ convergs to $E(f/B_{\tau})$ uniformly in B_{τ} , where $E(./B_{\tau})$ denotes the conditional expectation relative to B_{τ} ,

Proof

It may be proved with a slight, modification in the

68

argument in $[1]_{\epsilon}$ page 122 that if B is a sub- σ -field of \sum , then $\rho(E(G/B), \phi) \leq \rho(g, \phi)$ for all $g \in \widetilde{L}_{\chi}^{\phi}$.

Now, given $\varepsilon > 0$, let m_0 be a number such that max $(\frac{\phi(T)+2}{2}, \frac{1}{m_0}) < \varepsilon$ where K,T are the constants in the Δ_2 -condition.

Since $||f_n - f||_{\phi} \neq 0$ $(n \neq \infty)$ then $\rho(f_n - f, \phi) \neq 0$ $(n \neq \infty)$ so there is a number n_0 such that if $n > n_0$ we have $\rho(f_n - f, \phi) < \frac{1}{m_0}$. This implies, by (1.3) and the first result in the proof, that $||E(f_n - f/B_{\tau})||_{\phi} < \epsilon$ for $n \ge n_0$ and it is true for all $\tau \in I$.

§3. PROOF OF THE THEOREM (1.2).

Suppose X has the Radon-Nikodym property and let (f_n, B_n) be a bounded martingale in L_X^{ϕ} with $\sigma(\bigcup B_n) = \sum$. By lemma 1 and (1.1), there is a function f in L_X^1 such that $f_n \longrightarrow f$ in L_X^4 and $f_n = E(f/B_n)$ as it may be seen in [1]. Since the convergence of martingales in L_X^4 implies the convergence almost everywhere, we obtain, using the continuity of ϕ that $\phi(||f_n(x)||) \longrightarrow \phi(||f(x)||)$ a.e. and by Fatou's Lemma.

$$\int \phi(||f(x)||) dx \leq \lim \inf \int \phi(||f_n(x)|| dx \leq M$$

Therefore f belongs to $\widetilde{L}^{\,\varphi}_{\chi}$, which coincides with L $^{\,\varphi}_{\chi}$.

We shall prove that $f_n \longrightarrow f$ in L_X^φ . From Lemma 2, we see that given $\epsilon>0$, there exists a number m_o and a

sequence of simple functions such that

(3.1) $||s_m - f||_{\phi} < \epsilon/2$ for $m \ge m_0$

and using Lemma 3 with B_n , there is m_1 in (N such that

(3.2) $||E(f-s_m/B_n)||_{\phi}$ < $\varepsilon/2$ for $m \ge m_1$ and for all n.

Since $\sigma(UB_n)=\Sigma$, we can take the functions s_m on measurable sets from UB_n .

Let m be a fixed number such that $m > max (m_0, m_1)$. If $s_m = \sum_{i=1}^{p} x_{m,i} x_{E_m,i}$, let n_0 be a number such that $E_{m,i} \subset B_{n_0}$ for $i = 1, \dots, p$ and in this case $E(s_m/B_n) = s_m$ for $n \ge n_0$. Therefore if $n \ge n_0$, by (3.1) and (3.2) $||f - f_n||_{\phi} \le ||f - s_m||_{\phi} + ||s_m - f_n||_{\phi} =$

 $= ||\mathbf{f} - \mathbf{s}_{m}||_{\phi} + ||\mathbf{E}(\mathbf{s}_{m} - \mathbf{f}/\mathbf{B}_{n})|| < \varepsilon/2 + \varepsilon/2 = \varepsilon .$

To prove the converse we are going to use the characterization of the Radon-Nikodym property in terms of operators: For every $T:L^1[0,1] \longrightarrow X$ there exists a function f in L_X^{∞} such that $T(\varphi) = \int_0^1 \varphi(x)f(x)dx$ for $\varphi \in L^1[0,1]$ (see [3], page 63).

Let $T:L^{4}[0,1] \rightarrow X$ be a bounded operator. We consider B_{n} the σ -field generated by the dyadic intervals of length $\frac{1}{2^{n}}$, i.e. $B_{n} = \sigma(I_{n,i}; i = 0, ..., 2^{n}-1)$ where

 $I_{n,i} = \left[\frac{1}{2^n}, \frac{1+1}{2^n}\right]$ Let $f_n = \sum_{i=0}^{2^n - 1} 2^n T(\chi_{I_n, i}) \chi_{I_n, i}$. It is easy to prove that $E(f_{n+1}/B_n) = f_n$ and obviously $\sigma(\bigcup B_n) = \Sigma$. Since $||f_{n}|| = \sum_{i=0}^{2^{n}-1} 2^{n} ||T(\chi_{I_{n,i}})||\chi_{I_{n,i}}, \text{ it is clear that}$ $||f_n(\mathbf{x})|| \leq ||T||$ for all $\mathbf{x} \in [0,1]$. Then $\rho(f_n,\phi) \leq \rho(f_n,\phi)$ $\leq \phi(||T||)$ for all n, and we can find a function f in \mathtt{L}^φ_X such that $\mathtt{f}_n \dashrightarrow \mathtt{f}$ in \mathtt{L}^φ_X . This is equivalent to $\phi(||f_n||) \longrightarrow \phi(||f||)$ in L^1 and therefore there is a subsequence $\phi(||f_{n_k}(x)||) \longrightarrow \phi(||f(x)||)$ as Hence $\phi(||f(x)||) \notin \phi(||\mathbb{T}||)$ a.e. and f belongs to L_v^{∞} . To conclude the proof, we must only prove that (3.3) $T(s) = \int_{-\infty}^{1} s(x) f(x) dx$ for all simple function on VB_n -measurable sets. First, we shall prove that (3.4) f_n = E(f/B_n). If E is a B_n -measurable set, $\int_E f_n(x) dx = \int_E f_{n+k}(x) dx$ for k? and then it is sufficent to prove that $\int_{E} f_n(x) dx \longrightarrow \int_{E} f(x) dx \text{ as } n \to \infty. \text{ It is clear from the Holder}$ inequality $\int_{F} \|f_{n}(x) - f(x)\| dx \leq \|f_{n} - f\| \|\chi E\|$ From (3.4), $\int_{I_n} f(x) dx = \int_{I_n} f(x) dx = T(\chi I_{n,i})$

and by linearity we obtain (3.3) and finish the proof.

REFERENCES

- [1] J. DIESTEL and J.J. UHL (1977). Vector Measures.Amer. Math. Soc. Mathematical Surveys, 15.
- [2] A. KUFNER et al. (1977). Function spaces. Noordhoff International Publishing.

.

Rebut el 9 de novembre del 1984

Departamento de Teoría de Funciones Facultad de Ciencias

Zaragoza

SPAIN

. . .

.