Pub. Mat. UAB
Vol. 29 № 1 Abril 1985

A CHARACTERIZATION OF THE RADON-NIKODYM PROPERTY Oscar Blasco de la Cruz
§1. INTRODUCTION.
The aim of this paper is to give a new characterization of the Radon-Nikodym property in terms of martingales in X-valued Orlicz spaces.

Let X be a Banach space and put Σ, the Lebesgue measurable sets in $[0,1]$. It is well known (see [1]):
(1.1). X has the Radon-Nikodym property with respect to $[0,1]$ if and only if every bounded uniformly integrable martingale in $L_{X}^{1}[0,1],\left(f_{n}, B_{n}\right)$ where $\sigma\left(U_{B_{n}}\right)=\Sigma$, is convergent in $L_{X}^{1}[0,1]$.

We are interested in a generalization of this fact.
In this paper we shall prove the following

Theorem (1.2).
Let ϕ be a Young function with the Δ_{2}-condition. X has the Radon-Nikodym property if and only if every bounded martingale in $L_{X}^{\phi},\left(f_{n}, B_{n}\right)$ where $\sigma\left(U_{B_{n}}\right)=\sum$, is convergent in L_{X}^{ϕ}.

The definitions and the main results relating to X valued martingales and Orlicz spaces may be found in [1] and [2] respectively.

We are going to denote by ϕ a Young function, and $\tilde{\mathrm{L}}_{\mathrm{X}}^{\phi}=\{\mathrm{f}:[0,1] \rightarrow X$ strongly weasnorable with respect Lebesgue measure s.t. $\left.\rho(f, \phi)=\int_{0}^{1} \phi(| | f(x)| |) d x<\infty\right\}$.
Let ψ be the complementary Young function of ϕ. We shall write $\left||f| \|_{\phi}=\sup \left\{\int_{0}^{1}| | f(x)| ||g(x)| d x\right.\right.$ with $\left.g \in \widetilde{L}_{\mathbb{R}}^{\psi}, \rho(g, \psi) \leq 1\right\}$ and $L_{X}^{\phi}=\{f:[0,1] \longrightarrow X$ strongly measurable with $\left.\|f\|_{\phi}<\infty\right\}$.
It is well known that L_{X}^{ϕ} is a vector space and $\left|\mid f \|_{\phi}\right.$ is a norm on it.

Besides, $\tilde{\mathrm{L}}_{\mathrm{X}}^{\phi}=\mathrm{L}_{\mathrm{X}}^{\phi}$ if and only if ϕ verifies the Δ_{2}-condition. It is easy to prove that the convergence and the boundedness in $\widetilde{\mathrm{L}}_{\mathrm{X}}^{\phi}$ and $\mathrm{L}_{\mathrm{X}}^{\phi}$ are equivalent using the following fact:
(1.3) Suppose ϕ verifies Δ_{2}-condition, i.e. there exists $K>0$ and $T \geq 0$ such that $\phi(2 t) \leq K \phi(t)$ for all $t \geq T$.

If there existsminelongs to \mathbb{N} with $\rho(f, \phi) \leq 1 / K^{m}$ then $\left|\mid f \|_{\phi} \leq \frac{\phi(T)+2}{2^{\text {m }}}\right.$. See [2], page 158 . for a proof.
§2. PREVIOUS LEMMAS.

Lemma 1.
If $\left(f_{n}, n \in N\right)$ is a bounded sequence in \tilde{L}_{X}^{ϕ}, Licit. ($f_{n}, n \in N$) is a bounded uniformly integrable sequence in $\mathrm{L}_{\mathrm{X}}^{1}$.

Proof.

For a Young function we have
(2.1) $\frac{\phi(t)}{t} \rightarrow \infty$ as $t \rightarrow \infty$, and by (2.1) we ob $\operatorname{tain}\left|\left|f_{n}\right| \|_{L_{X}^{1}} \leq \rho\left(f_{n}, \phi\right)+A\right.$, where. A is a constant. We have only to show that $\int_{E}| | f_{n}(x)| | d x \rightarrow 0$ as $m(E) \longrightarrow 0$, Given $\varepsilon>0$, by (2.1) , there exists $\tau>0$ such that
(2.2) $\frac{\phi(t)}{t}>\frac{2 c}{\varepsilon}$ for $t>\tau$ where $\sup _{n} \rho\left(f_{n}, \phi\right) \leq C$.

Let $\delta=E / 2 T$. If $m(E)<\delta$ and denoting
$A_{n}=\left\{x:| | f_{n}(x) \| \leqslant \tau\right\} \cap E$ and
$B_{n}=\left\{x:| | f_{n}(x) \|>\tau\right\} \cap E$ we obtain

$$
\begin{aligned}
& \int_{E}| | f_{n}(x)| |=\int_{A_{n}} \| f_{n}(x)| | d x+ \\
& +\int_{B}| | f_{n}(x)| | d x \quad<\quad<\pi(E)+\frac{\varepsilon}{2 c} \int_{0}^{1} \phi\left(\| f_{n}(x)| |\right) d x<\varepsilon
\end{aligned}
$$

Lemma 2.
If ϕ verifies the Δ_{2}-condition then the simple fund: tions are dense in $\tilde{\mathrm{L}}_{\mathrm{X}}^{\phi}$.

Proof:
Given $\mathrm{F} \in \tilde{\mathrm{L}}_{\mathrm{X}}^{\phi}$, stupe C is strongly measurable, there exists a sequence ($f_{n}, n \in N$) of countably valued fundtions such that
(2.3) $\left|\left|f_{n}(x)-f(x)\right|\right|<\frac{1}{n}$ for almost all $x \in[0,1]$ and for all n eN. Suppose $f_{n}=\sum_{m=0}^{\infty} x_{n, m} x_{E_{n, n}}$ where $x_{n, m} \in X$ and $\dot{X}_{E_{n, ~}}$ are the characteristic functions of disjoint measurables sets.

Since $\quad 2\left\|f_{n}(x)\right\|<2\|f(x)\|+\frac{2}{n} \quad$ a.e. and ϕ is a convex function, we have $2 \mathrm{f}_{\mathrm{n}} \in \widetilde{\mathrm{L}}_{\mathrm{X}}^{\phi}$. Therefore, there is a number p_{n} e N such that

$$
\begin{equation*}
\int \bigcup_{m=p_{n}}^{\infty} E_{n, m} \phi\left(2| | f_{n}(x)| |\right) d x<\frac{1}{n} \tag{2.4}
\end{equation*}
$$

We consider the simple function $g_{n}=\sum_{m=0}^{p_{n}} x_{n, m} \dot{x}_{E_{n, m}}$ By (2.3) and (2.4)

$$
\begin{aligned}
& \left.\quad \int_{0}^{1} \phi\left\|\mid f(x)-g_{n}(x)\right\|\right) d x \leqslant \frac{1}{2} \int_{0}^{1} \phi\left(2| | f(x)-f_{n}(x)| | d x\right. \\
& +\frac{1}{2} \int_{0}^{1} \phi\left(2| | f_{n}(x)-g_{n}(x) \mid \|\right) d x \leq \frac{1}{2} \phi\left(\frac{2}{n}\right)+\frac{1}{n}
\end{aligned}
$$

Since $\phi(t) \rightarrow 0$ as $t \rightarrow 0^{+}$the proof is finished.

Lemma 3

Let $\left(B_{\tau}, \tau \in I\right)$ be a family of sub-a-fields of \sum. Suppose ϕ with Δ_{2}-condition.

If f_{n} converge to f in L_{X}^{ϕ} then $E\left(f_{n} / B_{\tau}\right)$ con verges to $E\left(f / B_{\tau}\right)$ uniformly in B_{τ}, where $E\left(. / B_{\tau}\right)$ denotes the conditional expectation relative to B_{τ}, Proof

It may be proved with a slight, modification in the
argument in [1] page 322 that $i f \quad B$ is a sub- σ-field of \sum, then $\rho(E(G / B), \phi) \leqslant \rho(g, \phi)$ for all $g \in \widetilde{L}_{X}^{\phi}$.

Now, given $\varepsilon>0$, let m_{0} be a number such that $\max \left(\frac{\phi(T)+2}{m_{0}}, \frac{1}{\bar{m}_{0}}\right)<\varepsilon$ where K, T are the constants in the Δ_{2}-condition.

Since $\left|\mid f_{n}-f \|_{\phi} \rightarrow 0 \quad(n \rightarrow \infty) \quad\right.$ then $\rho\left(f_{n}-f, \phi\right) \rightarrow 0(n+\infty)$ so there is a number n_{o} such that if $n>n_{o}$ we have $\rho\left(f_{n}-f, \phi\right)<\frac{1}{m_{0}}$. This implies, by (1.3) and the first result in the proof, that $\left|\left|E\left(f_{n}-f / i_{\tau}\right)\right|\right|_{\phi}<\varepsilon$ for $n \geqslant n_{0}$ and it is true for all T $\in \mathrm{I}$.
§3. PROOF OF THE THEOREM (1.2).

Suppose X has the Radon-Nikodym property and let $\left(f_{n}, B_{n}\right)$ be a bounded martingale in L_{X}^{ϕ} with $\sigma\left(U B_{n}\right)=\Sigma$. By lemma i and (1.1), there is a function f in L_{X}^{1} such that $f_{n} \longrightarrow f$ in L_{X}^{1} and $f_{n}=E\left(f / B_{n}\right)$ as it may be seen in [1]. Since the convergence of martingales in L_{X}^{7} implies the convergence almost everywhere, we obtain, using the continuity of ϕ that $\phi\left(\left|\left|f_{n}(x)\right|\right\}\right) \rightarrow \phi(|\mid f(x) \|)$ are. and by Fatou's Lemma.

$$
\int \phi\left(||f(x)| \|) d x \leq \lim \inf \int \phi\left(| | f_{n}(x)| | d x \leq M\right.\right.
$$

Therefore f belongs to $\widetilde{\mathrm{L}}_{\mathrm{X}}^{\phi}$, which coincides with L_{X}^{ϕ}.
We shall prove that $f_{n} \longrightarrow f$ in L_{X}^{ϕ}. From Lemma 2 , we see that given $\varepsilon>0$, there exists a number m_{0} and a
sequence of simple functions such that
(3.1) $\left|\mid s_{m}-f \|_{\phi}<\varepsilon / 2\right.$ For $m \geqslant m_{o}$
and using Lemma 3 with B_{n}, there is m_{1} in \mathbb{N} such that
(3.2) $\left|\mid E\left(f-s_{m} / B_{n}\right) \|_{\phi} \quad<E / 2\right.$ for $m \geqslant m_{1}$ and for all n.

Since $\sigma\left(U B_{n}\right)=\Sigma$, we can take the functions s_{m} on measurable sets from $U B_{n}$.

Let m be a fixed number such that $m>\max \left(m_{0}, m_{1}\right)$. If $s_{m}=\sum_{i=1}^{p} x_{m, i} x_{E_{m, i}}$, let n_{o} be a number such that $E_{m, i} \subset B_{n_{0}}$ for $i=1, \ldots, p$ and in this case $E\left(s_{m} / B_{n}\right)=s_{m}$ for $n \geq n_{o}$. Therefore if $n \geqslant n_{0}$, by (3.1) and (3.2)

To prove the converse we are going to use the characterrization of the Radon-Nikodym property in terms of operators: For every $T: L^{1}[0,1] \rightarrow X$ there exists a function f in L_{X}^{∞} such that $T(\varphi)=\int_{0}^{1} \varphi(x) f(x) d x$ for φ e $L^{4}[0,1] \quad($ see $[a]$, page is).

Let $T: L^{4}[0,1] \rightarrow X$ be a bounded operator. We consider B_{n} the o-field generated by the dyadic intervals of length $\frac{1}{2^{n}}$, i.e. $B_{n}=\sigma\left(I_{n, i} ; i=0, \ldots, 2^{n}-1\right)$ where
$I_{n, i}=\left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right]$.
Let $f_{n}=\sum_{i=0}^{2^{n}-1} 2^{n} T\left(x_{I_{n, i}}\right) x_{I_{n, i}}$. It is easy to prove that $E\left(f_{n+1} / B_{n}\right)=f_{n}$ and obviously $\sigma\left(U B_{n}\right)=\Sigma$. Since $\left\|f_{n}| |=\sum_{i=0}^{2^{n}-1} 2^{n}\right\| T\left(x_{I_{n, i}}\right) \| x_{I_{n, i}}$, it is clear that $\left\|f_{n}(x)\right\| \leq\|T\|$ for all $x \in[0,1]$. Then $p\left(f_{n}, \phi\right) \leq$ $\leq \phi(\|T\|)$ for all n, and we can find a function f in L_{X}^{ϕ} such that $f_{n} \longrightarrow f$ in L_{X}^{ϕ}. This is equivalent to $\phi\left(\left|\mid f_{n} \|\right) \longrightarrow \phi\left(||f| \|)\right.\right.$ in L^{1} and therefore there is a subsequence $\phi\left(\left\|f_{n_{k}}(x)\right\|\right) \rightarrow \phi(\| f(x)| |)$ axe. Hence $\phi(\|f(x)\|) \leqslant \phi(\|T\|)$ a.e. and f belongs to L_{v}^{∞}.

To conclude the proof, we must only prove that
(3.3) $T(s)=\int_{0}^{1} s(x) f(x) d x$ for all simple function on U_{n}-measurable sets. First, we, shall prove that
(3.4) $\quad f_{n}=E\left(f / B_{n}\right)$.

If E is a B_{n}-measurable set, $\int_{E} f_{n}(x) d x=\int_{E} f_{n+k}(x) d x$ for $k \geqslant 1$ and then it is sufficent to prove that
$\int_{E} f_{n}(x) d x \rightarrow \int_{E} f(x) d x \quad$ as $n \rightarrow \infty$. It is clear from the Holder inequality $\int_{E}\left\|f_{n}(x)-f(x)\right\| d x \leq\left\|f_{n}-f_{\|}\right\| x E \|_{\psi}$

From $(3.4), \int_{I_{n, i}} f(x) d x=\int_{I_{n, i}} f_{i}(x) d x=T\left(x I_{n, i}\right)$
and by linearity we obtain (3.3) and finish the proof.

REFERENCES

> [1] J. DIESTEL and J.J. UHL (1977). Vector Measures. Amer. Math. Soc. Mathematical Surveys, 15 .
> $[2]$ A. KUFNER et al. (1977). Function spaces. Noordhoff International Publishing.

Rebut el 9 de novembre del 1984

Departamento de Teoría de Funciones Facultad de Ciencias
zaragoza
SPAIN

