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ON CERTAIN ALGORITHMS IN THE PRACTICE OF GECMETRY
AND THE THEQRY OF NUMBERS

Peter Hilton and Jean Pedersen

0. Introductiocon

We demonstrated in [1) and [3] a systematic method
of folding a straight strip of paper, by what we called a
pLimaty 6o£dﬂqquccadu&a, to approximate, to any desired degree
of accuracy., a regular convex s-gon and ¢ertain regular star
s-gons, provided that s€E€F, the set of fofding numbers. Here F

is defined to be the set of all integers s of the form

, where x =21, y = 2.

s = (x,¥)
Of course, such numbers s are odd.

By introducing secondaty folds on the strip of paper we
showed how it is possible to approximate regular st-gons, whe
re s €F and k 1 (and we included, for the sake of comple-

teness, the exact constructions of the regular 2k*gons, k22).

The only remaining numbers 2 3 are those of the form
Zka, where a is odd, # 1 and nof a folding number and k=0.
However, the method for approximating those regular polygons

can be described by a sequence of steps as follows {(consult [1]
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for details).

First, since we know that, for any odd number a,
fb(a) = 1 mod a, where ®(a}) 1is the Euler totient function,
it follows that a is a factor of some element of F, say s,
with s = al. We can use the primary folding procedure to ob-
tain a strip of paper suitable for approximating a regular
s-gon. If we then introduce % secondary fold lines at each
point that would have been a vertex of the regular s-gon, we.
can use a longery strip of this folded tape to construct a regu-
lar 2ks*qon. We then glue this 2ks—gon to a piece of paper
and focld on the lines connecting every gth vertex to produce

the desired 2ka—q0n. In [2] and [3], we introduced an al-

gorithm for finding the optimal s€F such that als.

In summary, the above procedures (using primary and se-
condary folds) provided us, in conjunction with the algorithm
referred to above, with a systematic method that could be used
to approximate regular convex s—-gons for all s ? 3. The same
procedures produced many regular sfat s-gons, where s€F. 1In
fact, as discussed and proved in (2], for a given
s = {x,y) €F, the exact number of star s—-gons produced by the
primary folding procedure is % $#{y)xy. Further, these could

be explicitly described.

In [2} we raised the cuesticn as to whether by genera-

lizing in a natural way the primary folding, we might be able
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to avoid the gluing step described above, and also be able to
fold aff regular star polygens. In this paper we answer that
question, in the affirmative.

Given a,b odd with a < and a prime to b, we des-

b
2
cribe in Section 1 a genciutlized primary folding procedure which
approximates a regular star {2}—qon. There are, then, very
obvicus secondary procedures which allow us to remove the res-
triction that both a and b be odd. The generalization con-

sists in allowing a procedure of arbitrary periodicity. The pro-

cedures in previous papers have all been of perioed 1 or 2.

An interesting aspect of the content of this papér, and
the other pavers we refer to, is the way the geometry motivates
the number theory, and the subseguent interaction between the
two topics. Indeed, although the Quasi-Onder Theohem of Section
2 would stand on its own merits as an interesting plece of num-
ber theory, it is hard to imagine how one would have discovered
it without the geometric motivation. Moreover, although cur ge-
neralized primary folding procedure obviates the need to glue a
constructed N-gon to a piece of paper in order to construct an
M-gon, with M™IN, the number theory generated by the gluing
technigue, described in [2] and [3], stands in its own
right, and is in no sense superseded by the more sophisticated
paper-folding procedures of this articles, neor subsumed in the
number theory that arises from those more sophisticated procedu

res.
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In Section 1 we describe the paper-folding procedure
which enables us to construct arbitrary star polygons. We have
sought, by including this section, to make the entire paper rea
sonablylself'contained, though we are not actually advocating
the neglect of oﬁr earlier papers on this subject. Section 2

opens with the definition of a symbol
b ) (0.1}

which may be regarded as encoding the instructions for folding
a strin of tape to form a star Tg} -qon, with a,,b odd, and

iR
i < %. The "code" is described in a typical case in Section 1

a
and, in general, in Appendix 1 (Section 4). However, this sym-
bol also constitutes an interesting algorithm for determining

the quasi-oader of 2 mod b, that is, the smallest positive inte

ger % such that 2* = %1 med b. Indeed, if a; 1is prime
r

to b, then the gquasi-order is k = £ ky and the parity of
i=1

r determines whether 2k =1 or k=1, of course, the

quasi-order, reinforced with the information provided by the
parity of r, provides much more information than the order
of 2 mod b. Examples are given in Appendix 2 (Section 5) to
show how to apply the algorithm to obtain the symbol (0.1)

and then how, in a given case, to obtain, from the symbol, the

kg,

factor complementary to b in 2

In Section 2 we describe the symbols, prove some basic
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vroperties, and enunciate the Quasi-Order Theorem. The theorem
is proved in Section 3, where we also obtain some refinements
of the theorem of further number-theoretical interest. We re-
mark that an independent proof of tﬁe Quasi-Order Theorem was
shown to us by Gerald Preston. This preoof was based on the no-—
tion of Hasse functions {see, for example, [4]); however, the
direction of proof does not take us through Theorem 2.5, which

has an immediate application to paper—-folding.

The paper c¢loses with the two appendices already refe-
rred to; in the first we go back to the geometrical significan-
ce of the symbols, and, in the second, we discuss, as examples,

Fermat and Mersenne non-primes,

A feature of the earlier papers 12] and {3] mnissing
from the present paper was the generalization from ‘base 2°'
-- the only base of geometrical interest, since we modestly con
fine ocurselves to bisecting angles -- to 'base t', where ¢t
is an arbitrary positive integer # 1. It appears that this
generalization leads to interesting difficulties when we try to
intreoduce the analogs of our symbols in base &, since, in
this general context, they may fail to exist for a given b.
We propose to devote a sequel [$6] to the study of generalized

symbols and the (generalized) guasi-order problem.

1. How to fold regular star polygons

First we suppose that appropriate {ofd, of caease,
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lines have been made on our straiqht strip of paper and we des-

cribe the actual construction process for folding a {g}wgonl,

where a and b are muatually vrime integers with a < g .

Suvnose, as illustrated in Figure 1, that we have a straight
strip of paper that has creases along straight lines emanating
from marked vertices Ai,i=0.l,.--, at the top and bottom ed-
ges, and that, for a fixed k, those at the particular vertices

Ank n=0,1,2,...,b, which are on the top edge, form identical
’

angles % 7. Suppose further that these vertices are egually

spaced (we describe below how you might obtain such a strip).
Figure 1 (a) shows the beginning of the strip. If we fold this

strip on {as shown in Figure 1(b}) and then cn

Ank'a‘nk+2
AnkAnk+1 {as shown in Figure l{c)}, the direction of the

Zop edge of the tape will be rotated through an angle of 2(% )
and the tape will be oriented the same way., with respect to the
center of the polygon being delineated by its top edge. We call

these two folds through An in that order, a 2(% 7§~ fwist

k,

at Ank and obhserve that, 1f a 2{% 7}-twist is performed at
+

Ank for n=20,1, 2,..., b-1, the top edge of the tape will
have turned through an anale of 2ar and the point Abk will
then be coincident with Ao' Thus the top edge of the tape

will have visited every ath vertex of a bounding regular con-

vex b-gon, and hence determines a regular star {g}-gon.

i A closed seguence of b edges that visit, in order, every

ath vertex {(mod b} of a bounding regular convex b-gon. We
include the regqular convex b-gon as the special case a=1.
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We now explain how we obtained the desired crease lines
in the strip of tape in the first place. Recall that we are
seeking to construct a star {g}—gon where a, b are mutually
prime positive integers with a <% . We assume first that
a, b are odd. Thus we wish to have a strip of paper on which
the angle % 7 appears at regular intervals along the top edge.
We designate the direction from left to right as the {omwand
direction on the tape. We begin by marking a point A, on the
tep of the tape and making an {nit{al crease line going in the
downward forward direction from &, to ' Ay at the bottom of
tape, and assume that the angle it makes with the top edge is
2 ; we call this the putative angle. The we continue to

b
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form new crease lines according to the following four rules:
(1) The first new crease line emanates from the vertex
Al.

(2) Bach new crease line goes in the forward direction
along the strip of paper.

{3) Each new crease line always bdsects the angle bet-
ween the last crease line and the edge of the tape
from which it emanates.

{4) The bisection of angles at any vertex continues
until a crease line produces a putative angle of
the form %% # where a' is an odd number; then the
folding stops at that vertex and commences at the

intersection point of that last crease line with

the other side of the tape.

Let us consider the example b = 11, a = 3. Then we
can see that if we begin with an angle of f% moat A {as
shown in Figure 2{a}} and adhere to the above rules we will
obtain a strip of tape with the angles and creases (dotted li-
nes} indicated in Fiqure 2{b). BAdhering to the notation for
the primary folding procedures in [1], [2] and [3], we
could write this more generalized folding procedure as

fatudatatadaty . (1.1)
As before, this notation means that if we begin folding on the
strio of paper at the place where there is one crease line slo-
ping wupwards then the first a' refers to the one bisection
{producing a line in a downward direction) at Bl nn {for

an = 0,1,2, ...} on the top of the tape; the u® refers to

38



the 3 bisections (producing creases in an ypward direction) ma-

de at the bottom of the tape through A etc. However, the

lOn+1;
folding process is duplicafed halfway through, so it suffices

to write just the first three exponents in (1.1). In fact, we

can dencte (l.1) even more simply as

{1,3,1} (1.2}

with the understanding that we fold dklukzdk3uk4... with the

k k k --. cycling, in order, repeatedly through the values

17 "2t ¢yt
i, 3,1, ...

We call (1.1) or (1.2) a primary folding procedure
o4 period 3. Hote that, in this terminclogy, the primary folding
procedures we have hitherto considered in [1, 2, 3] were all

of period 1 ({a™a™) or period 2 ({d™™, m=n).

It is easy to see that, starting with any putative angle

% 7 {a, b odd, mutually orime, a < %), we will always obtain

by our rules a primary folding procedure kl'k2""’kr which
'produces' this angle. We also note that, starting with the

putative angle T% 7 at the top of the tape, we produced a pu-
T% m at the boton of the tape, then a putative
angle T% 7 at the top of the tape, and so on. Thus if,

indeed, our crease lines could have been used to fold a star

tative angle

l%} -gon, they could alsoc have been used to fold a convex
ll-gon and a star {%%}—gon. This feature of our tape furnished
with its crease lines obviousiy applies in general: other star

b-gons will be available to us from the tape yielding the star
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{2}-901*1-

More still is true; for if there are crease lines ena-

bling us to fcld a star {g}—gon, there will be crease lines

enabling us to fold star {—%—}—qons, where k = 0 takes all
' 27a

values such that 2k+la < b. Thus effectively we may dispose

of the condition that a be odd, although our rules for introdu-
cing the crease lies are based on the assumption that a is odd.
If 2 is even, our first step is to write a = 2ka0, with a

o
odd.

Oné link is still missing in our chain. What is the rela
ion of the putative angle to the true angle? It turns out
—-- the easy proof was given in [2] -- that if we repeat the
felding rules, starting at the successive iterates of Ao (thus
at AO’AS'AIO' +++ in Figure 2(b)), then the actual angle rapidly
converges Lo the putative angle. Thus we obtain arbitrarily good
approximations to regular star-polygons by starting sufficiently
far along the tape. Reverting to our example of the {l%}— gan,

we showed in [2] that if our initial fold produces an angle

M

at Ao then the acute angle at A would differ

|

of 10
=

from iT " 'by less than

ol
5

_3_ T -
-ilm— which is about 0,000325
3
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As pointed out, although we began the folding in
Fiqure 2 with an interest in producing an angle of T% T
at egual intervals along the top of the tape we have produced
much more. Observe that angles of 3 o, Sy, 4 s, 2 7 ang

1 11 11 11 11
11 7 apwpear (to the right of downward sloping transversals wiht

equal angles adjacent to them) along the top of the tape. This
means that we can use this tape to fold any of the star
1l-gons. Figure 3 shows the star {%%}vgon formed by making a

f% s-twist at A in = 6,1,2,...10). The excess tape that

10n+6
would 'stick cut' at each vertex has been folded under to make
the resulting model more apnealing. It is the top of the tape

that delineates the {%%}—gon.

4]




Tigure 1

It is also not necessary for b to be odd. For, if a

ig odd and less than half of b with b even, we can write

b as Zkb‘, where b' is odd. Wext carry out the foldind

process, seeking an angle of ﬁ% 7. This tape will always

include a sequence of adjacent angles whose sizes are

1 1 2 2k-1
B "0 BT T BT Teocr B

sect (by secondary folds) the appropiate angle{s} so as to

7. It is then always possible to bi-

create the desired angles % 7, but we will not go into details
here, since this would take us from our main purpose. However,

we give an example in Figure 4, which illustrates the construc-
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tion of a {ig}—gon where the angle of % is created first

= T,

and then this tape is used to get the necessary angle 10

First the tape is folded by a {dzuz} procedure, which produ-

ces angles of % along the top. Then a secondary fold line is

introduced to bisect A4n+lA4nA4n+2 for n=0,1,...9. The
censtruction cof the {l§}'gon is then completed by performing
the 2 (i%er)—twist at 10 equally spaced intervals along the

top of the tape. The finished {%§}—gon appears in Figure 5.
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Figure 5

Let us return to the main example of our generalized
folding procedure (in which a =3 and b = 11} and loock at
the patterns in the arithmetic of the computations. We change
notation in-designating the vertices on the tape now, for conve

. 2
nience.

2 Here we are only interested in folding {g}—gons with a, b

odd.
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To bring out the relationship between the number of bi-

sections at a vertex and the angle formed at that vertex we now

change the labeling of the representative case shown in Figure

2(b) so that it appears as shown in Figure &. Then we observe

that

The angle to
the right of
Pn where

n =

wbuwr—'o*-‘

We could write this in shorthand

in the next section) as follows:

is of the form

i3
—7 where a,

W ow e e w e

and the number of
bisections at Pn =

l

O W W

form {which we will generalize

(1.3)

As remarked, given any two odd numbers a and b, with
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a < %,

like the one above (we do not need a,b relatively prime}.

there is always a completely determined unigue symbol

Appropriately interpreted, we can use this symbol to read off
the folding procedure that produces the angle of % T aleong

the top edae of the tape, so that a symbol such {1.3}) encodes a
folding procedure for producing a star {g}—gon, and also tells
us what other star polygons we can obtain from the same tape

{of course, for each symbol a diagram similar to Figure & can

be drawn to illustrate the relative positions of the angles

2? m).

Before we close this section we would like to point out
that the folding process described above is the mosl effdeient
one peossible. That is, there could not be any folding procedure
of this type that would procuce the reguired star polygons with
fewer folds. It is also optimal from the point of view of “dif-
ficulty of execution™, for it keeps the number of bisections at
each vertex to a minimum. These last comments are explained as

follows. If the folding procedure {kl,k kr} produces

2!"'!

the angle 2 7, then (see (2.3) and (2.4) bl 2¥%1, where

oo

r
k= I k

; ki If we adopt the procedures described in this secw
1_=

tion we will have a procedure {El. 22,...,Esj such that
g = _;l Qj is the smaflesf number m such that bl2M#1,
thatjgs, the quasi-onder of 2 mod b. Moreover, r will be
a multiple of s and, suitably c¢ycling the Qj’ each ki is

a multiple of ﬂi.

All these facts are contained in the number—thecretical
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results of the next two sections.

2. Symbols and the gquasi-order of 2 mod b

By the symbol

b (2.1)

we understand that b is an odd positive integer, that a, is
an odd positive integer < 2; i=1,2,...;, r, and that
kl' 2""kr are positive integers such that

b= a, + 2kia.
1

410 1= 1,2, ... ,r, a = a,. {2.2)

Let us aoree where convenient, to define ay for all integers
i by making a,; pericdiec in i, with period r, and similar-
ly for ki' We note that, given odd positive integers a, b
with a <-§, there is always a symbol (2.1) with a; = a, and
that the symbel is unique up to Jilenation: here we say that
(2.1} arises by jiteration if there exists sjr such that

A,e - ki+S = ki' for all 1. A proper iteration, that

is; one in which s # r, is called a #xepeliiion.

Given b'kl"‘“kr' the equations (2.2} have unique solu-
tions, in the "unknowns"® ai,' namely
Bai-:bl'-\, i=1,2, ..., r, {2.3)
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r
k-, x= T k., (2.4)

i=1

where B = 2

ki) _ gk ki-1-k oKi(-uyY, i=1,2,...,r.

(2.5)

and Ai=2 1-24...+{-1)

We note, for future use, that A, s independent of k; ..
We also remark that the soluticns (2.3) of the equations {2.2)
always exist, but that {(for a given odd positive integer b) the
numbers a, given by {2.3) may fail to be integers. However,

we have immediately

Proposition 2.1 (i) The sofufdions of (2.2} are rationak numbers a,

satisfuying 0 < ay <

o

H

{ii) 44 any a, is an integen, then all a; we odd integens.

Proof {i) It is clear form (2.4) and (2.5) that B, Ai are

odd positive integers. Thus from (2.3}, each a; is a positive
k.

rational number. Now 2 *a, =b - a, <b, since a, > 0.
i+l i L
. . L b
. <b
Since a;,1 is positive and ki 21, we ;#fir that 454153
To prove (ii), oObserve that ay g < b -2 " ag. Thus if a;

is an integer. is an odd integer, and the result follows

841

by finite inductiocn.

As an application, consider B, Ai' given by (2.4),
{2.5). As already observed, B and Ai are odd positive

integers for all i. Moreover, it follows immediately from

k.
i .
(2.3) that the solution of the equations B = x, + 2 7%y 1=
= 1,2,...,:::,}(1..+l = Xy is X, = A, 50 that
ki
= + . .
B = A, 2 AL {(2.6)
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Thus, by Proposition 2.1,

B {2.7)

is a svmbol.

We will also need the following elementary propositions;

the first is proved in [ 2].

Proposition 2.2 In the symbofl (2.1}, ch(b,ai) L8 independent

ok i.

Proposition 2.3 4, 4n the sgmbol (2.1), k, > n, then a,, < -2,
i i+l 2n

Proof This is obvious from (2.2).

Proposition 2.4 (Periodicity lemma) T4, {n (2.1), zthere exdsts

an s Auch that s|r and k, =k for all i, then a,, _=a;

fon alf i.

Procf Tt is clear from (2.5) that if ki+s = ki for all i,
then A, = By for all 1. The result now follows from (2.3).
The periodicity lemma asserts that if the seguence
kl'kZ""'kr is a repeating sequence, then the symbol (2.1} is

obtaineéd by the same repetition. If there is no proper repeti-

tion, we say that the symbol (2.1) is reduced and write
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b {2.8)

Then a general symbol {2.1) is obtained by nrepeating a
unigue reduced symbol; and a reduced symbol (2.8} is obtained
by compressing a general symbol. Given positive odd integers a

and b with a< 2

5 there is a unique reduced symbol (2.8)

with a; = a.

We come now to our main preliminary result.

Theorem 2.5 Lol Xk .kK,,.eu,k be posditive integens with

r
I k; =k>2. Then, for a given odd integenr ay < 2¥ 1, we. have
i=1
A,8,44..a a,as...a a'
172 r |- 172 r-1 'r
X1 £ and onty if  2¥T1-1
klk2 .kr k1k2 ..k -1 k_+1

In either case, 1 {8 euen.

Proof Assume the left-hand symbol. Then, by (2.3),

k k

T = -
{27 - (-1) )ai = {2 l]Ai.

If r were odd, we would have 2k—l]ai, an  evident

contradiction. Thus r is even and a; = A,, for all 1.

We now solve the equations 2k+l -1=x,+ 271
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r
where k'i = ki’ 1sisr-1, kr = kr+ 1, so that iilki=k+l=k .
sav, to obtain {(compare (2.6)) X; = Ai,
wlth (compare (2.5))
K'-k!_ . k'-k!_.-k!_ K
I Ze 4 -T2 T - (-n)T (2.9)

Thus we obtain the symbol

However, we see from {(2.%), recalling that Ai is independent
of k., that AJ = A; = a,, establishing the existence of the
right-hand symbol of the thecrem. The converse is proved simi-

larly.

There is a companion thecrem as follows; we need not gi-

ve an exnlicit proof.

Theorem 2.5% fef k
r

Tk, =k > 1. Then, for a glven odd integer ay < 2k_l, we have

i=1

1rKgre ik be positive {ntegens with

1 2 T
27+1 L§ and only L
kl k2 kr
a al . . al a'
i 2 -1 r
2k+1+l
[ %1 Koo o kg kot
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In eithen case, 1t L& odd.

We are now ready to state our main theorem.

Cuasi-Order Theorem fLef b be an odd positive integer, and Lot a; be an

odd positive integen with a_. < 5 ad a prdme

i 2
a; a; ... a r
Lo b. Then 4§ b with z ke = ke we have
i=1
Ky Ky eus kr

(1) ks the minimal ¥ such that b7 %1,

(i) b |2k—l {4 T 4is even, b|2k+1 L T i odd.
We prove this theorem in the next section but we may imme
diately anounce the following corollary, relating tc the ovader

of 2 mod b.

Corcllary 2.6 With the same huypotheses a4 Ln the Quasdi-Onder Theokem, we

have

(1) L4 r 4» even, then the onder of 2 mod b 483 Xk  and,
ever Lf k s even, 22 £-1 mod b;
{ii) L§ r L& odd, then the ondexr 0f 2 mod b Ly 2k, and

2k = -1 mod b.

3. Proof of the Main Theorem

We first study a special case of the main theorem and

prove
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1 2’ T
Theorem 3.1 let ¢ 2. Thendf 2 -1
¥4 22...21_
r
we have T R, [f.
i=1
Progf We argue by induction on £, the case £ = 2 being tri

1
vial since 3 [l] . Thus we assume the theorem for ¢2 2 and

prove it for R +1. Let

1 %2 r|
AR | (3.1)
B, 2y ve Qr
If r=1] and 2. =1, the conclusion is trivially true. If not,

1
it follows from the periodicity lemma that, for some 1, ﬂi =2,

Without real loss of generality we may assume that Rr = 2 s0
that, by Proposition 2.3, a, < 22_1. Thus, by our inductive

hypothesis, we have

. a;, a ... ag
2 -1 (3.2)
k1 k2 . kS
s
with z ki £ . By repetition, if necessary, we find the
i=1
symbol
L} 1
. a; aj ... ag
2- -1 (3.3)
kl k2 - kt |
€ .
with z ki = L. By Theorem 2.5 we deduce the symbol
i=]1
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AL (3.4)

t
Write k! = k,, 1 €1i < £-1, k! = k_+1. Then Z k! = p+l.
L 1 t t i=1 1

Compressing, if necessary, we obtain

a all .. aIl

1 2 ua

ALy (3.5)
kl k2 R 4

u

with Z kg (2+1). By the uniqueness of the reduced symbol, as
i=1

a function ¢f b and Ay We infer that (3.5) is identical

with (3.1), so that the inductive step is achieved and the thec

rem is proved.

There is, of course, a companion theorem, with almost iden

tical proof, namely,

Theorem 3.1% let L2 1. Then 44

r
we have P R.

Proof of the Quasi-Order Theorem First let
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al a2 R ar
b ¢ Wwith no restriction on gcd(al,b).
k; ky oo k.
r
Let I k, =k and let k be the minimal £ such that
, i=1 k 0
]2+ 1, If 2 °:1 =bg, then, obviously,
Kk a;9 a,9 -.. ag
291 .
Xk, ky T

Thus, by Theorem 3.1 or 3.1%*, klk,.

Now suppose that a; is prime to b. Then, by (2.3)
and (2.4),

(2~ - (—l)r)ai = bA

Since b is prime to a,, we have b|2k - (-1)F. since klkge

the minimality of k0 implies that k = kO' Moreover it is

plain that b|2k -1 if r 1is even and b[zk + 1 if r is

odd.

Remarks (i) WNote that we have proved that, if we remove from
the hypotheses of the Quasi-Order Theorem the condition that

a2, be prime to b, and if k is defined as the minimal ¢
r .

such that b|2' £ 1, then Ik, |k. If we write quo(b) for
i=1

the quasi-order of .2 med b, then this says that if

b ., then’
k., k cee  k L

[ R

k;| auoib). Moreover, the
1 _
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x
Quasi-Order Theorem itself tells us that z ki = quo(g}, where
i=1
d = ch(b,ai). Of course, it is obvious on elementary grounds

that quo(b'} | quo(b) if b'|b.

(ii) If we confine attention to odd numbers b of the

form ZQ t 1, then we immediately infer from what we have pro-

ved

-a a - |
¢ 1 2 r
Proposition 3.2 T4 =3 and 2 -1
¢ [ ¢
1 2" r
? r
with ay prime to 2 -1, Zhen z ?i =R, and r (s even.
: i=1
. ial a, . a,

Propeosition 3.2* T4 2 =1 and 2 + 1

. g

Wi al LIRS LD 25+ 1, then
However, sharper results are available for such odd num-
g

bers 2" + 1. To prove these, we first present a combinatorial

lemma. We adopt the notion of a repeating seguence used in the

previous section. (See the remarks following Proposition 2.4).

3

Lemma 3.3 Let kis kyr eenn k be fixed positive integens”.

r-1
Then thene exists at most one posdtive infeger k  duch that

(kl, Kor wvvy k._y1s k) 44 a nepeating sequence.

3 Note that this lemma really has nothing to do with positive

integers. The elements kl’kz' veas K k could be drawn

r-17
from any set.
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Proof unpOSe‘ ’kl’i kz' ":".-‘;-.".'-5-'-1(3__ vigl g~ repéating sequenge.with..

t. N .
pericd s; suppose’ o8 TSR L s

17 "'
with period t; and let ki = ki, i=1, 2, ..., r-1. We will
-

prove that® k;gffﬁwu”*iét “@ =1lom(5,8).  Sineed s|rv

,kJ 118 a repeating .sequence. .

r

t."-_l Loy,

c

= - = L 1
have 2|r, so r 2 If u > %’_1thep..ktas kﬁ» kQ L
i I:)\_""J T,

s3 8sEhme” UU=TIM e A f =Yém(s,t). Then s ft, 51Q96+€h9ngw
: . nen .-

: : L 2 L .
r = £t and a sequence of length £ -cannct repea;-%ch peried

t. {Likewise:.t:f.&.: Recall:that now r = lem{s,t): - )
: = e F e Tat g e Tyt L a i
o . ‘ - Qo -
g a Ageyr o Tan an CA AR Ame oy arunns
o Rwnny

We now adopt the convention that the indices are residues

moduto r, :for the:ssake of.simplicity .of .Statement. Let
N i R R B R o e
-d.% gedisyty =ems -+nt. . Then- r,lnt, E-fms, r {d. S0

pHe RN T P

Tt

R T R G EE ) AU PP v

5nt_= kr :

=
I

-
]

(e 7o o ] - "
’ H ,h - o Lo v
and ok =k =k o=k B
d ms . ms r: .
RO S TS | T ek el
Since %k, = k!, it feollows that k_ = k'.
da .74 . r r

We now--improve on our Prgpos@ﬁions 3.2, 3.2% as fo-
llows.

S Sl SO o

.1 and Lot € b chosen 56 that' "2"2'-1"?>--'al-*.'-"

I , then, wf,;th at mosf one excepfional
1oL T
4 ?_2_2...'!2r o

2
value of £, Z R, =0 and r 44 even. I{f a, = 1, the excep-
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tional value {8 ¥ =2. 1§ al> 1, the exceptional value, {4 Lt

occuns, L4 such that a; £ not prime 2o Ao

Theorem 3.4% Fix  ay and £ef @  be chosen a0 that L1 ay.

al 32 P ar

14 2y , then, with af mosi one exceptional
El 22 ‘e Er
r

vafue of ¢, Z £, = ¢ and T 44 odd. The exceptlional value, {f {t
i=1

ocowhs, L& such that a; A5 not prime to 2 o+,

Proof We will be content to prove Theorem 3.4. Let € be the
least ¢ such that 28 "1 > a.. Then we know from Theorem 3.1,

1
by repetition if necessary, that

7 1 P r r
27 -1 , with Z El = ¢ {3.6)
5 QZ Qr
Then, by Theorem 2.5, for any m 2 0,
a al A al
- 1 2 r
2Q+m -1 {3.7)
21 22 cas Er—l Rr+m

Now, by Lemma 3.3, the sequence (El, g_z, cver R qr B, M) rE

peats for at most one value of m, so that, with this single

possible exception,

KA _ {3.8)

v, - 3

1%, .- g, tm

r~1 r
Theorem 2.5 also tells us that if {3.8) holds r 1is even., If
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a; =1, then _3_[1] - is EXCEDtLOHal If Ay 1, then the

1 1. -
proef of the. theorem 15 completed by appeal to the Quasx Order
Theorem.. S T .

- .. .'x" . JRE - AR P B - S L H }'-f' : oo ower ! r-a-'-‘-,_:- LT
Remarks. . (i). Of course, 1n the excep01onal case X Q.l ﬂ.
- T q;ll 1. Yo egen

(ii) The smallest humber - a...’ such ithat -there . .is no, exceptlonal

1 .....
QT iEither for Qghk'l_lor”EZEufﬂl}ﬂﬂisﬂsaTnﬁ_IQVﬁTD:::mhr S
e T TR TR ST il At 2oy T e

4. Appendix l: remark on notation, with reference to folding, ..

procedures.
R Let us start- w1th an example. If we wish to fold an an-
gle of %%?, appearlng at the tOp of the tape, then our proce-
dure, “givén an‘arbitrary starting-1iné.1AA o+ ©n.the.tape .is. to.
fold dluzdzul {see Figure 7). o' Lnl-nii, Lue el et
Ry - P1: o p
eg - . «
.r!-‘\%.l“ .c’ r" k x-:é!“’ /\‘i" I "‘T"' Ex
‘ N B . L ’ f - VB
!f t ’ . - " i ,’f ~ L P \ ~ . .
., . L . ...‘\ ’, \\ E P \‘ - ,
oL * ~ i - ! S
P— ‘.:‘" \ \\r_:';" t {', " N é_}:n
' & 2 Rl Ty o
F_ig'ure T - . |
197 - : LA s oo Lo .
Then the angl §3 appears, to a hettér and better approxima-
tion, at %? Pyr Pgh . . XNow wé have the reduced’ symbél * 7
- L, 19 11 13 25 o
63 o . (4.1
2 2 1. 1

The entries along the First row, 13, 11, 13,25, - reprekent
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the angles appearing sequentially at P P

an’ Fant1r Fanse2r Panss
respectively: however the entries along the second row 2, 2, 1,
1, represent the folding instructions pertaining to Punti’
Pane2’ P4n+3‘ Pan* This discrepancy suggests that we should
consider rewriting the svmbol so that the folding instruction
at a particular vertex appears immediately below the ‘star-num-

L}

ber' corresponding to that vertex. This would reqguire us to

rewrite {4.1) as, say

63 (4.2)
We pass from {4.1) to (4.2) by a cyclic permutation of the fol-
ding instructions, bringing the last into the first position.

Thus, given a symbol

b {4.3)

we define the modified symbofl to be

b (4.4)

1
cbtain a (reduced) symbol (4.3). Ve could, of course, then form

Noew in practice we are given b and a and wish to

the modified symbol (4.4}, which encodes the folding instruc-

tions and the list ¢f star b-gons which can be folded from the

same tape as that used to fold a | -ép— }-gon. If we are impa-
1

tient toc begin the folding we may well wish to find kr in
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{4.4) without golng through the entire process of obtaining

the {reduced) symbol {4.3}. This, however, is easy.

For a symbol is generated by considering the permutation
f of the set S = Sb of odd numbers *i%, given by the rule:
write b - a, for a€s8s, as 2ka‘, where a' is an odd number,

and set fla)=a'. We would then write, in our symbol,

Thus, to determine what appears below a in our modified symbol,
we must consider the permutation g inverse to f£. Then g
is given by the rule: choose ? maximal so that 22a < b,
and set g{a) = b - 2Qa. This maximal % is then precisely

what appears below a2 in the modified symbol.

The modified symbol has a further aesthetic¢ advantage
over the symbol we have used. For, with the modified symbol,

the key Theorem 2.5 reads

Theorem 2.5 Let kl,kz,..
r
T k, =k = 2. Then for a given odd {nteger a, < 2k_1, we
j=1 1 1
have

-0 kg be positive integens with

21 Lf and onfy Lf 27 -1 .

Such a reformulation (as also of Theorem 2.5%) is then
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immediately translatable into fold-theoretic language! For it
tells us that, if we know how to fold our strip of paper to pro

k-1 2kt

duce a star {—7;— }-gon, then, to produce a star {——7;——}-gon,
we introduce one more fold line precisely at those vertices on
the top edge of the tape which are destined to become vertices

of our polygon.

5. Appendix 2: a few well-chosen examples

We note that, if

a8 2 - - A r
b ’ k., =k,
i=1 *
kl k2 . e s kr
with a, = 1, then, by (2.3},
2% - -1 = bag, (5.1)
where, by (2.5}
Gr-1 r-2 r 01 r
Al = 2 -2 + ...+ (=1)"2 -1y, {5.2}
3
with . = Z Kk, . {5.3)
3= R

Moreover, by our main theorem,

k = guoib}.

Let us apply this to case b = 641. We obtain, by our algorithm,
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{5.4)

1 5 159 241 25 77 141 125 129
6541
7 2 1 4 3 2 2 2 9

Thus we infer, since k = 32, r = %, that

quo(641) = 32
. 32 -
and, indeed, that 2 +1 =0 mod 641.

Moreover, we know from (5.1)

232 4 1 = 641a,,

and, from (5.2)

A. = 223 _ 221 + 219 _ 217 + 214 _ 210 + 29 _ 27 r1

6700417.

This is, of course, Euler's famous factorization showing
that 225+ 1 1is not a (Fermat) prime.4 Only the paper-folding
fanatic would take the view that the principal interest of (5.4)
is that it shows how to fold the regular convex 64l-gon and cer
tain star 64l-gons.

As a second example, consider the symbol

Here k =11, r = 6, so that

4
See, for example, the front cover of [5].
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gque (23} = 11, 2ll - 1= 0 mod 23,

and, again by (5.2), the complementary factor is

A, =2 -2+ 27 - 27+ 2 -1

89

Thus 21l - 1 =23-89 and is not a (Mersenne) prime.
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