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BLOW UP ON ENERGY LEVELS IN CELESTIAL MECHANICS

Ernesto A . Lacomba *

We want to describe here how to study the asymptotic

behavior of total collapse and escape orbits for the n-body -

problem of celestial mechanics by using blow up procedures . .

This approach was begun for total collapse motion by Mc Gehee

191 in 1974, and has been subsequently exploited by many -

authors (see Devaney 121, and references therein) .

The application of said procedures for escape motion

by Lacomba and Simb 171 appeared in 1982, and it has been

	

-

refined since then, by this author 131, ¡51, 161 . We will

also refer in the examples to the expository paper I41 .

Except for negative energy escape behavior, we can

give a general method for describing the blow up, and describe

asymptotic motions with a little more effort . However, only

when the number of degrees of freedom is small it is possible

to have a more or less global picture .

*
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form

In general an n-body problem can be stated in the

$ = pA-1
(1)

p = grad U (q)

where p e

	

IRk , q e

	

N c IRk the set N

	

is an open cone,

	

and

U:N + IR+ (potential energy ) is analytic homogeneous of degree-1 .

The kxk matrix A is positive definite . The Hamiltonian or

total energy is H(q,p) = K(p)-U(q) where

K(p) = 1/2 pA
-1
p
t

is the kinetic energy . Given h c IR, we define the corresponding

energy

	

level by

	

Eh	=

	

(q, p)

	

e N x

	

IRk :

	

H(q,p)

	

= h}

	

.

	

The

	

-

equation defini .ng 1t or energy relation is written as

The projection of Eh to configuration space is the

so called Hill region U + h > 0 . This is a manifold with -

boundary U = -h (zero velocity points) .
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(2) K(p) = U(q) + h .

If h < 0, in some sense U as attracting potential

predominates over K, energy due to the motion (see (2)), gi-

ving the possibility of bounded or recurrent motions .

If on the contrary h > 0, then K predominates over

U, making it easier to escape .



For example in the n-body problem in IItd (d = 1,2 or

3 dimensions) with the usual coordinates we take q = (xl, . . .,xn),

p= (m1 i l , . . . . mnxn ) where xi ,xi s IRd

	

are positions and velocities

of the bodies respectively . Then

The kinetic energy is simply

m. m .
U(xl, . . .,xn) _

	

G

where r31 = Ix j -xi 1 and G is the gravitational constant .

z
K(p) = i ~mi lx i l

i

we remark that for an n-body problem system (1) has

forces are internal and attracting .

the other hand, (1) does have singularities, corresponding

to collisions of 2 or more bodies . It is an open question -

if more complicated singularities can occur for n > 3 or -

d > 1 . Of these singularities, binary collisions can be

	

-

no equilibrium points, since

On

treated by the so called regularization j8j, while total

collapse for any number of bodies is studied by a blow up .

1 . Blow up at the origin 191 . The idea is to pass

to "polar coordinates" in configuration q-space with a co-

rresponding consistent change in momenta variables so.that -

the energy relation is not singular at q = 0 any more . Since

energy relation corresponds to a fixed energy h, we work on a

fixed energy level . Since differential equations will still

stay singular, we take an additional change of time scale .
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The natural radial coordinate or "norm" is the -

radius of inertia

	

r =

	

qd Aq` , with respect to which unit

	

-

vectors or "angular" variables are

	

Q = r-1q .

	

Substitution

into (2) by taking into account the homogeneity of U gives

Since K is also homogeneous but of degree 2

	

-

(quadratic), the right momenta transformation is P = r 1/2 p, -

giving the energy relation

already regular at r = 0 (i .e .q = 0) .

When equations

	

(1)

	

are wri ttán in tcrs of the �e �

coordinates (r,Q,P) they are still singular at r = 0 . This -

singularity is easily removed through the change of, time scale

dt = r3/ 2 dT, which slows

	

down orbits where r i 0 . Approach

to total collapse of the system r = 0 takes place in infinite

T-time (asymptotically), while it happens in finite physical

t-time . We get the system
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rK (p)

	

= U(Q)

	

+ rh .

(3) K(P) = U(Q) + rh,

r' = rv

(4) Q' = PA-1 -vQ
P' = grad U(Q) + (v/2)P,

where ' = d/dT, v = Q " P, r > 0 and coordinate Q takes values

in the submanifold .

(5) S = {Q e N ; QAQt = l}



The new momenta P is constrained by the energy -

relation (3) . We verify from (4) that the vector field is -

still defined for r = 0 . In the new coordinates the flow has

been extended to the boundary C (obtained by setting r = 0)

of the following manifold with boundary

Eh uC = {(r,Q,P) : r > 0, Q E S, K(P) = U(Q) + rh}

Since r = 0 implies r' = 0 in (4), C is an invariant
manifold for the flow . Orbits in Eh going to or coming from
total collapse will now approach C asymptotically as T ; +-.

In terms of the physical problem, C and its flow are

fictitious

	

but give information about total collapse .

There are equilibrium points for the vector field

(4) . They belong to C (r = 0) as expected, since we remarked

above that (1) has no equilibrium points .

Said points are defined by the equations

(4') grad U(Q) = -U(Q)QA

P+ _ + í_2UQA

The solutions to the first equation are known as -

central configurations of the system and they are interpreted

as the .critical points of the restriction UI S . We state the

most important result 111 for the study of the flow :



Proposition 1 .- If UI S is a Morse function, then

all the (isolated) equilibrium points for the flow on C are

hyperbolic and the flow is gradient-like with respect to the

function v .

We will end this section by describing a couple of

examples (see I4l,where figures are shown for each transforma

tion) .

Example 1 . Consider the Kepler problem .in 1 dimen

sion . In this case the differential equations are

for x

	

> 0 ,

	

v

	

e IR .

	

The energv

relation reads as follows,

giving solutions as level

curves (see figure 1, right) .

(6) y 2/2= x-1 + h .

Notice that y -> +~ if x + 0 .

	

Fig . 1

Blow up at origin x = 0 for one degree of freedom

amounts to keep x as radial coordinate, with a momenta

	

-

transformation

	

v = ~r-x y .

	

The energy relation (6) becomes now

and the time change is dt/dT = x 3/z
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(7) VZ/2= 1 + hx,



The phase portrait is very much like Fig . 1, except

that now the orbits approaching collision have exactly 2 -

asymptotic finite values, since v -> +a when x -> 0 . The -

collosion manifold C consists of those 2 (equilibrium)

	

-

points (0,+,/T) glued to level curves for each fixed h . Topology

of EhuC is a closed interval [0,11 if h < 0, and two half-open

intervals

	

[0,1)xS° if h

	

> 0 .

For comparison with blow up, let us consider the -

regularization of binary collisions x = 0 (Levi-Civita, Sundman) .

This is performed througTthe substitution u = xy, which gives

a new energy relation .

(8) u z/2= x + hx2,

with a different change of time scale dt/dT = x to take away

the singularity in the transformed differential equations, -

getting a non homogeneous linear system

x' = u
(9)

u' = 2hx + 1

Again the result is valid only for each fixed h .

Now the orbits approaching collision go towards the origin in

configuration space, which is not an equilibrium point, as -

we see from (9) . Motion has been prolonged through x = 0 -

like an elastic bouncing, contrasting blow up, where x = 0

is approached in infinite T-time . The topology of a regularized

Eh is S1 if h <

	

0

	

(periodic motion)

	

and 1R

	

if h >

	

0

	

(unbounded-
motion) .



In our 3- and 4- body examples. to follow, binary

collision singularities will remain after blow up of total

collapse . A regularization can usually be applied, so that we

assume it was performed .

Example 2 . Consider the isosceles (planar) three

body problem . We are given a partirle of mass a moving along

an axis and two partirles of unit mass symmetrically situated

with respect to the axis . Using Jacobi-like coordinates the

energy relation is

t
(10) 1/2 pA-1pt = (2x) -1 + 2a(x2+y2)_ /z + h,

where

	

A = diag (2,2x/(2 + a ) )

	

x > 0 r y e IR

This problem has been studied by several people,

including Devaney, the author with Losco, and Simb .

The simplest triple collision orbits are the so-called

homothetic solutions : homotheties in time of the collinear or

of the 2 possible equilateral triangular central configurations .

Such orbits are regularizable, but without a continuous dependence

on initial conditions to nearby orbits 111 .

From (4') we conclude that these 3 central configura-

tions generate 6-equilibrium points for the flow on C . Said

points are hyperbolic for the flow on Eh u C

	

for any a, all

of them having invariant submanifolds of dimensions 1 and
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In Figure 2 we . show the flow on C (which topologically is

invariant

the flow on C spirals

The gradient-

also made -

2 .

S Z minus 4 points), the homothetic orbits and

folds near C . We assume a < 55/4-so that

at the equilibrium points on the symmetry axis .

like structure with respect to the "height" v is

clear .

Fig . 2

submani

remark in the introduction

0, we can apply symbolic dynamics

of ejection - collision orbits, periodic

some other kind of recurrente . We start

As expected from our

about motions for h <

to show the existente

orbits or orbits with

by remarking that in this case respective homothetic orbits -

connect in Eh (outside C) as shown in Figure 3 . The spiraling

in variant manifolds intersect each óther a countable number



of times in the plane v = 0 . This implies the existence of

heteroclinic orbits .
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2 .- Blow up at infinity 171 .- We have to consider

here three cases, according to the sign of the energy .

with energy relation

K (P)

	

= U(Q)

and time change dt = P-3/2dT, a speed up when p -> 0 . The

vector field is like (4), except that the first equation is

replaced by p' = -pv . It is also defined for p = 0, which

Tf h > !1 we modifv tha "nnlar rnnrdinates" in Rae-t-inn

1 by replacing r by p = r-1 , so as to blow up the infinity of

configuration space with an appropiate momentum transformation .

The case h < 0 is quite different, as we see below .

I)

	

If h = 0,

	

let P = P-1/2

	

p .

	

This amounts to the

substitution r = p-1 everywhere in McGeheetransformations, -



defines an invariant infinity manifold No , where

E0UN0 = {(P,Q,P) : P > O,Q E S, K(P) = U(Q)}

In global terms we have an energy level with 2 -

boundary components : E0UN0UC . In this case the flow is

	

-

-projectable on C or No along r or p, in a sense which can

be made precise .

We can check that the flow on No is identical with

that on C and equilibrium points are the same . This recovers

the classical result that for zero energy, escape to infinity

is asymptotically identical to total collapse .

II) If h > 0 the above transformation does not work,

since energy relation (3)-with r = p -1 is singular for p = 0 .

We change momenta transformation to the trivial one P = p, which

gives an already regular energy relation

(11)

	

K(P)

	

= pU(Q)

	

+ h,

nontrivial at p = 0 only if h > 0 .

In the new coordinates p,Q,P, differential equations

annihilate for p = 0 .

	

We speed up orbits with the change of -

time scale dt = p -1 dT to get the following system of equations

p
1

	

=

	

-p v

(12)

	

Q'

	

= PA-1-vQ
P'

	

= p grad U(Q)
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The flow is again defined and nontrivial for p = 0,

having a corresponding infinity manifold Nh , where

EhuNh = {(P,Q,P) : P > 0, Q e S, K(P) = PU(Q) + h}

In this case the equilibrium points for p= 0 on Nh

form two submanifolds

Sh±
_ {(p,Q,P) :P = O,Q E S,P = + í2h QA}CNh ,

with a very simple flow structure studied by the author 131 :

as normally hyperbotic submanifolds . In fact, Sh is an attractor

and Sh is a repellor . Besides, the flow on Nh is gradient-like

with respect to v .
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Proposition 2 .- The vector field on Eh UNh has SI

Any asymptotic direction of escape to infinity is

possible, since S + (and S- ) has one point for each direction

Q E S . This is in contrast with the case h = 0, where only -

central configurations are possible . That the flow is gradient

like with respect to v is seen by checking that

v' = Q'AQ' t > 0 if p = 0, with v' = 0 exactly at equilibrium

points .

We consider again the examples in §l .

Example l .- Set z = x-1 in the energy relation (6)



for the Kepler problem . We get

(13) y2 /2= z + h,

with the `ange of time scale dt/dT = z-1 . This is a transfor

mation type II, good for h > 0 .

From (13), we see that solutions are parabolas 141,
truncated by equilibrium points at x = 0 (since h > 0), because

of the condition x > 0 . We can now give the complete topology

of EhUCUNh , as two closed intervals [0,1] x So , the endpoints

being of course equilibria .

The description in the new coordinates is still -

good for h < 0, only that the mation is then bounded (relation

(13) gives parabolas bounded away from z = 0), and there is no

infinity manifold .

Example 2 . The topology of EhUNhUC for h > 0 in the

planar isosceles 3-body problem is (S 2 -4 points) x 10,11 . -
However, the flow on EhUNh changes with h . If h = 0, Nh has

6 critical points as in Fig . 2 ; for h > 0 we have two curves

Sh of critical points .

Consider the case h = 0 . Because of projectability

of the flow, the invariant submanifolds of hyperbolic equilibrium

points on No and C connect each other across Eo .

	

In Fig .

	

4 a)

we show one of those submanifolds W, which comes from C, while



its outer orbit f is in No

from collinear configuration escape as t }

¡fa <55/4), asymptotically ending up in an

ration escape as t -> + - , passing as close

collision . The projection of Y to

in Fig . 4b) .

There is an orbit Y in W coming

configuration

-~ (with oscillations

equilateral configu

as we like to triple

space is shown

Similar motions in the collinear 3-body problem for

h = 0 were considered in 1 7 1 .

b)

III)

	

If h < 0

	

the situation is more ccrnplex, since at

least one of the mutual distances rij must be bounded, because

energy relation (2) implies U > -h > 0 . Hence, the above -

spherical blow ups along rays 0 e S do not work here, since -

for one thing they do not distinguiste at infinity between bounded

motions and collisions .



Another way to see that is by observing that

U(q) -> 0 when q -> - on a fixed ray, because of homogeneity

of U . If in addition h < 0, eventually there is no value of

p satisfying (2) and hence, no motion(see 161 for a detailed

discussion) .

In the particular case n = 2 bodies there is no

infinity manifold, because U ¡ S is bounded and all the negative

energy solutions are bounded .

The answer for n > 3 bodies in general is to keep

track of all the possible partitions into particle clusters,

to construct the different patches of the infinity manifold .

We will sketch the ideas of the modified blow ups

for the isosceles 171 and the trapezoidal 131 problems on

	

-

negative energy levels, but our method is valid for n > 3 body

problems in the plane or the space (see the forthcoming
paper 151) .

Example 2 .- Coming back to the isosceles problem,

we can see from energy relation (10) that if h < 0 escape

occurs only for y + + w or y -~ -

We let y = p -1 > 0 for the first possibility,

which can be interpreted as blowing up of a portion of the

x-axis, transforming (10) into the form

(14)

	

1/2

	

pA-1pt =

	

(2x) -1	+

	

2ap (1+p 2 x2 )

	

/2 + h .



We see that no momenta transformation is needed,

since (14) is regular for p = 0 . No change of tine scale -

either, as we check from the transformed differential equations .

The flow at the corresponding infinity manifold Nh describes

an unmatching at infinity of a binary with fixed negative

	

-

energy, going away with constant velocity from the third

	

-

particle .

We have similarly a symmetrical component Nh of

infinity manifold by letting y =-.p -1 < 0 . The topology of -

EhUN+UNhUC in this case is more complicated than before :

Eh is a 2-hole solid torus, Nh and Nh are both topologically

SZ- 2 points, and C = SZ - 4 points as before . See ¡41 for the

descriptive figure .

Example 3 .- Consider now the trapezoidal

4-body problem in the plane . In this case we are given 4

	

-

partirles : two of unit mass symmetrically situated with respect

to an axis in the plane . The other 2 partirles of mass a are

also symmetrically located with respect to the axis . Using -

Jacobi-like coordinates x,y > 0 and z e IR, the energy relation

reads as

where R1 =

	

(xz,

	

R2 =

	

(x+ 2 .

_i

	

i
p1
2 /4 + p2/(4a)+(1+a

	

)p3/4 =

	

(2x) _+ a2/(2y)+2a/R1+2n/R2+h .



A description of the quadruple collision manifold C

in this problem has been made by the author .

To get an idea of the behaviour at infinity for h < 0,

we see that the Hill region in configuration space (IR+)2x IR

is limited by the half-planes x = 0, y = 0 and the zero

	

-

velocity surface U = -h which is asymptotic to the cylinder

R1 = -2a/h and to the simpler surface (2x) -1 + a 2/(2y) = -h

	

-

(two components) . The latter is in turn asymptotic to both

half-planes

	

x = -(2h) -1 and

	

y-= -a 2 /(2h) .

For Ihi big enough, we can change the notion of rays

by using the C smoothing out at corners of the new sphere -

shown in Fig . 5, instead of the unit "sphere" S in (5) .

	

-

Intersection with the Hill region are the 2 shaded pieces, -

giving the components of the infinity manifold .
z

(-z =1 /J2-

This unit sphere defines a new norm or radial

coordinate in configuration space, which amounts in each patch

to a blow up of a portion of the xy plane through + 2-1/2
z-1,

_
'/2of a portion of the x-axis through (y 2 + z 2 )

	

, etc . Computing



the flow in each of these 2 cases 151, we get an unmatching -

into 2 Kepler (regularized) collinear problems in the first -

case . "fin the second case partirles of mass a escape each one

on its side like 2 individual clusters whose center of mass

moves with uniform velocity away from the negative energy

	

-

binary cluster of unit mass partirles .

The 2 componente of infinity manifold are topologically

Nh = S1 x Slx D2- D2 x So and Nh = S4 - 2 points, where De is the

open 2-ball .

3 . Extension to other forre laws .- The above blow up

procedures can be extended to mechanical systems (1) where U

is a homogeneous function of any degree k e IR(see 161) .

The simplest examples keeping k = -1 as in celestial

mechanics are repulsive n-body problems (with positive charged

partirles), or with a combination of attractive and répulsive

coulombian forres (different sign charged partirles) . We get

the following variations of the isosceles plane (gravitational)

3 body problem of Example 1 .

Example 4 .- The isosceles plane repulsive 3-body -

problem, where we just replace the function U in (10) by -U,

getting the energy relation

- 1(14)

	

1/2pA-lp
t = -(2x) -1 -2a (x 2+y 2)

	

/2 +h .



with A as before . This corresponds to a charged particle of

charge a>0 moving along an axis and two particles of unit -

charge symmetrically situated about the axis . In this case

we always have h > 0 with no collisions, and typical Hill -

regions in configuration space are shown in Fig . 6 . Case a)

corresponds to the limiting case a = 0 (restricted problem),

which has been studied by Peredo 1101 .

y

-1 . The energy relation becomes

a) a = 0

	

b) a > 0
Fig . 6

'/2(15) 1/2 pA-1pt = -(2x) -1 + 2a (x 2 +y 2 ) -

	

+ h

Exale 5 .- The plane isosceles Helium atom problem

161 , where symmetrical particles in example 4 have now charge

There are 3 different cases as shown in Fig . 7, where

some typical Hill regions are shaded .Collisions do occur only



in case a) for h < 0, as in the case of the shaded shown sector .

The reason is that the positive charge is big enough to overcome

the repulsion of the others
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