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SEIFERT ORBIFCLDS AND THEIR UNITARY TANGENT SPACE

Maria del Carmen Gazblaz Arteta

Introduction

In this paper we define Seifert orbifolds as geometric

2nf .
structures on surfaces, allowing singularities of angles
i
i.e. in a sector
rels 2af ,
P={ / 0<8 <—=}
r small 2ﬂﬁi i
i
. n,
we identify two parts re10 and re + and we call this co-

cient P/Gi (Gi is the group generated by fi' given as

2nf .
i
fi(x) =X . e ).

We prove that these structures can be defined, in a natural
way, from polygons in H2, IR2 or 52 with the same angles
and that the unitary tangent bundle to a polygon projects to a
Seifert orbifeld. This paper deals with a geometric interpreta-
tion of the construction of foliations on Seifert bundles as it
appears in "Foliations on Seifert Bundles", Ph.D. Dissertation,

University of Chicago 1977 of the author; and a preprint of the

same title in 1980, with some correcticons on the computations
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and more general results. The same problem of existence of trans
verse foliations is approached with different methods in the pa-
per "Transverse Foliations of Seifert Bundles and Self Homeomor-
phisms of the Circle™, D, Eisenbud, U. Hirsch, W. Newmann, Co-

ment., Math. Helv 56, 1981, 638, 660.

I.- Seifert orbifolds and their unitary tangent space

1l.1. pefinition.- A Seifert orbifold is a closed surface of ge-
nus g,Bg, with the following additional structure:

a) Bg is covered by open sets {Ui}, where each Ui is asso-

ciated to a homecomorphism

2B .

where P, = {rele, 08 < = X, r>0 being a small number}
i
for some pair of integers (f,,n.) with 0 < §, <n,, and @,
i i ZHE i
is the group generated by the rotation of angle = L,
i
b) Whenever u, Uj' there is an injective homomorphism

£.. 1+ G, — G, and
ij i 3

an isometric embedding preserving the canonical orientation

so that the following diagram commutes:
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p, ——+ P,

‘"Given a Seifert orbifold structure on Bg' we can choose
an open cover {Uaj of Bg and a subcollection {Ui}i=l,...,N'
such that R, = 1 for a & {1,...,H8}, ny #1 for i=1,...,N.

i bifol
We denote the Seifert orbifold by B(g'{(ni’ﬁi)}’N}'
with the convention that g will be positive if Bg is orienta

ble and g will be negative if Bg is not orientabkle.

Let us suppose that P 1is a geodesic polygon, that can

: 2 2 2 ; .
be realized in H", IR or 8%, with sides {Si}i=l,...,2N+4g
positively oriented and angles o between Si and Si+1'
with values
{a.} = {2nﬁl 2N 2“32 2nﬁN 2 }
it T n; ' 4g+N’ n, 777 ng’ 4gN'TCC

for pairs of integers (ni,ﬁi) with ¢ < ﬁi < n; .
Let us denote the polygon by P(g'(nl'ﬁl}"'°’(nn’ﬁn}

and let (f be an isometry sending 821_1 to S2i

i}i=1,..‘,N
while we shall denote by 95 the isometry sending §

-1 . R
S2N+4j+i+2’ ij=i,....,g9, 1 = 1,2.

2Nt4§ +i ©©

Similarly we can consider a polygon P
{gr (nlrlgl} :---,{nNﬁN)}
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2B, n ¥,  op 2By on .
L 29N’ Tmy ' 2gRNCCCCT Th v ZgERCCC
i=1,...N+2g. The {fi} are defined as above and g; sends

with angles {ai} = { =

Sonszie1 O Sont2j+2 I=0re--sg-L
Let & be the group generated by {fi,gi} for a giwven

polygon P(g;(nl'ﬁl)"°"(nN'3N)). The isometries fi are con-

jugate with rotations and the isometries g; are hyperbelic
functions; they can be considered also as diffeomorphisms of
the circle restricting to the boundary of H2 {in the case of
82 or IR2 they are rotations). Therefore they act on the
boundary of P and on the fibre of these points i.e. G acts
on the unitary tangent space of the polygen
T, (P .
1% ai tny,81) vl tng By
1.2, Theorem.-

Given a pelygon P{g,{nl,ﬁl},...,{nﬂ,ﬂw} we have the fo

llowing conmutative diagram:

Tl(P}
Tl(P) -
ol
P
] R— a

1) p is a Seifert bundle with Seifert invariants, [3],

{¢, o, 9, N‘2+29; nl: ﬁlf-o-r?Nr BN)
for mlﬁi + Tyny = i, G < ﬁi < n, if q 2 0.

1') p is a Seifert bundle with Seifert invariants:
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(0, n. =-igl, N-2+| gl , nlﬁl,...,ﬁN) for miﬂi +Tun = 1,

o <, N < n, if g < 0.

194

2} T gives to G an structure of Seifert orbifold

Blgfng8)), W

T, (P)
3) ﬁ; ——EL* admits a connection on the Seifert bundle.

(L]

1.3, Definiton.- A connecticn in a Seifert bundle ¢:M — B,

g >0, is a one for 8 € Aa'(M) - satisfying:

Dy

where Rg is given by the action of g on M, and
Ay ot R — TXM is the induced map on the tangent spaces of
the map Sl — M, given by the fiber in a point.

If B is a non-orientable closed surface, I : B' — B
is the oriented double cover with group G of covering trans-
formations, then a connection for a Seifert bundle ¢t (M B, B)
is a one form 8 with twisted coeficients A'(M:;IRt{G]} such
that N*{§) is a connection for the dcuble Seifert bundle of
£ over B'.

We call the image of A, vertical vectors of the conneg

ticn and the kernel of Hx horizontal vectors of the connection.

proof of 1.2.-

8. g
a) Suppose that EH}- <N - 2 + 2g(2n—j‘ <N - 2+|gl} there
’ i i
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fore P can be realized in hyperbo'lic or euclidean geometry.

G 1is a subgroup of Mcebius transformations of H2 and

therefore theirs restriction to the boundary is a subgroup of

1 1

TOPS {homeomorphisms of 57).

i) We claim that IEZg'EZg—ll" ,,[Ag"zD El]" ceofy o £y 1S
a translation by N-2+2g 1f 0¥, (x)-x<1, 0<3, (x)}-x<1.

T. (P)
i1} lG ig a Seifert bundle with Seifert invariants

(¢, o, b, nl' ﬁlao-olﬁN}-

144) b = [y 08y 1] on-rofpo £

To prove ii) cobserve that, if BE is a small ball in the

2186 |
vertex o 1, then Be P 1s isometric to a small ball in the
i 2118 .
center of H? with points reie, 0=<f = o . Let ~ the equi-
i
valence relation
o atig, aMp, -
(relﬂ,e:."'p] ~ [re.-j'(ﬂ + n, ), ei(sb+ 5 )]‘.

We construct a covering map from a solid torus to

'1’.‘1[13E NP) as follows:

(B NP} x S1
T £

—

ZI'lk,Gi

' iy - }
_(reiﬂ ﬁi' e ny }

1eiw] —_—
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The group of covering transformations is generated by:

21
Ry

i 20
LA )

g 1{6 +
e

i i
g (re” , &7} = ({r
{n;,mg)

where #.m. + r.n, =1 for integers 1 €m, < n;.
ivi iti i i

p) 1f Brown-2+20 BN -2+ 1qg)
n n
1 _ i
then the polygon can be realized in 52, and the proof works
as in case a}.
The proof of i} and iii} is just é trivial geometric ar-
gument. Then we have proved 1) or 1'). 2} is trivial and 3) is

given by the proyection of the standard connection of Hz, Eg

or 82 on B .

g

1.4, Definition.- In the conditions of theorem 1, 2, we call

T, (P}/G the unit tangent bundle to the Seifert orbifold

B .
If g=0, N=1, or g =0, N=2, nl¢ n, we define the unita-
ry tangent bundle to B(O {(n,,B.)},N) 328 the Seifert bundle
’ i! l r

over 82 with Seifert invariants
(6, o, o, -1, (n;,6;)) and 0,0,0,0,1n,,84},{ny,8,1})

1.5. Definition.- A Seifert orbifcld B has an

g, ((n .80}
associated number

95



ﬁi
~(N-2+2g - Z-—}, g = 0.
n
i
ﬁi
-(N-2+lgl - Z =), g < 0.
n
b3
that we call Euler chracteristic of the Seifert orbifold.
Obsérve that 1.5 is well defined by theorem 5 in Seifert's pa-

per i3] .
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