Pub. Mat. UAB
Vol. 28 No 2-3 Set. 1984

ON A CERTAIN TYPE OF PRIMITIVE REPRESENTATIONS OF RATIONAL INTEGERS AS SUM OF SQUARES
 Angela Arenas

Introduction.

It is well known that a positive integer not of the form $4^{a}(8 m+7)$ can be expressed as a sum of three integer squares. Dirichlet (cf. [1]) proved that a positive integer admits a primitive representation as a sun of three squares if and only if it is not of the form $8 \mathrm{~m}+7$ or 4 m .

An interesting problem is to consider integers n which admit a representation as a sum of three squares with one summand prime to n. Of course, such a representation is primitive. This type of representations appears in the resolution of some Galois embedding problems (cf, [3]).

Obviously if n admits a primitive representation as a sum of two squares, (i.e. if $4 \nmid n$ and no $p \equiv 3(\bmod .4)$ divides n), then each summand is prime to n. Hence, the problem makes only sense for the integers which admit a primitive representation as a sum of three positive squares. These integers were characterized by A. Schinzel ([2]).

We have checked with a computer that for every Schinzel integer ≤ 10000, there exists at least one representation as a sum of
three positive squares with a summand prime to n.

In the present paper, we show that for some Schinzel integers, each primitive representation as a sum of three positive squares has at least one summand prime to n (Th. 1).

Moreover, we show (Th. 2) that given a prime number $p>2$, its powers always have a representation as a sum of p squares prime to p. This statement for $p=3$ was first made by E. Catalan (cf. [1]).

We recall that a representation of a positive integer n as a sum of three squares $n=x^{2}+y^{2}+z^{2} ; x, y, z \in Z Z$, is said to be primitive if $(x, y, z)=1$.

Definition. We say that an integer n is a Schinzel integer if it admits a primitive representation $n=x^{2}+y^{2}+z^{2}$ with $x y z \neq 0$.

As it is proved in [2], an integer n is a Schinzel integer if and only if it satisfies the following two conditions:

1) n : $0,4,7$ (mod. 8)
2) n has a prime factor $p \equiv 3$ (rod. 4) or n is not a "numerous idoneus" in the sense of Euler.

Theorem 1. If n is a Schinzel integer, and n has, at most, two distinct prime factors congruent to 1 or 2 (mod. 4), then every primitive representation of n as a sum of three positive squares has, at least, one summand prime to n .

The proof of the above theorem follows immediately from the

Lemma 1. If $n=x^{2}+y^{2}+z^{2}$ is a primitive representation of n as a sum of three positive squares and p is a prime factor of n which divides one of the summands, then $\mathrm{p}=1$ or 2 (mod. 4).

Proof. Under these conditions -1 is a square (mod. p).

Another consequence of this lemma is the following:

Corollary 1. If $\mathrm{n}=\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$ is a primitive representation of n as a sum of three positive squares and every prime p which divides n is congruent to 3 (mod. 4), then $(x, n)=(y, n)=(z, n)=1$.

Remark.
Theorem 1 is not true for an arbitrary n, for example, $870=$ $=2.3 .5 .29$ is a Schinzel integer which admits the primitive representation: $870=2^{2}+5^{2}+29^{2}$.

Let us now consider the problem of representations of the powers of an odd prime p as a sum of p squares.

Theorem 2. Every power of a prime p$\neq 2$ can be represented as a sum of p squares prime to p.

Proof. Let p be an odd prime and $A=p-1$. Since the norm N in $Q(\sqrt{-A})$ is multiplicative, we obtain in $\mathbb{Z}[\sqrt{-A}]$ the identity:

$$
\left(x_{1}^{2}+A y_{1}^{2}\right)\left(x_{2}^{2}+A y_{2}^{2}\right)=\left(x_{1} x_{2} \pm A y_{1} y_{2}\right)^{2}+A\left(x_{1} y_{2} \mp \cdot x_{2} y_{1}\right)^{2}
$$

So we have, $\left(x_{1}^{2}+A y_{1}^{2}\right)^{n}=x_{n}^{2}+A Y_{n}^{2}$. From this we get the following recursive formulae:

$$
\begin{aligned}
& X_{n}=X_{n-1} x_{1} \pm A Y_{n-1} y_{1}, \\
& Y_{n}=X_{n-1} y_{1} \mp Y_{n-1} x_{1}
\end{aligned}
$$

Clearly, $p=N\left(x_{1}+\sqrt{-A} y_{1}\right)$ for $x_{1}=y_{1}=1$, hence $p^{n}=X_{n}^{2}+A Y_{n}^{2}$, where X_{n} and Y_{n} are given by the above formulae.

Thus, every power of $p>2$ can be written as a sum of p squares, being p-1 of them equal. One can easily see by induction that if X_{n-1} and Y_{n-1} are prime to p, then X_{n} and Y_{n} can be chosen to be so.

The values of X_{n} and Y_{n} can be explicitly given, in fact:

$$
x_{i 1}=\frac{\left(x_{1}+y_{1} \sqrt{-A}\right)^{n}+\left(x_{1}-y_{1} \sqrt{-A}\right)^{n}}{2}, \quad Y_{n}=\frac{\left(x_{1}+y_{1} \sqrt{-A}\right)^{n}-\left(x_{1}-y_{1} \sqrt{-A}\right)^{n}}{2 \sqrt{-A}}
$$

with $X_{n}, Y_{n} \in \mathbb{Z}, \quad n \in \mathbb{Z}^{+}$.

We give now another proof of theorem 2. This new proof yields various representations of p^{5} as sum of squares prime to p. In particular, we can get different representations from the one obtained in the first proof. Let us consider the bilinear form:

$$
\begin{aligned}
& \mathbb{Z}^{k} \times \mathbb{Z}^{k} \longrightarrow \mathbb{Z} \\
& (a, b) \longmapsto a \cdot b=\sum_{i=1}^{k} a_{i} b_{i}
\end{aligned}
$$

with

$$
a=\left(a_{1}, \ldots, a_{k}\right), b=\left(b_{1}, \ldots, b_{k}\right) . \quad \text { Let } \quad q(a)=a \cdot a=\sum_{i=1}^{n} a_{i}^{2},
$$ be the associated quadratic form; then the equation $q(X a+Y b)=$ $=q(a)^{2} \cdot q(b)$ has at least two integer solutions given by $\left(x_{1}, y_{1}\right)=$ $=(0, q(a))$ and $\left(x_{2}, y_{2}\right)=(-2 a b, q(a))$.

Proposition 1. If an integer is a sum of k squares, then so are its powers.

Proof. Let

$$
n=\sum_{i=1}^{k} a_{i}^{2}, \quad a_{i} \in \mathbb{Z}, \quad i=1, \ldots, k
$$

We show by induction, that n^{t} is a sum of k squares, for every $t \in \mathbb{Z}^{+}$. We now distinguish two cases:
i) Let t be even, $t=2 s, s \in \mathbb{Z}^{+}$. From the identity:

$$
\begin{equation*}
\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{2}=\left(-a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}\right)^{2}+\left(2 a_{1} a_{2}\right)^{2}+\ldots+\left(2 a_{1} a_{k}\right)^{2} \tag{1}
\end{equation*}
$$

we deduce that n^{t} is a sum of k squares, because $n^{t}=\left(n^{s}\right)^{2}$ and, by induction, n^{s} is of this type.
ii) Let t be odd, $t=2 s+1, s \in \mathbb{Z}^{+}$. It follows that

$$
\left(\sum_{i=1}^{k} a_{i}^{2}\right)^{2}\left(\sum_{i=1}^{k} b_{i}^{2}\right)=\sum_{i=1}^{k} c_{i}^{2},
$$

with $c_{i}=q(a) b_{i}-(2 a b) a_{i}, \quad i=1,2, \ldots, k$. From this identity we get that n^{t} is sum of k squares, because $n^{t}=\left(n^{s}\right)^{2} n$.

Second proof of theorem 2. If p is an odd prime, then p admits the obvious representation as a sum of p squares $p=b_{1}^{2}+\ldots+b_{p}^{2}$ given by $b_{1}=\ldots=b_{p}=1$. Then from proposition 1 we obtain that every power of p is a sum of p squares. Let us see that they can be chosen to be prime to p. As before, we distinguish two cases:
i) Let $t=2 s, s \in \mathbb{Z}^{+}$. If by induction a_{1}, \ldots, ${ }_{p}$ are nonzero in F_{p}, so are $2 a_{1} a_{j}$ for $j=2, \ldots, p$. Since $p>2$, the rest follows immediately from (1).
ii) Let $t=2 s+1, s \in \mathbb{Z}^{+}$. We have $p^{t}=\left(p^{s}\right)^{2} p$, where $p^{s}=a_{1}^{2}+\ldots+a_{p}^{2}$, $\left(a_{i}, p\right)=1, \quad i=1,2, \ldots, p$ (by induction), and $p=b_{1}^{2}+\cdots+b_{p}^{2}, b_{1}=\ldots$ $\ldots=b_{\mathrm{p}}=1$. By proposition 1 we have

$$
p^{t}=\sum_{i=1}^{p} c_{i}^{2}, \quad c_{i}=q(a) b_{i}-(2 a b) a_{i}, \quad i=1, \ldots, p .
$$

As $-2 a b=-2\left(a_{1}+\cdots+a_{p}\right)$, we can always suppose that $-2 a b \equiv 0(\bmod p)$. Since $p^{s} \equiv 0(\bmod p)$, we get $c_{i} \equiv(-2 a b) a_{i}(\bmod p)$, hence, the integers $c_{i},(i=1, \ldots, p)$, are also prime to p.

REFERENCES

[1] L.E. Dickson, History of the Theory of Numbers. Vol. 11, p. 267 (1919).
[2] A. Schinzel, Sur les sommes de trois carrés. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 7, pp. 307-310 (1959).
[3] N. Vila, Sobre la realització de tes extensions centrals del grup alternat com a grup de Galois sobre el cos dels racionals. Pub. Mat. UAB 27, nưm. 3 (1983), 43-143.
Rebut el 19 de mars del 1984
Departamento de Algebra y Fundamentos
Facultad de Matemáticas
Universidad de Barcelona.
C/ Gran Via, 585
Barcelona 7.
SPAIN

