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Introduction .

ON A CERTAIN TYPE OF PRIMITIVE REPRESENTATIONS

OF RATIONAL INTEGERS AS SUM OF SQUARES

Angela Arenas

It is well known that a positive integer not of the form

4a (8m+7) can be expressed as a sum of there integer squares .

Dirichlet (cf . [1]) proved that a positive integer admits a primiti-

ve representation as a sum of there squares if and only if it is not

of the form 8m+7 or 4m .

An interesting problem is to consider .integers n which admit a

representation as a sum of there squares with one summand prime to n .

Of course, such a representation is primitive . This type of represen

tations appears in the resolution of some Galois embedding problems

(cf . [3]) .

Obviously if

	

n admits a primitive representation as a sum of

two squares,

	

(i .e .

	

if 4 ~ n and no p= 3

	

(mod .

	

4) divides n),

	

then each

summand is prime to n . Hence, the problem makes only sense for the

integers which admit a primitive representation as a sum of there

positive squares . These integers were characterized by A . Schinzel

([2]) .

We have checked with a computer that for every Schinzel

integer <10000, there exists at least one representation as a sum of



three positive squares with a summand prime to n .

In the present paper, ' we show that for some Schinzel integers,

each primitive representation as a sum of three positive squares

has at least one summand prime to n (Th . 1) .

Moreover, we show (Th . 2) that given a prime number p> 2, its

powers always have a representation as a sum of p squares prime to p .

This statement for p=3 was first made by E . Catalan (cf . [1]) .

We recall that a representation of a positive integer n as a sum

of three squares

	

n = x2+y2+z2 ;

	

x,y,z E 7l,

	

is said to be primitive

if (x,y,z) = 1 .

Definition . We say that an integer n is a Schinzel integer if it ad-

mits a primitive represéntation

	

n = x2+y2+z2	with

	

xyz ~ 0 .

As it is proved in [2], an integer n is a Schinzel integer if

and only if it satisfies the following two conditions :

1) n t 0,4,7 (mod .8)

2) n has a prime factor p= 3 (mod . 4) or n is not a "numerous ido-

neus" in the sense of Euler .

Theorem 1 . If n is a SchinzeL integer, and n has, at most, two dis-

tinct prime factors congruent to 1 or 2 (mod . 4), then every primiti-

ve representation of n as a sum of three positive squares has, at

Zeast, one summand prime to n .



The proof of the above theorem follows immediately from the

Lemma 1 . If n = x2+y2+z2 is a primitive representation of n as a sum

of these positive squares and p is a prime factor of n mhich divides

one of the summands, then p=_1 or 2 (mod . 4) .

Proof . Under these conditions -1 is a square (mod . p) .

Another consequence of this lemma is the following :

Corollary 1 . If n = x2+y2+z 2 is a primitive representation of n as a

sum of these positive squares and every prime p which divides n is

congruent to 3 (mod. 4), then (x,n) = (y,n) = (z,n) = 1 .

Remark .

Theorem 1 is not true for an arbitrary n, for example,

	

870 =

= 2 .3 .5 .29 is a Schinzel integer which admits the primitive represen-

tation : 870 = 22+52+292 .

Let us now consider the problem of representations of the powers

of an odd prime p as a sum of p squares .

Theorem 2 . Every power of a prime p~2 can be represented as a sum of

p squares prime to p .

Proof . Let p be an odd prime and A=p-1 . Since the norm N in

Q(VA) is multiplicative, we obtain in 7l [ V'--A ] the identity :

(XI+Ayl )(X2+Ay2) _ (x1x2 ±Ayly2 ) 2 + A(xly2 .~.x2yl)2 .



So we have,

	

(xi+Ay2 )n = .Xñ+AY2 .

	

From this we get the following re-

cursive formulae :

Clearly,

	

p = N(xl + j-A yl)

	

for

	

xl=yl=1,

	

hence

	

pn = Xñ+AY2,

where X and Y are given by the above formulae .n n

Thus, every power of p > 2 can be written as a sum of p squares,

being p-1 of them equal . One can eásily see by induction that if Xn-1

and Yn-1 are prime to p, then Xn and Yn can be chosen to be so .

with Xn,Yn E 7L ,

Xn
. = Xn-1x1

	

AYn-lyl ,

Yn
=
Xn-lyl + Yn-1x1

The values of Xn and Yn can be explicitly given,

	

in fact :

(x1+y1~)n + (xl-Y1
~)n

	

(x1+y1VI-A)
n-(xl-Yl~)

n

Y =n

ne7L+ .

(a ,b)

	

~----.

	

a " b =

	

a ibi

	

,
i=1

We give now another proof of theórem 2 . This new proof yields

various representations of ps as sum of squares prime to p . In

particular, we can get different representations from the one ob-

tained in the first proof . Let us consider the bilinear form :



with

	

a=(al, . . .,ak),

	

b =

	

(bl , . . . . bk ) .

	

Let

	

q(a)= a " a =

	

Y. i=l a¡,
be the associated quadratic form ; then the equation q(Xa+Yb) _

2

	

_= q(a) " q(b)

	

has at least two integer solutions given by (x i ,yl )

= (0,q(a)) and (x2 ,y2 ) = (-2ab,q(a)) .

Proposition 1 . ff an integer is a sum of k squares, then so are its

powers .

Proof . Let

We show by induction,

	

that nt is a sum of k squares,

	

for every tE 7L+ .

We now distinguish two cases :

i) Let t be even,

	

t=2s,

	

sE 71+ . From the identity :

\2
=a l

z

	

I/i=1

n

	

=

	

ai?,

	

aiE 2Z,

	

i=l, . . . .k .
i=1

2 2

	

2 2

	

2

	

2(-al+a2+ . . .+ak)

	

+

	

(2ala2 )

	

+

	

. . .

	

+

	

(2alak)

	

,

	

(1)

we deduce that n t is a sum of k squares, because nt = (ns)2 and, by

induction, ns is of this type .

ii) Let t be odd,

	

t=2s+1,

	

sE71 + .

	

It follows that

with ci = q(a)bi - (2ab)ai ,

	

i=1,2, . . .,k . From this identity we get

that nt is sum of k squares, because nt=(ns 2) n .



Second proof of theorem 2 . If p is an odd prime, then p admits

the obvious representation as a sum of p squares p = bi+ . . .+bp given

by b1= . . .=bp=1 . Then from proposition 1 we obtain that every power

of p is a sum of p squares . Let us see that they can be chosen to be

prime to p . As before, we distinguish two cases :

i)

	

Let

	

t=2s,

	

se2¿ + . , If by induction

	

al , . .
.'

a
P

	

are nonzero in IF
P

,

	

so

are 2a1 aj for j=2, . . .,p . Since

	

p >2,

	

the rest follows immediately

from (1) .

ii) Let t=2s+1, sE7l + . We have

. . .=bp=1 . By proposition 1 we have
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p t-(Ps ) 2p, where ps=al+ . . .+a2,
P

(ai ,p)

	

=

	

1,

	

i=1,2, . . . . p

	

(by

	

induction),

	

and

	

p = b1+ . . .+bp,

	

b1= . . .

P t =

	

ci,

	

c i = q(a)b i-(2ab)a i ,

	

i=l_� p .
i=1

As -2ab = -2(al + . . .+a ),
P

	

we can always suppose that -2ab

	

0 (mod p) .

Since

	

p
s =0

	

(mod

	

p),

	

we

	

get

	

c i = (-2ab)a i.

	

(mod p),

	

hence,

	

the

	

inte-

gers c i , (i=1, . . .,p), are also prime to p .
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