Pub. Mat. UAB
Vol. 28 No 2-3 Set. 1984

ON THE LOGARITHMIC CONVERGENCE EXPONENT AND GEOMETRIC MEANS OF AN INTEGRAL FUNCTION OF ORDER ZERO
M.I.Rizvi*

1. For a non constant integral function of order zero, the loga rithmic order ρ^{*} and the lower logarithmic order λ^{*} are given as [1],
(1.1)

$$
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log \log M(r, f)}{\log \log r}=\frac{\rho^{*}}{\lambda^{*}}
$$

where $M(r, f)=\max _{z=r}|f(z)|$.
The geometric means of $|f(z)|$ for $0<K<\infty$, are defined as

$$
\begin{equation*}
G(r)=\exp \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| \mathrm{d} \theta\right\} \tag{1.2}
\end{equation*}
$$

and
(1.3)

$$
g_{K}(r)=\exp \left\{\frac{(K+1)}{r^{K+1}} \int_{0}^{r} x^{K} \log G(x) d x\right\}
$$

Another geometric mean of $|f(z)|$ is defined as [2],

* This work has been supported by JRF of C.S.I.R., New Delhi (INDIA).
(1.4) $g_{K}^{*}(r)=\exp \left\{\frac{(K+1)}{(\log r)^{K+1}} \int_{1}^{r}(\log x)^{K} \log G(x) \frac{d x}{x}\right\}$.

The logarithmic convergence exponent ρ_{1}^{*} and lower logarithmic convergence exponent λ_{1}^{*} are given as ([3], p.58)

$$
\lim _{r \rightarrow \infty} \sup _{\operatorname{ing}} \frac{\log n(r)}{\log \log r}=\rho_{1}^{\rho_{1}^{*}},
$$

where $\quad\left(0 \leqslant \lambda_{1}^{*} \leqslant \rho_{1}^{*} \leqslant \infty\right)$.

Jain, P.K. and Chungh, V.D. ([2] ,[3] ,[4]) have discussed some properties of these geometric means. In this paper we have also studied few properties of $g_{\mathrm{K}}^{*}(\mathrm{r})$ which are given in the form of the theorems.
2. Theorem 1: - Let $f(z)$ be an integral function of order zero. Then, for $0<r_{1}<r_{2}$, we have
(2.1) $\left\{\left(\log r_{2}\right)^{K+1}-\left(\log r_{1}\right)^{K+1}\right\} \log G\left(r_{1}\right) \leqslant$

$$
\begin{aligned}
& \left.\leqslant\left(\log r_{2}\right)^{K+1} \log g_{K \cdot}^{*} \cdot r_{2}\right)-\left(\log r_{1}\right)^{K+1} \log g_{1}^{*}\left(r_{1}\right) \leqslant \\
& \left\{\left(\log r_{2}\right)^{K+1}-\left(\log r_{1}\right)^{K+1}\right\} \log G\left(r_{2}\right)
\end{aligned}
$$

where K is any positive number.
Proof. From (1.4), we have
(2.2) $\left(\log r_{1}\right)^{K+1} \log g_{K}^{*}\left(r_{1}\right)=(K+1) \int_{1}^{r_{1}} \log G(x)(\log x)^{K} \frac{d x}{x}$.

Similarly,
(2.3) $\left(\log r_{2}\right)^{x+1} \log g_{K}^{*}\left(r_{2}\right)=(K+1) \int_{1}^{r_{2}} \log G(x)(\log x)^{K} \frac{d x}{x}$.

From (2.2) and (2.3): we get,
(2.4) $\left(\log r_{2}\right)^{K+1} \log g_{K}^{*}\left(r_{2}\right)-\left(\log r_{1}\right)^{K+1} \log g_{k}^{*}\left(r_{1}\right)$

$$
=(K+1) \int_{r_{1}}^{r_{2}} \log G(x)(\log x)^{K} \frac{d x}{x}
$$

From (2.4), (2.1) follows since $G(x)$ is an increasing fundtimon of x.
3. Theorem 2: - Let $f(z)$ be an integral function of order zero and logarithmic convergence exponent ρ_{i}^{*} and lower logarithmic convergence exponent λ_{1}^{*}, then,
(3.1) $\quad \lim _{r \rightarrow \infty} \sup \frac{\log \log \left(\left\{\frac{G(r)}{g_{K}^{*}(r)}\right\}^{1 /(\log r)}\right)}{\log \log r}=\frac{\rho_{1}^{*}}{\lambda_{1}^{*}}$.

In order to prove the above theorem we first prove the following lemma.

Lemma 1. $\left\{\frac{g_{K}^{*}(r)}{G(r)}\right\}^{\operatorname{l/\operatorname {log}r}}=\exp \left\{\frac{-1}{(\log r)^{K+2}} \int_{1}^{r}(\log x)^{K+1} n(x) \frac{d x}{x}\right\}$.

Proof of Lemma 1 : -

$$
\begin{gathered}
\frac{-1}{(\log r)^{K+1}} \int_{1}^{r}(\log x)^{K+1} \frac{d}{d x}(\log G(x)) d x \\
=\frac{-1}{(\log r)^{K+1}}\left\{(\log r)^{K+1} \log G(r)-\int_{1}^{r}(K+1)(\log x)^{K} \log G(x) \frac{d x}{x}\right\} \\
=-\log G(r)+\frac{(K+1)}{(\log r)^{K+1}} \int_{1}^{r}(\log x)^{K} \log G(x) \frac{d x}{x} \\
=-\log G(r)+\log g_{K}^{*}(r) \\
=\log \left(\frac{g_{K}^{*}(r)}{G(r)}\right)
\end{gathered}
$$

Hence,
(3.2) $\exp \left\{\frac{-1}{(\log r)^{K+2}} \int_{1}^{r}(\log x)^{K+1} \frac{d}{d x}(\log G(x)) d x\right\}^{\left(\frac{g_{K}^{*}(r)}{G(r)}\right\}^{1 / \log r}}$

From (1.2) and using Jensen's formula we get $\frac{d}{d x}(\log G(x))=\frac{n(x)}{x}$. Hence, form (3.2), we get
$\left(\frac{g_{K}^{*}(r)}{G(r)}\right)^{\log r}=\exp \left\{\frac{-1}{(\log r)^{K+2}} \int_{1}^{r}(\log x)^{K+1} n(x) \frac{d x}{x}\right\}$.
Proof of theorem 2 : From Lemma 1 , we have

$$
\begin{gathered}
\left\{\frac{G(x)}{g_{K}^{*}(r)}\right\}^{1 / \log r}=\exp \left\{\frac{1}{(\log r)^{K+2}} \int_{1}^{r}(\log x)^{K+1} n(x) \frac{d x}{x}\right\} \\
\leqslant \exp \left\{\frac{1}{(\log r)^{K+2}} n(r) \int_{1}^{r}(\log x)^{k+1} \frac{d x}{x}\right\}
\end{gathered}
$$

$$
=\exp \left\{\frac{n(r)}{(\bar{K}+2)}\right\}
$$

Hence, using (1.5), we get
(3.3) $\lim _{r \rightarrow \infty i n f} \frac{\left.\sup \log \left\{\frac{G(r)}{g_{K}^{*}(r)}\right\}\right\}^{1 / \log r}}{\log \log r} \leqslant \lim _{r \rightarrow \infty i n f}^{\operatorname{sog} \log \log r}=\frac{\log ^{*}(r)}{\rho_{1}^{*}}$

Further,

$$
\begin{aligned}
& \left\{\frac{G\left(r^{2}\right)}{g_{K}^{*}\left(r^{2}\right)}\right\}^{\log \left(r^{2}\right)}=\exp \left\{\frac{1}{\left(\log r^{2}\right)^{K+2}} \int_{l}^{r^{2}}(\log x)^{K+1} n(x) \frac{d x}{\dot{x}}\right\} \\
& >\exp \left\{\frac{1}{\left(\log r^{2}\right)^{K+2}} \int_{r}^{r^{2}}(\log x)^{k+1} n(x) \frac{d x}{x}\right\} \\
& \geqslant \exp \left\{\frac{1}{\left(\log r^{2}\right)^{K+2}} n(r)\left\{\begin{array}{l}
r^{2} \\
(\log x)^{K+1} \\
\frac{d x}{x}
\end{array}\right\}\right. \\
& =\exp \left(\frac{n(r)}{\left(\log r^{2}\right)^{K+2}}\left\{\frac{\left(\log r^{2}\right)^{K+2}-(\log r)^{K+2}}{(K+2)}\right)\right\} \\
& =\exp \left\{\frac{n(r)}{K+2}\left(1-\left(\frac{1}{2}\right)^{K+2}\right)\right\} \text {. }
\end{aligned}
$$

Hence,
(3.4)

$$
\begin{gathered}
\lim _{r \rightarrow \infty} \sup \log \log \left\{\frac{G\left(r^{2}\right)}{g_{K}^{*}\left(r^{2}\right)}\right\}^{1 / \log r^{2}} \\
\log \log \left(r^{2}\right)
\end{gathered}>
$$

From (3.3) and (3.4), (3.1) follows.
4. Theorem 3:- Let us set

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log \left\{\frac{G(r)}{g_{X}^{*}(r)}\right\}^{1 / \log r}}{(\log x)^{\rho_{1}^{*}}}=\frac{p}{q} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup \frac{n(r)}{(\log r)^{\rho_{1}^{*}}}=\frac{c}{d} \tag{4.2}
\end{equation*}
$$

Then we have,

$$
\begin{aligned}
& \text { (i) } \frac{d}{\left(K+\rho_{2}^{*}+2\right)} \leqslant q \leqslant p \leqslant \frac{c}{\left(K+\rho_{1}^{*}+2\right)} \text {, } \\
& \text { (ii) }\left(\frac{c}{d}\right)^{\frac{K+2}{\rho}} q \leqslant \frac{d}{\left\langle K+\rho_{1}^{*}+2\right)}+d\left\{\frac{\left(\frac{c}{d}\right)^{\frac{K+2}{\rho}}-1}{K+2}\right\} \text {, } \\
& \text { (iii) }\left\{\frac{(K+2)(c-d)+c^{\rho_{1}^{*}}}{c \rho_{1}^{*}}\right\} \geqslant \frac{c}{\left(K+\rho_{1}^{*}+2\right)} \text {. }
\end{aligned}
$$

Proof. From Lemma 1, for $h>0$, we have

$$
\begin{aligned}
& \log \left\{\frac{G\left(r^{1+h}\right)}{g_{K}^{*}\left(r^{1+h}\right)}\right\}=\frac{1}{\left\{\log \left(r^{1+h}\right)^{k+1}\right)} \int_{1}^{r^{1+h}}(\log x)^{K+1} n(x) \frac{d x}{x} \\
& =\frac{1}{\left\{\log \left(r^{1+h}\right)\right\}^{K+1}}\left(\left\{\int_{1}^{r_{0}}+\int_{r_{0}}^{r}+\int_{x}^{r^{1+h}}\right\}(\log x)^{K+1} n(x) \frac{d x}{x}\right) \text {. } \\
& <0\left((\log r)^{-K-1}\right\}+\frac{(c+\epsilon)}{\left\{\log \left(r^{1+h}\right\}^{K+1}\right.} \int_{r_{0}}^{r}(\log x)^{K+\rho}{\underset{l}{*+1} \frac{d x}{x}}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{n\left(r^{l+h}\right)}{\left\{\log \left(r^{I+h}\right)\right\}^{K+1}} \int_{r}^{r^{1+h}}(\log x)^{K+1} \frac{d x}{x} \\
& =0\left\{(\log r)^{-K-1}\right\}+\frac{(c+\epsilon)(\log r)^{K+\rho_{1}^{*}+2}-\left(\log r_{0}\right)^{K+\rho_{1}^{*}+2}}{(1+h)^{X+1}} \frac{\left(K+\rho_{1}^{*}+2\right)(\log r)^{K+1}}{} \\
& +\frac{n\left(r^{1+h}\right)\left[(1+h)^{K+2}-11 \log r\right.}{(K+2)(1+h)^{K+1}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \frac{\log \left\{\frac{G\left(r^{1+h}\right)}{g_{K}^{*}\left(r^{I+h}\right)}\right\}^{1 / \log r^{1+h}}}{\left\{\log \left(r^{l+h}\right)\right\}_{1}^{\rho *}}<
\end{aligned}
$$

Taking limits of both sides and using (4.1) and (4.2) we get
(4.3) $(1+h)^{K+\rho_{1}^{*}+2} p \leqslant \frac{c}{\left(K+\rho 1_{1}^{*}+2\right)}+c(1+h)^{\rho_{1}^{*}} \frac{(1+h)^{K+2}-1}{K+2}$
and
$(4.4)(1+h)^{K+\rho_{1}^{*}+2} q \leqslant \frac{c}{\left(K+p_{1}^{*}+2\right)}+d(1+h)_{1}^{\rho}\left\{\frac{(1+h)^{K+2}-1}{K+2}\right\}$
Similarly, we obtain
(4.5) $\quad(1+h)^{K+\rho_{1}^{*+2}} p \geqslant \frac{d}{\left(K+\rho_{1}^{*}+2\right)}+c\left\{\frac{(1+h)^{K+2}-1}{K+2}\right\}$
and

$$
\text { (4.6) } \quad(1+h)^{K+\rho_{1}^{*}+2} q \geqslant \frac{d}{\left(K+\rho_{I}^{*}+2\right)}+d\left\{\frac{(1+h)^{K+2}-1}{K+2}\right\} .
$$

It can be seen that minima of right hand expansion of (4.3) and (4.4) occurs at $h=0$ and $(1+h)^{\rho}=c / d$. Substituting $h=0$ in (4.3) and $(1+h)^{\rho}=c / d$ in (4.4), we get secon parts of (i) and (ii) respectively. Taking

$$
(1+h)^{K+2}=\frac{(K+2)(c-d)+c^{\rho^{*}}}{c^{\rho_{1}^{*}}}
$$

in (4.5) and $h=0$ in (4.6) we get (iii) and first part of (1) respectively.
5. Theorem 4 : - If $f(z)$ is an integral function of order zero and logarithmic convergent exponent ρ_{i}^{*} and lower logarithmic convergent exponent λ_{1}^{*}, then
(5.1)

$$
\lim _{\rightarrow \infty} \sup _{\inf }^{\log \log \left\{\frac{G(r)}{g_{K}(r)}\right\}} \frac{\log \log r}{\log _{1}^{*}} .
$$

Proof. From (1.2) and (1.3) and as $\frac{d}{d x}(\log G(x))=\frac{n(x)}{x}$, we get

$$
\begin{aligned}
\frac{G(r)}{g_{K}(r)}= & \exp \left\{\frac{1}{r^{K+1}} \int_{0}^{r} x^{K+1} \frac{d}{d x}\{\log G(x)\} d x\right\} \\
& =\exp \left\{\frac{1}{r^{K+1}} \int_{0}^{r} x^{K+1} n(x) d x\right]
\end{aligned}
$$

$$
\begin{aligned}
\leqslant \exp _{r \rightarrow \infty} & \left(\frac{1}{r^{K+1}} n(r) \int_{0}^{r} x^{K+1} d x\right. \\
& =\exp \left\{\frac{n(r)}{(K+1)}\right\} .
\end{aligned}
$$

Hence,
(5.2)

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \sup \log \frac{\log \left\{\frac{G(r)}{G_{K}(r)}\right\}}{\log \log r} \leqslant \\
& \lim _{r \rightarrow \infty} \sup \inf \frac{\log n(r)}{\log \log r}=\rho_{I}^{*} \\
& \lambda_{1}^{*}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
& \frac{G(2 r)}{G_{K}^{(2 r)}}=\exp \left\{\frac{1}{\langle 2 r)^{K+1}}\right\}_{0}^{2 r} x^{K} n(x) d x \\
& \left.\quad>\exp \left(\frac{1}{(2 r)^{K+1}}\right)_{r}^{2 r} x^{K} n(x) d x\right) \\
& \quad \geqslant \exp \left\{\frac{1}{(2 r)^{K+1}} n(r) \int_{r}^{2 r} x^{K} d x\right. \\
& \\
& \quad=\exp \left(\frac{n(r)}{2^{K+1}} \frac{2^{K+1}-1}{K+1}\right)
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \sup _{\inf } \frac{\log \log \left\{\frac{G(2 r)}{g_{X}(2 r)}\right\}}{\log \log (2 r)} \geqslant \tag{5.3}
\end{equation*}
$$

$$
\geqslant \lim _{r \rightarrow \infty} \sup \frac{\log n(r)}{\log \log r}=\rho_{1}^{\lambda_{1}^{*}}
$$

Therefore from (5.2) and (5.3), (5.1) follows.

ACKNOWLEDGEMENT

I take this opportunity to express my sincere thanks to Dr. S.N.Srivastava for his kind help and valuable suggestions in the preparation of this paper.

REFERENCES

1. S.M. Shah $\&$ On the maximun modulus and the coefficient of M. Ishaq an entire series. J. Indian Math. Soc. 16(1952), 177-182.
2. Jain, P.K. \& The geometric mean of an entire function of Chungh, V.D. order zero. collect. Math 24(1973).
3. Jain, P.K. \& Logarithmic order and geometric mean of an Chugh, V.D. entire functionof order zero.
4. Jain, P.K. \& The geometric mean of an entire function of Chugh, V.D. order zero. Collect. Math. 28(1977) no. 2, 115-120.

Rebut el 8 de marc del 1984

Department of Mathematics and Astronomy, Lucknow University Lucknow (INDIA)

