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ON THE LOGARITHMIC CONVERGENCE EXPONENT AND GEOMETRIC

MEANS OF AN INTEGRAL FUNCTION OF ORDER ZERO

M.I .Rizvi*

1 . For a .non constant integral function of order zero, the loga

rithmic order P* and the lower logarithmic order X* are gi-

ven as [11,

lim sup log log M(r,f) = P *

rim inf

	

log log r

	

a*

where M(r,f) = max J f(z)j .
z=r

The geometric means of

	

Jf(z)j

	

for

	

0 < K < w,

	

are defined as

J 21r
(1 .2)

	

G (r)

	

=

	

exp

	

~2~

	

log

	

f (rete )I d6
0

and

f

	

f
r

(1 .3)

	

gK(r) = exp (
K+1)

	

xK
r 1 0

log G(x)dx

Another geometric mean of

	

J f (z) j

	

is defined as [21,
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(1 .4)

	

g* (r) = exp j

	

(K+1)
K

	

j(log r)K+1

where

	

(0 < X 1 5 p 1

The logarithmic convergence exponent

	

p 1

	

and lower logarithmic

sup log n(r) __(1 .5)

	

lim
r+oo ing log log r

r
(log x) K log G(x)

d
x

1

convergence exponent X1 are given as Q31, p .58)
*

p l

Jain, P .K . and Chungh, V.D .

	

Q21,[31,[4]) have discu-

ssed some properties of these geometric means . In this paper we

have also studied few properties of gK(r) which are given in

the form of the theorems .

2 . Theorem 1 : - Let f(z) be an integral function of order ze-

ro . Then, for 0 < r1 < r2 , we have

(2 .1)

	

~(log r2 )K+1 - (log r1)K+1

where K is any positive number .

Proof . From (1 .4), we have
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log G(r1 )-<

«log r2)
K+1 log gK.(r2)

	

-

	

(log r1)K+1 log g*(r1)c

(log r2 )K+ 1 - (log r1)K+ll log G(r 2 ),

rl
(2 .2)

	

(l.og r1) K+1 log
g*(r1) =(K+1) J

	

log G(x) (log x) K
1



Similarly,

r2
(2 .3)

	

(log r2) K+l log gK (r2

	

x
) = (K+1)I

	

log G(x) (locjx)K dx
~

From (2 .2) and (2 .3)_ we get,

(2 .4)

	

(log r2) K+1 log g; (r2)

	

-

	

(log rl) K+1 log g* (r 1 )

From (2 .4), (2 .1) follows since G(x) is an increasing func-

tion of x .

3 . Theorem . 2 : - Let f(z) be an integral function of order zero

and logarithmic convergence exponent pl and lower logarithmic

convergence exponent X1, then,

following lemma .

(K+1)
r2

log G(x)(log x) K aX .
ir l

1/(log r)

sup

	

log {6~}

	

pp

	

gK(r)

	

1

r->co inf

	

log log r

	

x
*
1

In order to prove the above theorem we first prove the

1 gR
(r) 1/log r

Lemma 1 " lG(r) exp
1 (log r)

	

1
(log , x)

K+l
n(x)dx



Proof of Lemma 1 : -

r

K+1

	

(log x)
K+l

_dx

	

(log G(x))dx
(log r)

	

1
r

=

	

1

	

(log r) K+1

	

log G(r)

	

-

	

(K+1) (log x) K
(log r) K+1

1
r

_ -

	

log G(r)+

	

(K+1)K+1

	

(log x) K log G(x)
(log r)
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Hence,

Hence, form (3 .2), we get

gK(r)
1/log r

G(r)
1

	

= exp
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G(r)

gK(r)

_ - log G(r)

	

+

	

log gK(r)

(r

	

I

	

( Q* (r)

	

l/log r

(3 .2)

	

expi -l
K+2 I

	

(log x) Krld(log G(x))dx~ = I G (r)(log r)

	

11

From (1 .2) and using Jensen's formula we get

Proof of theorem 2 : - From Lemma 1, we have

1/log r
= exp

í

	

1 K+2 Ir (log x) K+l n(x)
(log r) 1

r

exp

	

l

	

K+2 n(r) í

	

(log x) K+ l

dx(log G(x))= n(x
) .



Hence,

(3 .3)

Further,

Hence,

(3 .4)

using

> exp

exp

= exp

slip
lim
r; inf

1/log
G(r2 )

9K (r
2

)

(1 .5), we get

(r 2 )

1

= exp

log log G(r) l/log r
g

*

(r){K1
log

exp 1
j(log r2)K+2

2)K+2

	

(log x)K+1 n (x)
_dx1

(log r

	

r

r2) K+2

= exp

log r

n (r)
(K+2)

2r
(log

r2

(log x) K+1

r

n(r) (l _ (1)K+2)
K+2 2

limsup log n (r)
r�inf log log r

1

2 jl/log r 2
log log

	

G(r )
slip ~9K(r2 )i

lim
r+co inf

	

log log (r
2

)

sup

	

P
log n (r)

	

_

	

llim 1 ,g log rraoo inf

	

1

n(x)



From (3 .3) and (3 .4), (3 .1) follows .

4 . Theorem 3 :- Let us set

and

Then we have,

70

'
sup logj G~(r)

}

1/log r
g~

P
lim`

	

-=
r+oo inf

	

q
(log r) P-1

(4 .2)

	

lim sup

	

n (r)

	

- c .

r+oo inf

	

(log r) p1

	

d

(i) d SgSp< c
(K +p

s
+ 2)

	

(K +P1 + 2)
1

K+2

	

f ,c, K+2,-

	

d

	

kd) N1 -

(ii) (d) l q 5

	

+ d
(K + Pi ± 2)

	

K+2

Proof . From Lemma 1, for h > 0, we have

1

J

(üi)

	

(K+2) (c-d) +c pl >

	

c

	

.

cpi

	

(K +Pi + 2)

rl+h

log JG(rl+h )	-

	

i
+h

	

+l

	

(log x) K+1 n(x)dx
lgK(rl+h)

	

{log(r

	

)

	

} 1

(((r r r1+h

	

1
1 0

	

l

+

	

+

	

l (log x) K+1n (x) dx
{log(r1+h)}K+1 1111 .ro r

r
-K-1

	

(c + e)

	

K+pi+1 dx< 0 {(log r)

	

} + {log(r1+h) }K+1

	

r

	

(log x)

	

x
0



Hence,

and

= 0

1+ h

	

r1+h

+

	

n(r

	

)

	

(log x) K+1 dxl+h

	

K+1
{ log(r

	

)}

	

r

	

x

Similarly, we obtain

K+P*+2
(4 .5) (l+h) 1 p

K+p i+ 2

	

K+p 1 +2
(c+e)(log r)

	

- (log ro)

(l+h)
K+1

	

(K +pi+2) (log r) K+1

n(r1+h)f(l+h)K+2 _ lllog r

(K+2) (1+h) K+1

log G(rl+h)
1/log r1+h

g*
(rl+h)

K

{ log

	

(rl+h ) }P 1

(K+p 1

	

+2)

d

(c + e)

	

n(r1+h) ( (l+h) K+2

	

_ll
P

	

p
<

	

(l+h)p 1+K+2 (K+pl+2)

	

+

	

(K+2)(1+h)

	

i+K+2

	

(log r)

	

1

	

.

Taking limits of both sides and using (4 .1) and (4 .2) we get

*

(4 .3)

	

(l+h)K+pl+2
p <

	

c

	

+ c(l+h)p1 (1+K
+2+2-1

(4 .4)

	

(l+h)K+p1+2
q
S

	

c*

	

+ d(l+h)p1 J (l+h)K+2-11

(K+p 1+2)

	

K+2



and

(4 .6) (l+h)

It can be seen that minima of right hand expansion ofp s
(4 .3) and (4 .4) occurs at h = 0 and (l+h) l = c/d . Substitu

p * .
1ting h = 0 in (4 .3) and (l+h)

	

= c/d in (4 .4), we get se-

cond parts of (i) and (ii) respectively . Taking

in (4 .5) and h = 0 in (4 .6) we get (iii) and first part of (1)

respectively .

5 . Theorem 4 : - If f(z) is an integral function of order zero

and logarithmic convergent exponent P1 and lower logarithmic

convergent exponent Jai, then

K+pi+2
q

x

K+2

	

(K+2) (c-d) + c P1(l+h) _
c P l

log log{g ( rr ) )
lim

sup

	

_Wr)}
inf

	

log log r

r
G(r)

	

-

	

I	1

	

I

	

K+1

	

dgK(r) =exp rK+l

	

x

	

dx
l Jo

r
= exp

	

~

	

1

	

1
K+1

	

xK+1 n(x)dx
r

0

Proof . From (1 .2) and (1 .3) and as áx (log G(x)) = n(X ) , we

get

log G(x)} dx



Hence,

sup log log( g (~r ) }
(5 .2)

	

lim

	

K
r+m inf

	

log log r

On the other hand

Hence,

(5 .3)

G (2r)
gK 2r)

r
S exp

	

K+1 n(r)

	

xK+1 dx
r+ w

	

r 0

lim
r+ m

exp f n (r)	l 1 (K+1)1

P ~`sup

	

log n (r)
inf log log r

x1

G

exp

	

1
K+1

	

xKn (x) dx
( (2r)

(2r

> exp

	

1
K+1

	

xKn(x)dx
(2r) r

2r 1
exp

	

1 n(r) I xKdx
I

K+1
(2r) r

= exp l n(r) 2 K+1-1
2K+1

	

K + 1

sup log log {
lim

	

g(K(2r)}

r->w inf

	

log log(2r)



Therefore from (5 .2) and (5 .3), (5 .1) follows .
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