Enio. Mat. UAB
voi. 23 No 2-3 Set. 1984

THE BP*-MODULE STRUCTURE OF $B P^{*}\left(\mathrm{E}_{8}\right)$ FOR $p=3$. Noouaki Yagita

## §0. Introduction.

Let $B P^{*}(-)$ be the Brown-Peterson cohomology theory with the coefficient $B P * \simeq Z_{(p)}\left[v_{1}, \ldots\right]$ at an odd prime $p$. In this paper we shall study $B P *(G)$ for simple simply connected Lie groups $G$. When $G$ is torsion free, there is a $B P^{*}-a l_{g e b r a}$ isomorphism $B P^{*}(G) \simeq B P * \otimes H^{*}(G)$. Hence we shall only consider the cases when $G$ has p-torsion, i.e., the exceptional Lie groups

$$
\begin{array}{ll}
\mathrm{P}=3 & \mathrm{~F}_{4}, \mathrm{E}_{6}, \mathrm{E}_{7}, \mathrm{E}_{8} \quad \text { and } \\
\mathrm{p}=5 & \mathrm{E}_{8} .
\end{array}
$$

When $p=3 G=F_{4}, E_{6}$ and $p=5 G=E_{8}$, the $B P *-a l$ gebra structures of $B P *(G)$ are given in [5]. In this paper we shall determine the BP -module structures of $B P *(G)$ for the rest, i.e., $p=3 \mathrm{E}_{7}, \mathrm{E}_{8}$ (Theorem 1.1, Therem 1.2). Because the $B P^{*}$-module structure of $B P *\left(E_{8}\right)$ is so complicated we give a graph which will, hopefully, make it clearer (, see Graph 1.3).

To compute $\mathrm{BP}^{*}(\mathrm{G})$, we use $\mathrm{H}^{*}(\mathrm{G}), \mathrm{H}^{\star}\left(\mathrm{G} ; \mathrm{Z}_{3}\right)[1]$, $\mathrm{BP*}\left(\mathrm{G} ; \mathrm{Z}_{3}\right)[4], \mathrm{K}^{*}(\mathrm{G}), \mathrm{K}^{*}\left(\mathrm{G} ; \mathrm{Z}_{3}\right)$ [2],[4]. The main machine of the computation is the Atiyah-Hirzebruch type spectral sequence. Its non zero differentials are $d_{2 p-1}=v_{1} \otimes Q_{1}$, $d_{2 p}{ }^{2}-1=v_{2} \otimes Q_{2}$ and $d_{4 p-3}=v_{1}{ }^{2} \otimes$ (some operation). In this paper only the proof of Theorem 1.2 ( $\mathrm{BP*}\left(\mathrm{E}_{8}\right)$ ) is given. Theorem 1.1 is proved by similar but easier arguments. Most parts of the computations are routine. So only the tables of results are given.
§1. The results.

In this section we give the main results.
Theorem 1.1. There is a BP*-module isomorphism for $\mathrm{p}=3$

$$
\begin{aligned}
& B P *\left(E_{7}\right)=B P *\left(F_{4}\right) \otimes A\left(x_{19}, x_{27}, x_{35}\right) \\
& \simeq\left[B P *\left\{1, y_{3}, y_{26}\right\} \oplus B P *\left\{y_{19}, y_{23}\right\} /\left(3 y_{19}=v_{1} y_{23}\right) \oplus B P * /\left(3, v_{1}\right)\left[x_{8}\right] /\left(x_{8}^{3}\right)\right] \\
& \\
& \quad \otimes A\left(x_{11}, x_{15}, x_{19}, x_{27}, x_{35}\right) .
\end{aligned}
$$

Theorem 1.2. There is a BP*-module iscmorphism for $p=3$

$$
B P *\left(E_{8}\right)=\left(T / R_{1} \oplus F / R_{2}\right) \oplus \Lambda\left(x_{27}, x_{35}, x_{39}, x_{47}\right)
$$

where
(1) $\mathrm{I}=\mathrm{BP} * /(3) \otimes\left[\left(\mathrm{Z}_{3}\left[\mathrm{X}_{8}\right] /\left(\mathrm{x}_{8}{ }^{3}\right) \otimes Z_{3}\left(\mathrm{x}_{20}\right] /\left(\mathrm{x}_{20}{ }^{3}\right) \otimes \mathrm{A}\left(\mathrm{u}_{27}\right)-\{1\}-\left\{\mathrm{u}_{27} \mathrm{x}_{8}{ }^{2} \mathrm{x}_{20}{ }^{2}\right\}\right)\right.$ $\left.\oplus z_{3}\left[\left(x_{8}, x_{8}{ }^{2}, u_{27}, u_{27} x_{8}\right) \otimes\left(w_{43}, w_{55}\right)\right]\right]$.
(2) $\mathrm{R}_{1}=\operatorname{Idea}\left(\mathrm{v}_{1} \mathrm{x}_{8}-\mathrm{v}_{2} \mathrm{x}_{20},{ }^{\mathrm{v}_{1} \mathrm{w}_{4}}{ }^{-\mathrm{v}_{2} \mathrm{w}_{55}}, \mathrm{v}_{1} \mathrm{x}_{20}, \mathrm{v}_{2} \mathrm{abc}\right.$ where

$$
\left.a, b, c \in\left\{x_{8}, x_{20}, u_{27}\right\}\right) .
$$

(3) $F=B Y *\left\{1, y_{23}, \mathrm{w}_{15}, \mathrm{y}_{59}, \mathrm{w}_{55}, \mathrm{w}_{43}, \mathrm{y}_{23}, \mathrm{y}_{59}, \mathrm{y}_{23} \mathrm{w}_{55}, \mathrm{y}_{23} \mathrm{w}_{43}, \mathrm{~s}_{74}, \mathrm{y}_{3}, \mathrm{y}_{3} \mathrm{y}_{23}\right.$,

$$
\left.\mathrm{w}_{22}, \mathrm{y}_{62}, \mathrm{y}_{85}, \mathrm{y}_{81}, \mathrm{y}_{15}, \mathrm{y}_{38}, \mathrm{w}_{34}, \mathrm{y}_{74}, \mathrm{y}_{97}, \mathrm{~s}_{93}, \mathrm{y}_{3} \mathrm{y}_{15}, \mathrm{y}_{41}, \mathrm{y}_{77}, \mathrm{y}_{100}\right\} .
$$

(4) $\mathrm{R}_{2}=$ Ideal $\left(\mathrm{v}_{1}{ }^{2} \mathrm{y}_{23}-3 \mathrm{w}_{15}, \mathrm{v}_{1} \mathrm{y}_{59}-3 \mathrm{w}_{55}, \mathrm{v}_{2} \mathrm{y}_{59}-3 \mathrm{w}_{43}, \mathrm{v}_{1} \mathrm{w}_{43}-\mathrm{v}_{2} \mathrm{w}_{55}\right.$,

$$
\left.v_{1} y_{23^{w}} w_{55^{-3}} s_{74}, v_{1} y_{3} y_{23^{-3 w_{22}}}, v_{1} y_{85}-3 s_{81}, v_{1} y_{38^{-3 w_{34}}}, v_{1} y_{97}-3 s_{93}\right)
$$

The above theorem appears to be too complicated to be understood. Hence the following graph may be useful.

In the graph, one line means $v_{1} A=B$


A double line means multiplication by $v_{2}$. A dotted line means multiplication by 3. An X -mark means zero is the result of multiplication.

Graph 1.3.
(1) 3-torsion parts
(1.1)
As

This means

$$
v_{1} A=v_{2} B, v_{1}^{2} A=0 \text { and } v_{1} B=0 .
$$

Here $(A, B)=\left(x_{8} a, x_{20} a^{a}\right)$ where $a=1, x_{8}, u_{27}$ or ( $\left.A, B\right)=\left(w_{43} b, w_{55} b\right)$
where $\mathrm{b}=\mathrm{x}_{8}, \mathrm{x}_{8}{ }^{2}, \mathrm{u}_{27}, \mathrm{u}_{27} \mathrm{x}_{8}$.
(1.2)
A


$$
\begin{gathered}
\mathrm{A}=\left(\mathrm{x}_{8}{ }^{2} \mathrm{x}_{20}, \mathrm{x}_{20}{ }^{2} \mathrm{x}_{8}, \mathrm{x}_{20}{ }^{2}\right)\left(1, \mathrm{u}_{27}\right), \\
\mathrm{x}_{8}{ }^{2} \mathrm{x}_{20}{ }^{2}, \mathrm{x}_{8}{ }^{2}{ }^{\mathrm{u}_{27}}, \mathrm{x}_{20} \mathrm{x}_{8} \mathrm{u}_{27}
\end{gathered}
$$

(1.3)

(2) Torsion free parts

10

$y_{3} \circ$

$y_{15}{ }^{\circ}$

$$
\begin{array}{r}
\mathrm{y}_{38} \\
\mathrm{w}_{34} 0-\mathrm{o}
\end{array}
$$

$y_{620}$

$y_{74}$ 。


$$
y_{3} y_{15} \circ \quad y_{41 \circ}
$$

$$
y_{77} \circ
$$

$$
y_{100^{\circ}}
$$

Remark 1.4. If $\sum V_{j} x_{j}=0$ in $B P *\left(E_{g}\right)$ then there exists $y \in H^{*}\left(E_{8} ; Z_{p}\right)$ such that $Q_{j}(y)=i\left(x_{j}\right)$ where $i: B P \rightarrow K Z{ }_{P}$ is the natural map. This is expressed by the graph;


Results generalizing this fact are discussed in [6].
§2. Preliminary results.

In this section, we recall known results which are needed to compute BP* $\left(E_{8}\right)$. First recall the mod $p=3$ ordinary cohomology group [1]
(2.1) $A_{p}=H\left(E_{8} ; Z_{3}\right)=Z_{3}\left[x_{8}, x_{20}\right] /\left(x_{8}^{3}, x_{20}^{3}\right) \otimes A\left(x_{3}, x_{7}, x_{15}, x_{19}, x_{27}, x_{35}, x_{39}, x_{47}\right)$
where $Q_{0} x_{7}=x_{8}, Q_{0} x_{19}=x_{20}, Q_{1} x_{3}=x_{8}, Q_{1} x_{15}=x_{20}, Q_{2} x_{3}=x_{20^{\circ}}$
For ease of notation, let $B^{\prime}=\Lambda\left(x_{27}, x_{35}, x_{39}, x_{47}\right)$.
Secondiy, consider the cohomology group $\mathrm{H}^{*}\left(\mathrm{E}_{8}\right)$. Note chat $\bar{E}_{8}$ has no higher 3-torsion ([3]). Consider the Bockstein exact sequence


By the fact that $i \delta=Q_{0}$, we have
(2.2)

$$
\begin{aligned}
A= & H *\left(E_{8}\right) \otimes Z_{(3)} \\
\simeq & {\left[\left(Z_{3}\left[x_{8}\right] /\left(x_{8}^{3}\right) \otimes Z_{3}\left[x_{20}\right] /\left(x_{20}{ }^{3}\right) \otimes A\left(\left\{x_{8} x_{19}-x_{7} x_{20}\right\}\right)-\{1\}-\right.\right.} \\
& \left.\left.\left(x_{8}^{2} x_{20}^{2}\right)\left(x_{8} x_{19}-x_{7} x_{20}\right\}\right) \oplus A\left(x_{8}^{2} x_{7}, x_{20}{ }^{2} x_{19}\right)\right] \otimes A\left(x_{3}, x_{15}\right) \otimes B^{\prime}
\end{aligned}
$$

Using the Atiyah-Hirzebruch spectral sequence

$$
P_{2}=H^{*}\left(E_{8} ; Z_{3}\right) \otimes B Q^{*} \Longrightarrow B P^{*}\left(E_{8} ; Z_{3}\right)
$$

in [4], BP* $\left(\mathrm{E}_{8} ; \mathrm{Z}_{3}\right)$ is computed
(2.3) $\left.\mathrm{BP*} * \mathrm{E}_{8} ; \mathrm{Z}_{3}\right) \simeq\left(\mathrm{BP*} /(3)\left\{1, \mathrm{w}_{15}, \mathrm{w}_{74}\right\} \oplus \mathrm{BP} * /(3) \otimes \mathrm{Z}_{3}\left\{\mathrm{w}_{55}, \mathrm{w}_{43}, \mathrm{x}_{20}, \mathrm{x}_{20}^{2}\right\} \otimes \mathrm{Z}_{3}(1\right.$,

$$
\begin{aligned}
& \left.\left.\left.x_{8}, x_{8}^{2}\right\} / \text { Ideal }\left(v_{1} w_{43}-v_{2} w_{55}, v_{1} x_{8}-v_{2} x_{20}, v_{1} x_{20}, v_{2} x_{8}^{2} x_{20}\right)\right]\right) \\
& \otimes A\left(x_{7}, x_{19}\right) \otimes B \prime
\end{aligned}
$$

Let $K *(-)$ be the $K$-theory. By Hodgkin [2][4], $K *\left(E_{8}\right)$ is torsion free and
(2.4) $K^{\star}\left(E_{8}\right) \simeq A(\alpha, B, \gamma, \delta) \otimes B^{\dagger}$,

$$
K \star\left(E_{8}\right) \otimes Z_{3} \simeq K \star\left(E_{8} ; Z_{3}\right) \simeq K(1) \star \otimes A\left(\left\{x_{3} x_{8}^{2}\right\},\left\{x_{15} x_{20}^{2}\right\}\right) \otimes A\left(x_{7}, x_{19}\right) \otimes B^{\prime}
$$

On the other hand

$$
K *\left(E_{8}\right) \otimes Q \simeq K \otimes H^{\star}\left(E_{8}\right) \otimes Q \simeq K^{*} \otimes A\left(\left\{x_{8}^{2} x_{7}\right\},\left[x_{20^{2}}^{2} x_{19}\right\}\right) \otimes A\left(x_{3}, x_{15}\right) \otimes B^{z} .
$$

§3. The differential $d_{2 p-1}$.

In this section we begin the computation of $B P *\left(E_{8}\right)$. In this section we compute the $E_{2_{p}}$-term of the Atiyah-Hirzebruch spectral sequence.

Consider the Atiyah-Hirzebruch spectral sequences


Notice that for dimensional reasons, the first non zero differential $d_{r}$ is $d_{2 p-1}$. Recall that

$$
\text { Image } d_{r} \subset \text { Torsion } E_{r}
$$

Let $d_{r} x=v_{1} \otimes y \neq 0$, for $x, y \in A$. Then $v_{1} y \in T o r E_{r}$ and so $y \in \operatorname{Tor}(A)$. Since all elements in Tor (A) are 3 -torsion (no higher torsion), $i(E)(y) \neq 0$. This implies;

Lemma 3.1. In the above spectral sequence $E_{2 p-1}, d_{2 p-1} x=y \neq 0$ if and only if $d_{2 p-1}(i(E)(x))=i(E)(y) \neq 0$ in $P_{E_{2 p-1}}$.

In the mod $P$ spectral sequence ${ }^{P} E_{2 p-1}$

$$
d_{2 p-1}=v_{1} \otimes Q_{1} .
$$

The homology group of the differential $Q_{1}$ is computed by using (2.1) and the fact $Q_{1}$ is a derivation. The following table describes the $Q_{1}$ homology.

Table 1.
(a) $\mathrm{Z}_{3}$-module in A

|  | 1 | $\mathrm{x}_{8}$ | $\mathrm{x}_{8}^{2}$ | ${ }^{\text {x }} 20$ | $\mathrm{x}_{20}^{2}$ | $\left[x_{8} x_{20} x_{8}^{2} x_{2 q} x_{8} x_{2 q}^{2} x_{8}^{2} x_{20}^{2}\right.$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | T | 1 | I | I | II | II | II | III |
| $\mathrm{x}_{8} \mathrm{X}_{19}{ }^{-\mathrm{x}} 7^{\mathrm{x}_{2}}$ | 0 | I | II | I | III | II. | II | II | - |
| $\mathrm{x}_{3}$ | - | X | 0 | X | X | X | I | X | I |
| $\mathrm{x}_{15}$ | - | X | X | x | 0 | X | X | I | 1 |
| ${ }^{1}{ }_{3}{ }_{15}$ | - | X | X | X | X | X | X | X | 0 |
| $\mathrm{x}_{3}\left(\mathrm{x}_{8} \mathrm{x}_{19} \mathrm{~s}^{-\mathrm{x}_{7} \mathrm{x}_{20}}\right.$ ) | X | x | I | x | x | X | I | - | - |
| $\mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19}{ }^{\left.-\mathrm{x}_{7} \mathrm{x}_{20}\right)}\right.$ | x | X | X | X | I | X | 0 | I | - |
| $\mathrm{x}_{3} \mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19} \mathrm{x}_{7} \mathrm{x}_{20}\right)$ | X | x | x | X | X | X | 0 | 0 | - |


| $x_{8} x_{15} x_{3} x_{20}$ | $I$ | $I$ | - | $I$ | - | $I$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(x_{8} x_{15}-x_{3} x_{20}\right)\left(x_{8} x_{19^{-x_{7}}} x_{20}\right)$ | $I$ | $I$ | - | $I$ | - | $I$ |

(b) torsion free nodule in A

|  | 1 | $x_{8}^{2} x_{7}$ | $x_{20}^{2} x_{19}$ | $x_{8}^{2} x_{7} x_{20}^{2} x_{19}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 |
| $x_{3}$ | $x$ | 0 | $x$ | 0 |
| $x_{15}$ | $x$ | $x$ | 0 | 0 |
| $x_{3} x_{15}$ | $x$ | $x$ | $x$ | 0 |

The entries in this table have the following meaning,

- ; there is no element corresponding to this entry

$$
\begin{gathered}
\left(x _ { 8 } x _ { 2 0 } { } ^ { 2 } x _ { 3 } \left(x_{8} x_{\left.19^{-x_{7}} x_{20}\right)} \text { is express as } x_{3}\left(x_{8} x_{19}-x_{7} x_{20}\right) x_{8} x_{20}{ }^{2}+\right.\right. \\
x_{8} x_{20}\left(x_{8} x_{15}{ }^{-x_{3} x_{20}}\right)\left(x_{8} x_{\left.\left.19^{-x_{7}} x_{20}\right)\right)}\right.
\end{gathered}
$$

0 ; in ker $Q_{1}$ and not in image $Q_{1}, X ; Q_{1}$-image is non zero,
I ; in image $Q_{1}$, II ; in double $Q_{1}$-image from two entries.
From the above Table 1, the $\mathrm{E}_{2 \mathrm{p}}$-term is expressed as
(3.2) $\quad E_{2 p} \simeq B P^{*} \otimes \mathrm{Z}\{0$ in (b) $\}$
$\oplus \mathrm{BP} *\left\{\mathrm{x}_{3} \mathrm{x}_{20}{ }_{2}^{2} \mathrm{x}_{19}{ }^{-\mathrm{x}_{15}}\left(\mathrm{x}_{8} \mathrm{x}_{19}-\mathrm{x}_{7} \mathrm{x}_{20}\right) \mathrm{x}_{20}, \mathrm{x}_{15} \mathrm{x}_{8}^{2} \mathrm{x}_{7}-\mathrm{x}_{3}\left(\mathrm{x}_{8} \mathrm{x}_{\left.19^{-\mathrm{x}_{7}} \mathrm{x}_{20}\right)} \mathrm{x}_{8}\right\}\right.$
$\oplus \mathrm{BP} *\left\{3 \mathrm{x}_{3}, 3 \mathrm{x}_{15}, 3 \mathrm{x}_{3} \mathrm{x}_{15}, 3 \mathrm{x}_{8}^{2} \cdot \mathrm{x}_{7} \mathrm{x}_{3} \mathrm{x}_{15}, 3 \mathrm{x}_{20}^{2} \mathrm{x}_{19} \mathrm{x}_{3} \mathrm{x}_{15}\right\}$
$\oplus B P * /(3) \otimes z_{3}\{0$ in (a) $\}$
$\oplus B P * /\left(3, \mathrm{v}_{1}\right) \otimes \mathrm{Z}_{3}\{\mathrm{I}$ and II in (a) \}.
§4. The differential $d_{4 p-3}$.
The next non zero differential is $d_{4 p-3}$.
Assume that $d_{4 p-3}(y)=v_{1}^{2} \otimes x \otimes b \neq 0$ where $y, x \in A, b \in B$. Then $x$ is $3-$ torsion in $A$ and $v_{1} x \neq 0$ in $E_{2 p}$. Hence $x$ must be a sum of the generators of type 0 in Table 1 (a). It is easily checked that such generators except for $\left\{\mathrm{x}_{8} \mathrm{x}_{19} 9^{\left.-\mathrm{x}_{7} \mathrm{x}_{20}\right\} \text { and } \mathrm{x}_{8}{ }^{2} \mathrm{x}_{20}{ }^{2} \mathrm{x}_{15} \mathrm{x}_{7} \text { are non zero elements in }{ }^{\text {a }} \text { a }}\right.$

$$
H\left(A_{p}, Q_{1}\right) \cong A\left(x_{8}{ }^{2} x_{3}, x_{20}{ }^{2} x_{15}\right) \otimes A\left(x_{7}, x_{19}\right) \otimes B^{\prime}
$$

Moreover $d_{4 \mathrm{p}-3}$ is always zero in ${ }^{\mathrm{P}} \mathrm{E}_{4 \mathrm{p}-3}$. So the generators are not in the image of $d_{4 p-3}$ in $E_{4 p-3}$. Therefore only the generators $\left\{x_{8} x_{19} 9^{-x} x_{20}\right\}$ and $x_{8}^{2} x_{20}^{2} x_{15}$ must be checked.

First consider the case $x=\left\{x_{8} x_{19} 9_{7} x_{20}\right\}$. Since $\delta\left(x_{7} x_{19}\right)=x, x$ is an infinite cycle in $E_{*}$ and let $u_{27}=x$ in $B P *\left(E_{8}\right)$. Then from (2.3) $i\left(v_{1}^{2} u_{27}\right)=0$ in $B P *\left(E_{8} ; Z_{3}\right)$ This implies $v_{1}^{2} u_{27}=p a$ for some a in $B P *\left(E_{8}\right)$.

Assume that there does not exist $y$ such that
(4.1)

$$
d_{4 \mathrm{p}-3} \mathrm{y}^{\mathrm{y}=\mathrm{v}_{1}}{ }^{2} \otimes \mathrm{x}
$$

Then $\operatorname{dim}($ Filt (a) $)<27$ and $p^{2} a=p v_{1}{ }^{2} u_{27}=p \delta\left(x_{7} x_{19}\right)=0$. Since $B P *\left(E_{8}\right) \otimes Q \simeq B P * \otimes$ $H^{\star}\left(E_{8}\right) \otimes Q$, torsion free elements in $E_{4 \mathrm{p}-3}$ do not express a. From Table 1 and dimensional reasons, on $1 \mathrm{y}_{\mathrm{v}}{ }^{\mathrm{s}} \otimes \mathrm{x}_{3} \mathrm{x}_{8}{ }^{2}$ in $\mathrm{E}_{4 \mathrm{p}-3}$ can be a in $\mathrm{BP} \mathrm{B}^{\mathrm{*}}\left(\mathrm{E}_{8}\right)$. But from (2.4), $v_{1}{ }^{s} \otimes x_{3} x_{8}{ }^{2}$ represents a torsion free element and this is a contradiction. Therefore there exists $y$ such as (4.1).

The fact that dimension $|y|=18$ and $y$ i.s $B P *$-free or $B P * / 3-f r e e$ in $E_{4 p-3}$, implies $y=\lambda\left\{3 x_{3} x_{15}\right\}$, $\lambda \neq 0 \bmod p$, i.e., we can take
(4.2) $\quad d_{4 p-3}\left(\lambda^{\prime}\left\{3 x_{3} x_{15}\right\}\right)=v_{1}^{2}\left\{x_{8} x_{19}-x_{7} x_{20}\right\}$.

Next consider the case $x=\left\{x_{8}{ }^{2} x_{20}{ }^{2} x_{15} x_{7}\right\}$. First assume that
(4.3) $\quad d_{r^{1}} y=v_{1}^{r} 2 \otimes x$
where $z=x_{27} x_{35} x_{39} x_{47}$, It is easily checked that elements of dim(Filt) $>$ $\operatorname{dim}(\operatorname{Filt}(x \otimes z))$ and of $Z_{3}$-modules in $E_{k}$ are free $\mathrm{BP}_{\mathrm{K}} / 3$-modules or free BP*/( $3, \mathrm{v}_{1}$ )-modules in $\mathrm{P}_{\mathrm{E}_{\infty}}$. See the right down side of Table 1 (a) and Lemma 4.7 in [8]. These elements are not in the image $d_{r}{ }^{\prime \prime}, r^{\prime}>2 p-1$ in ${ }^{P} E_{\infty}$. This fact implies that all elements of dim(Filt) $>\operatorname{dim}(F i l t(z \otimes x)$ ) are infinite cycles.

Denote by $2 y_{59} y_{23}$ the element in $B P *\left(E_{8}\right)$ which corresponds to $\left\{2 x_{20}{ }^{2} \mathrm{x}_{19} \mathrm{x}_{8}{ }^{2} \mathrm{x}_{7}\right\}$. Since $\mathrm{i}\left(\mathrm{v}_{1} \mathrm{zy}_{59} \mathrm{y}_{23}\right)=\mathrm{v}_{1} \mathrm{zx}{ }_{8}{ }^{2} \mathrm{x}_{20}{ }^{2} \mathrm{x}_{19} \mathrm{x}_{7}=0$ in $\mathrm{BP} *\left(\mathrm{E}_{8} ; \mathrm{Z}_{3}\right)$, we can write

$$
v_{1} z y_{59} y_{23}=p^{s}: \quad s \geq 1
$$

Then $\operatorname{dim}($ Filt $(a))<59+|z|$, dima=55+|z|+23 and a must be a $z_{3}$-module in $E_{\star}$. These facts imply(, see Table 1 , ) that a corresponds $\left\{z x_{8}^{2} x_{20}^{2} x_{19}{ }^{x}\right\}=z x$, ie., (4.4) $\quad \mathrm{v}_{1} \mathrm{zy}_{59} \mathrm{y}_{23}=\mathrm{p}^{\mathrm{s}} \mathrm{zx}$.

Now consider tha assumption (4.3). By it,

$$
v_{1}^{r} z x=\lambda b
$$

where $\lambda \in B^{\prime *}$ and $\operatorname{dim}(F i l t(b))>|z x|$. From (4.4), $p_{b} s_{b}=v_{1}^{r+1} z y_{59} y_{23} \neq 0$. But except for $y_{59} y_{23}{ }^{2}$ all elements in $B P *\left(E_{B}\right)$ of dim(Filt) $>|z x|$ axe either torsion free elements which are of form such that $4 \mathrm{~m}-3$ or 4 m (, check Table

3 (a) and note that the dimension of each ring generator is $4 m$ or 4 m- 1 , or torsion elements in $\operatorname{BP*}\left(E_{8}\right)$, e.g., $x_{20}{ }^{2} x_{15}\left(x_{8} x_{19} 9^{-x_{7}} x_{20}\right)=\delta\left(w_{55} x_{7} x_{19}\right)$. This is a contradiction. Hence there is no $y$ such as (4.3).

It does not occur that

$$
d_{r} ; z=v_{1}^{s} x \otimes z^{\prime} \neq 0
$$

where $z^{\prime} \in A\left(x_{27}, x_{35}, x_{39}, x_{47}\right)$, because if it occurs, then $\left|d_{r}, z\right|=4 \pi r+1,|x|=$ $4 m-2$ and so $\left|z^{\prime}\right|=4 \mathrm{~m}-1$ which shows $z^{\prime}=$ one of $x_{27}, x_{35}, x_{39}, x_{47}$, and this contradicts the dimensions $|z|=148$ and $|x|=78$. Hence we have $d_{r}: z=0$.

If there is $y$ such that
(4.6) $\mathrm{d}_{\mathrm{r}}, \mathrm{y}=\mathrm{v}_{\mathrm{I}}{ }^{\mathrm{s}} \mathrm{x}$,
then $d_{r},(y \otimes z)=v_{1}{ }^{s} x \otimes z$ and this contradicts the non existence of (4.4). Therefore there is no $y$ such as (4.6).
§5. The differential $d_{2\left(p^{2}-1\right)+1}$.
First notice that in ${ }^{P_{E}}{ }_{2\left(p^{2}-1\right)+1}$

$$
d_{2 p}^{2}-1 x=v_{2} Q_{2}(x) \bmod \left(v_{1}\right)
$$

We compute $H\left(\operatorname{ker}_{1}, Q_{2}\right)$. See the following Table 2 .
From Table 2, the $E_{2 p}$ 2-term is expressed as
(5.1)

$$
\begin{aligned}
\mathrm{E}_{2 \mathrm{p}}^{2}= & \left\{B P^{*} Z\{0,30,90, a \text { in }(b)\}\right. \\
& \oplus B P^{*} \cdot\left(3 x_{8} x_{8}{ }^{2} x_{7}+v_{1} x_{3} x_{8}{ }^{2} x_{7}, 3 x_{15} x_{8}{ }^{2} x_{7}+v_{1} b\right) \\
& \oplus B P * /(3)\left\{0 \text { in }(a), v_{1} x_{3} x_{8}{ }^{2}\right\} \\
& \oplus B P^{*} /\left(3, v_{1}\right)\{I \text { in (a) }\} \\
& \left.\oplus B P^{*} /\left(p, v_{1}, v_{2}\right)\{W \text { in }(a)]\right\} \otimes B
\end{aligned}
$$

Now we compare $E_{2 p}$ 2 and ${ }^{P_{E \infty}}$. See Lerma 4.7 and Lemra 4.8 in [4].

$$
\begin{gather*}
\mathrm{P}_{E_{\infty}}=\mathrm{p}_{\mathrm{E}_{2 \mathrm{P}}}{ }^{2}=\left[\mathrm{BP*} /(3)\left\{\mathrm{v}_{1} \mathrm{x}_{3} \mathrm{x}_{8}{ }^{2}, \mathrm{x}_{3} \mathrm{x}_{8}{ }^{2} \mathrm{x}_{15} \mathrm{x}_{20}{ }^{2}, \mathrm{x}_{15} \mathrm{x}_{20}{ }^{2}\right\}\right.  \tag{5.2}\\
\oplus \mathrm{BP}^{2} /\left(3, \mathrm{v}_{1}\right)\left\{\mathrm{x}_{3} \mathrm{x}_{8}^{2} \mathrm{x}_{20}^{2}, \mathrm{x}_{15} \mathrm{x}_{20}^{2}\left(\mathrm{x}_{8}, \mathrm{x}_{8}^{2}\right),\left(\mathrm{x}_{3} \mathrm{x}_{20}-\mathrm{x}_{8} \mathrm{x}_{15}\right)\left(\mathrm{x}_{20}, \mathrm{x}_{20} \mathrm{x}_{8}\right),\right. \\
\left.\mathrm{x}_{8}, \mathrm{x}_{8}^{2}, \mathrm{x}_{20}, \mathrm{x}_{8} \mathrm{x}_{20}\right\}
\end{gather*}
$$

$$
\left.\oplus \mathrm{BP} \star /\left(3, \mathrm{v}_{1}, \mathrm{v}_{2}\right)\left\{\mathrm{x}_{20}{ }^{2}, \mathrm{x}_{8} \mathrm{x}_{20}{ }^{2}, \mathrm{x}_{8}^{2} \mathrm{x}_{20}, \mathrm{x}_{8}^{2} \mathrm{x}_{20}{ }^{2}\right\}\right\} \otimes \Lambda\left(\mathrm{x}_{7}, \mathrm{x}_{19}\right) \otimes \mathrm{B}{ }^{\prime} .
$$

Let $x$ be the generators in Table 2. From (5.2) and Table 2, we can easily check that if $x$ is $B P^{*} /(3)$-free (, $B P * /\left(3, v_{1}\right)-f r e e, B P * /\left(3, v_{1}, v_{2}\right)-$ free, ) in $E_{2 p} 2$, then $i(E)(x)$ is also $B P * /(3)$-free(, $B P * /\left(3, v_{2}\right)$-free, $B P * /$ (3, $v_{1}, v_{2}$ )-free respectively) except for $x=x_{8} x_{19}-x_{7} x_{20}, x_{8}^{2} x_{20^{2}} x_{15} x_{7}$. Moreover the exceptional $x$ are $B P * /\left(3, v_{1}\right)$-free in ${ }^{P_{E_{2 p}}}$. Hence there is no $y$ such that

$$
d_{r} y=\lambda x \quad \text { where } \lambda \in B P^{*}, r \geq 2 p^{2}+1
$$

This implies that
(5.3) $\quad E_{2 p} 2 \simeq E_{\infty}$.

Table 2.
(a) $\mathrm{Z}_{3}$-module in $\mathrm{E}_{2\left(\mathrm{p}^{2}-1\right)+1}$.

|  | 1 | ${ }^{x_{8}}$ | $\mathrm{x}_{8}^{2}$ | ${ }^{2} 20$ | $\mathrm{x}_{20}^{2}$ | $x_{8} x_{2 q} x_{8}^{2} x_{2 q} x_{8} x_{2 q}^{2} x_{8}^{2} x_{20}^{2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | I | I | I | iv | I | w | W | \% | N |
| $\mathrm{x}_{8} \mathrm{x}_{19}{ }^{-\mathrm{x}_{7} \mathrm{x}_{20}}$ | 0 | I | W | I | W | W | W | W | - | - |
| $\mathrm{x}_{3}$ | - | - | 0x | - | - | - | X | - | I | I |
| ${ }^{1}{ }_{15}$ | - | - | - | - | 0 | - | - | I |  | I |
| $\mathrm{x}_{3} \mathrm{x}_{15}$ | - | - | - | - | - | - | - | - | 0 | 0 |
| $\mathrm{x}_{3}\left(\mathrm{x}_{8} \mathrm{x}_{19}-\mathrm{x}_{7} \mathrm{x}_{20}\right)$ | - | - | X | - | - | - | I | - | - | - |
| $\mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19}{ }^{\left.-\mathrm{x}_{7} \mathrm{x}_{20}\right)}\right.$ | - | - | - | - | $\underline{1}$ | - | 0 | I | - | - |
| $\mathrm{x}_{3} \mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19}{ }^{\left.-\mathrm{x}_{7} \mathrm{x}_{20}\right)}\right.$ | - | - | $\checkmark$ | - | - | - | 0 | 0 | - | - |


| $x_{8} x_{15}-x_{3} x_{20}$ | $x$ | $x$ | - | $I$ | - | $I$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left(x_{8} x_{15}-x_{3} x_{20}\right)\left(x_{8} x_{19}-x_{7} x_{20}\right)$ | $x$ | $x$ | - | $I$ | - | $I$ |

(b) Corsion free module in $E_{2\left(p^{2}-1\right)+1}$.

| 1 | $x_{8}^{2} x_{7}$ | $x_{20}^{2} x_{19}$ | $x_{8}^{2} x_{7} x_{20}^{2} x_{19}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 |
| $x_{3}$ | 30 | $x$ | $a 0$ | 0 |
| $x_{15}$ | 30 | $b x$ | 0 | 0 |
| $x_{3} x_{15}$ | 90 | 30 | 30 | 0 |

The entries in this table have the following meaning

- ; empty, 0 ; 0 in Table 1 , in ker $Q_{2}$ and not in image $Q_{2}$,

30 , 90 ; this entry corresponds to the element multiplied by 3 or 9 ,
$X ; Q_{2}$-image is non zero ( $O X$; moreover $O$ in Table 1. (a) ),
I ; I or II in Table I and not in image $Q_{2}$, $W$; in image $Q_{2}$,
$a ; x_{3} x_{20}{ }^{2} x_{19}{ }^{-x_{15}}\left(x_{8} x_{19} 9^{-x_{7}} x_{20}\right) x_{20}, \quad b ; x_{15} x_{8}^{2} x_{7}-x_{3}\left(x_{8} x_{19}-x_{7} x_{20}\right) x_{8}$.
§6. The BP*-module structure of $\mathrm{BP} *\left(\mathrm{E}_{8}\right)$.

In this section, we determine the $B P^{*}$-module structure of $B P *\left(E_{8}\right)$. The results are expressed in Table 3. Our notation follows that of Table 2.

First consider the torsion free elements in $\operatorname{BP*}\left(E_{8}\right)$.
(1) From the definition

$$
v_{1} y_{3} y_{23}=3 w_{22}, \quad v_{1} y_{38}=3 w_{34} .
$$

(2) That $\mathrm{i}\left(\mathrm{v}_{1}{ }^{2} \mathrm{y}_{23}\right)=\mathrm{v}_{1}{ }^{2} \mathrm{x}_{8}{ }^{2} \mathrm{x}_{7}=0$ in $\mathrm{BP} \star\left(\mathrm{E}_{8} ; \mathrm{Z}_{3}\right)$ implies $\mathrm{v}_{1}{ }^{2} \mathrm{y}_{23}=\mathrm{pa}$. Since $x_{8}{ }^{2} x_{7}$ is BP*-free in $E_{\infty} . \operatorname{dim}(F i l t(a))<23$. From $K(1) *$-theory (2.4),

$$
v_{1}^{2} y_{23}=p^{s} v_{1} x_{3} x_{8}^{2}=p^{s} w_{15}
$$

Since $v_{1} x_{3} x_{8}{ }^{2}$ is a $Z_{3}$-module in $E_{\infty}$ we have

$$
3 v_{1} x_{3} x_{8}^{2}=b \text { for dimension(Filt(b)) }>15 .
$$

These facts imply that $s=1$, i.e.,

$$
v_{1}^{2} y_{23}=3 w_{15}
$$

(3) From (4.4) and arguments similar to (2), we can take

$$
\begin{aligned}
& v_{1} y_{59}=3 w_{55}, \\
& v_{2} y_{59}=3 w_{43} .
\end{aligned}
$$

(4) From (3) we have

$$
v_{1} y_{23} y_{59}=3 y_{23} w_{55}, \quad v_{2} y_{23} y_{59}=3 y_{23} w_{43} .
$$

(5) In $B P *\left(E_{8}\right) \bmod \left(v_{1}, v_{2}, \ldots\right)$, we have

$$
3 s_{81}=3\left\{x_{3} x_{8}{ }^{2} x_{20}{ }^{2} x_{15} x_{7}\right\}=\left\{3 x_{3}\right\}\left\{x_{8}{ }^{2} x_{20}{ }^{2} x_{15} x_{7}\right\}=y_{3} w_{55} y_{23} .
$$

Hence in $B P *\left(E_{8}\right) \bmod \left(v_{1}{ }^{2}, v_{2}, \ldots\right)$, we have

$$
3 v_{1} y_{85}=v_{1} y_{3} y_{23} y_{59}=3 y_{3} y_{23} w_{55}=9 s_{81} .
$$

Similarly we can chose

$$
3 v_{1} y_{96}=9 s_{93}, \quad v_{1}{ }^{2} y_{23} w_{55}=3 v_{1} s_{74} .
$$

Table 3.
(a) $Z_{3}$-module in $E_{\infty}$.

|  | 1 | ${ }^{8} 8$ | $\mathrm{x}_{8}^{2}$ | ${ }^{20}$ | $\mathrm{x}_{20}^{2}$ | ${ }^{8} 8^{x_{20}}$ | $x_{8}^{2} x_{2}$ | $x_{8} x_{2}^{2}$ | $x_{8}^{2} x^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  |  |  |  |  |  |
| $\mathrm{x}_{8} \mathrm{x}_{19}{ }^{-\mathrm{x}} \mathrm{y}^{\mathrm{x}} 20$ | $\mathrm{u}_{27}$ |  |  |  |  |  |  |  |  |
| $\mathrm{x}_{3}$ |  |  | ${ }^{\text {w }} 15$ |  |  |  |  |  | $\mathrm{x}_{8}^{2} \mathrm{w}_{43}$ |
| $\mathrm{x}_{15}$ |  |  |  |  | ${ }^{\text {w }} 55$ |  |  | $\mathrm{x}_{8} \mathrm{~V}_{5}$ | $\mathrm{x}_{8}^{2} \mathrm{w}_{55}$ |
| $\mathrm{x}_{3} \mathrm{x}_{15}$ |  |  |  |  |  |  |  |  | ${ }^{s} 74$ |
| $x_{3}\left(x_{8} x_{19}{ }^{-x_{7}} \mathrm{x}_{20}\right)$ |  |  |  |  |  |  | ${ }_{4}{ }_{43} \mathrm{y}_{23}$ |  |  |
| $\mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19}{ }^{\left.-\mathrm{x}_{7} \mathrm{x}_{20}\right)}\right.$ |  |  |  |  | ${ }^{4} 55{ }^{\text {u }} 2$ |  | $\mathrm{y}_{23} \mathrm{w}_{5} \mathrm{~s}$ |  |  |
| $\mathrm{x}_{3} \mathrm{x}_{15}\left(\mathrm{x}_{8} \mathrm{x}_{19}-\mathrm{x}_{7} \mathrm{x}_{20}\right)$ |  |  |  | . |  |  | ${ }^{5} 81$ | $\mathrm{s}_{93}$ |  |


(b) torsion free module in $E_{\infty}$.

|  | 1 | $x_{8}^{2} x_{7}$ | $x_{20}^{2} x_{19}$ | $x_{8}^{2} x_{7} x_{20}^{2} x_{19}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | $y_{23}$ | $y_{59}$ | $y_{23} y_{59}$ |
| $x_{3}$ | $y_{3}$ | $y_{3} y_{23}, w_{22}$ | $y_{62}$ | $y_{85}$ |
| $x_{15}$ | $y_{15}$ | $y_{38}, w_{34}$ | $y_{74}$ | $y_{97}$ |
| $x_{3} x_{15}$ | $y_{3} y_{15}$ | $y_{41}$ | $y_{77}$ | $y_{100}$ |

Here we note that the rest of elements in (a) in Table 3, are elements which contain $x_{8}, x_{20}$ or $u_{27}$ as factors. The fact that $\delta x_{7}=x_{8}, \delta x_{19}=x_{20}$, $\delta \mathrm{K}_{7} \mathrm{~K}_{19}=\mathrm{u}_{27}$ implies that the rest are $\mathrm{Z}_{3}$-modules also in $\mathrm{BP} *\left(\mathrm{E}_{8}\right)$, i.e., all torsion elements in $B P *\left(E_{8}\right)$ are $Z_{3}$-modules (not higher 3-torsion).
(5) That $i\left(v_{1} v_{23} w_{55}\right)=0$ in $B P *\left(E_{8} \cdot Z_{3}\right)$ implies that there is a such that

$$
\mathrm{v}_{1} \mathrm{v}_{23} \mathrm{w}_{55}=3 \mathrm{a} .
$$

From (5) $3 v_{1}\left(a-s_{74}\right)=0$. Hence $a=s_{74}$ is a torsion element and a $Z_{3}$-module so $3\left(a-s_{74}\right)=0$ and this implies

$$
3 s_{74}=3 a=v_{1} y_{23} w_{55}
$$

Similarly we have

$$
v_{1} s_{85}=3 s_{81}, \quad v_{1} y_{97}=3 s_{93}
$$

Next consider $\mathrm{Z}_{3}$-modules in $\mathrm{BP} *\left(\mathrm{E}_{8}\right)$.

Lemma 6.6. If $z \in B P *\left(E_{8}\right)$ is a torsion element and $i(z)=0$ in $B P *\left(E_{8} ; Z_{3}\right)$ then $\mathrm{z}=0$ also in $\mathrm{BP} *\left(\mathrm{E}_{8}\right)$.

Proof. Let $i(z)=0$. Then $z=p a$ in $B P *\left(E_{8}\right)$. Hence $p{ }^{2} a=0$ and $z=p a=0$.

From this lemma we have

$$
\begin{aligned}
& v_{1}^{2} u_{27}=0, \quad \text { since } v_{1}^{2}\left(x_{8} x_{19}-x_{7} x_{20}\right)=0 \text { in } \operatorname{BP*}\left(E_{8}\right), \\
& v_{1} x_{8}=v_{2} x_{20}, \quad v_{1} x_{20}=0, \\
& v_{2} a b c=0 \quad \text { where } a, b, c \in\left\{x_{8}, x_{20}, u_{27}\right\} .
\end{aligned}
$$

Moreover we have
$v_{2} W_{55}=V_{1} w_{43}$.
By Table 2 and Table 3, we can check that there is no relation other than these.

## References

1. S.Araki ; Differential Hopf algebras and the cohomology mod 3 of compact exceptional groups $\mathrm{E}_{7}$ and $\mathrm{E}_{8}$, Ann. Marh. 73 (1961) 404-436.
2. L.Hodgkin ; On the K-theory of Lie groups, Topology, 7 (i967) 1-36.
3. R.Kane ; BP-torsion in finite H-spaces, Trans. A.M.S. 264 (1981) 473-497.
4. N.Yagita ; On mod odd prime Brown-Peterson cohomology groups of exceptional Lie groups, J. Math. Soc. Japan 34 (1982) 293-305.
5. ; Brown-Peterson cohomology groups of exceptional Lie groups, J. Pure and Applied Algebra 17 (1980) 223-236.
6. 

; On relations between Brown-Peterson cohomology and the ordinary mod p cohomology theory, preprint.

Rebut el 9 de junt del 1983

Department of Mathematics
Musashi Institute of Technology
Tamazutsumi, Setagaya
Tokyo
JAPAN

