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A CLASS OF INVARIANT POLYNOMIALS AND AN APPLICATION IN

GROUP COHOMOLOGY

G .R . Chapman

INTRODUCTION . This paper arises as part of a study of the mod 2

cohomology ring of a finite simple group G with abelian Sylow

2-subgroup G2, In such a case, a result of Swan ([5]) lemma 1)

applies, and H*(G,Z/2) consists of those elements of H*(G2 , Z/2)

which are fixed under the action induced by inner automorphisms of

G . Moreover, G2 is in fact elementary abelian (see e.g . [3]

p .480), so that H*(G2 ,Z/2) is polynomial over GF(2), the number of

indeterminates being the rank of G2 ([4) p.558) . Hence H*(G,Z/2)

may be calculated as a ring of invariants in the classical sense .

The results of such a calculation, with G taken to be Janko's

first group, appear in [2] .

The preceeding applies when G is PSL(2,2n),the projective

special linear group of 2 by 2 matrices over GF(2n),the field of



2n elements . In this case, one is led to consider Che action of

Che multiplicátive group of GF(2n) on Che additive .This action has

been considered recently (for arbitrary primes) by J . Aguade, and

in [1] he gives a formula for Che dimension of Che vector space of

homogeneous invariants of each degree, in terms of Che number oE

sequences of integers which satisfy certain conditions .llowever, no

invariant polynomials are exhibited, and Che question of Che

multiplicative structure of tlle ring of invariants, which seems

more difficult, remains open .

In Chis paper, we let R=GF(2)[xl, . . .,xn], and construct a

class of polynomials in R which are invariant under Che action of

any degree n polynomial s n(t) in GF(2)[t] which has non-zero

constant term . The special case when sn (t) is irreducible and

primitive then yields Che situation described in Che previous

paragraph . The polynomials we construct aré described in 12, and

their invariante established in J3 .

At Che end of Che paper, in P, we indicate how these

polynomials give rise to cohomology classes in H*(PSL(2,2n),Z/2),

and which oE them in fact lie in H*(PSL(2,2n),Z) .

~2 . CONSTRUCTION OF 7`HE POLYNOMIALS .

Suppose d = (dl, . . .,dn) is an n-tuple of non-negative

integers . The symmetric group , Sn , acts by permuting Che

coordinates, and we suppose this action to be on Che left . Thus

for p E Sn ,

pd=(dP«l) . . . .3dp1 (n)) .



Denote by S(d) the stabilizer of d under this act.ion,and let X(d)

be a set of representatives for the left cosets of S(d) in Sn .

Given n independent variables xl, . . .xn , we define

d l dn
mon(d)=xl . . .xn ,

pol(d)= E mon(p_d),
p E X(d)

where the last expression is considered as an element of R . This

polynomial isindependent of the choice of representatives in X(d),

and is symmetric in xl, . . . .xn .

If d has k non-zero entries (k<n), we wish to obtain from it

a family of n-tuples, called the descendents of d, each of which

has k+l non-zero entries . We say that the n-tuple f is a deseen

dent of d (and d is an anticedent of f) if f may be obtained from

d by replacing two entries 2q, 0 by q,q (q a positive ínteger) .

Two descendents (and likewise two anticedents) are identified if

they are equal up to order .

	

Then, the number of distinct descen-

dents of d is equal to the number of distinct,non-zero, even

integers which occur in the entries of d, while the number of

distinct anticedents of f is equal to the number of integers which

appear more than once in the entries of f .

Let e = (el, . . .,en) be an n-tuple of non-negative integers,

let p be the number of non-zero entries in e, and suppose e

satisfies the following condition .

(a) The non-zero entries of e are distinct, and each is of the

form 2q (q>n-p) .



Put T(e,p) = {e}, and for p+l<k<n let T(e,k) be the set

of descendents of elements of T(e,k-1), again with the understan-

ding that two n-tuples in T(e,k) are identified if they are equal

up to order . It is easy to see that T(e,k-1) is the set of

anticedents of elements of T(e,k) . ' Finally, let

n
a(e) = E

	

E pol(d) .
k=p dcT(e,k)

EXAMPLE . Let n = 3, e = (4,2,0) . Then p = 2,

T(e,2) = {(4,2,0)}, T(e,3) = {(2,2 .2),(4,1,1)},

4 2 4 2 4 2 4 2 4 2 4 2pol(4,2,0) = xl x2 + x2 x3 + x3 x1 + x1 x3 + x2 x l + x3 x2 ,

pol(2,2 .2) = x12x22x32 ~

pol(4,1,1) = x14x2x3 + x24x3xl + x34xIx2,

and a(4,2,0) is the sum of three three polynomials .

3 . PROOF TRAT d (e) IS INVARIANT .

Let the n-tuple e satisfy condition (a) . We will show that

a(e) is invariant under the companion matrix of any degree n

polynomial

provided a l = 1 .

n
sn(t) = E aj+1 tj E GF(2)[t] ,

j=0

Denote by F the transformation of R induced by

(1<i<n-1) ,
n
E ajxj .
j=2



Concerning the last expression, we have the following lemma, which

we state without proof.

LEMMA 1 If 0 is a power of 2, then as elements of R,

In order to show that a(e) is invariant under F, we make the

following definitions . For an n-tuple d, let

E(d) = F(pol(d)) - pol(d),

and for p<k<n let

where p is the number of non-zero entries in e . It follows from

these definitions that a(e) is invariant under F if and only if

AE(e,n) = 0 .

To calculate AE(e,n), we must first consider E(d), for d E

T(e,k) (p<k<n) .

PROPOSITION 1 .

	

Suppose e satisfies condition(a), and d E T(e,k)

(p<k<n) .

Let

Denote

n

	

n
(x l + E ajxj)

0 = x10 + E ajxj0 .
J=2

	

J=2

E(_e,k) =

	

E

	

E(d) ,
d E T(e,k)

k
AE(e,k) = E E(e,k) ,

k-p
-

Xj(d) = {P E X(d) ;

	

dP''(n)

	

= dpi(j-1)

	

*0},

X2 (d)={p6 X(d) ;dpi(n) * 0, dP-I (j_1) =0}-

d
pi(n)

	

dP i(1)

	

dp_ i(n-1)x
j x2 . .xn



by Pl(d) if the sum is over Xl(d) and by P2(d) if it is over

X2 (d) .

Then the coefficient of a j in E(d) is Pl(d) + P2(d) (2<j<n) .

PROOF. For p fl X(d), we have

mials .

F(mon(Pd)) = x2dPi(1) . . . xn (xl + E a jxj) dpI(n)
j=2

If d

	

= 0, then the result is a monomial which appears
p-l (n)

in pol(d) .

Note that xl appears with power zero in this monomial, and dis-

tinct choices of p E X(d) with d

	

= 0 yield distinct mono-
P_1 (n)

If d

	

* 0, it must be a power of 2 (this is because _e
p-l (n)

satisfie (a)) . Thus Lemma 1 applies, and F(mon(pd)) may be

written

dP, (n)

	

dp ,(1)

	

dP"(n-1)

	

.dp I(n)x dP , (1)	d p1(n-1)
x1

	

x2

	

. . xn

	

+

	

E a jx~

	

2

	

..xn
j=2

The first term is a monomial which appears in pol(d) and in which

xl appears with non-zero power . Distinct p E X(d) with d

	

* 0
P-l (n)

yield distinct such monomials, and these monomials are distinct

from those discussed in the previous paragraph . Thus, as p takes

all values in X(d), the sum of the monomials considered up to now

is pol(d) . This means that

E(d) = F(pol(d)) - pol(d)



= E ( E a . xdP I(n)	d P, (1)

	

d P '(n-1)

j-2

	

~

	

j

	

x2

	

. .xn	)

	

.

where the sum is over all p F- X(_d)' with d

	

* 0 . For 2<j<n,
P_1(n)

the coefficient of a
j is

E

	

dp'(n)	d P-'(1)	d P((n-1x,

	

x

	

)

	

(1 ) .2

	

. . xn

where the sum is again over all p é X(_d), d

	

* 0 . This index
'

	

P-1 (n)

set may be written as the union of the disjoint subsets X2 (d) and

Y(d) = {P E X(d) ; d 0, d

	

* 0} .
P_1 (j_1)

Thus the proposition will be proved if we can show that the expre-

ssion (1), when summed over Y(d) yields P 1 (d) .

Let T & Sn denote the transposition (j-1,n) . Define

h : Sn + Sn by h(o) = To . Clearly h2 is the identity map, h

induces a map h : Y(d) t Y(d) and for p E Y(d) the term in (1)

corresponding to h(p) equals the term corresponding to p . Thus,

modulo 2 they cancel .

	

Now

	

h(p) = p

	

if and only if

	

p1 Tp

S(d) . But p-1Tp is the transposition (p-1 (j-1), p_1 (n», and so

h(p) = p precisely when d

	

= d

	

Thus the expression
P_1 (j_1) P_1 (n)

(1), when summed over Y(d) yields P1 (d), and the proposition is

proved .

Note that in each monomial of P1 (d) precisely (k-1) distinct

x's appear with non-zero coefficient, while for monomials in P 2 (d)

precisely k x's appear with non-zero coefficient .

We can now calculate AE(e,k) .



PROPOSITION 2 . Let e satisfy condition (a) . . Then, with P2(d)

as defined in Proposition 1, the coefficient of X j in AE(e,k) is

E

	

P2(d)

	

(2<j<n, p<k<n) .
d P- T(e,k)

The invariance of a(e) now follows from

COROLLARY 1 If e satisfied condition (a), then AE(e,n) = 0 .

PROOF .

	

Note that if d E T(e,n), then no entry in d is zero, and

so X2(d) is empty . Thus P2(d) = 0, and by Proposition 2, the

coefficient of X j in AE(e,n) is zero for 2<j<n. Hence AE(e,n) _

0 .

PROOF OF PROPOSITION 2 . We proceed by induction on k. When k=p,

AE(e,p) = E(e,p) = E(e) .

Take d = e in Proposition 1 . Since e has no non-zero entry

repeated (condition (a)), it follows that X1 (e) is empty . Thus

the coefficient of X i in E(e) is P2(e), which establishes the

proposition when k=p .

Assume that the coefficient of X j in AE(e,k-1) is

E

	

P2(d)

	

,

	

(p+1

	

<

	

k

	

< n) .
dE T(e,k-1)

Now

	

AE(e,k) = AE(e,k-1) + E(e,k),

and the coefficient of X j on the right hand side is

The induction will be established if we can prove

LEMMA 2 .

	

£

	

P2(d) =

	

E

	

P1(d)

	

(p+1<k<n) .
d ET(e,k-1)

	

d ET(e,k)

E

	

P2(d) +

	

E

	

(P l (d) + P2 (á))

	

(2<j<n) .
d ET(e,k-1)

	

d eT(e,k)



PROOP. A typical monomial on the left hand side is of the form

Then p E XI(f), and the monomial

dPI (n) dp', (1) dP , (n-1)
xj

	

x2

	

. . . xn	,

where d E T(e,k-1), p é- X2(d) .

	

Since e satisfies (a) and

d E T(e,k-1) with k-1<n, it follows that each non-zero entry in d

is not only a power of 2, but also not equal to 1 . Let f =

(f l , . . . . fn ) be the descendent of d obtained by replacing d

and d

	

(which is 0) by two copies of d

	

/2 .
P-1 (J-1)

	

P-1 (n)

fP'(n) fPr~(1) fP -I(n-1)xj	x 2

	

. . . xn	,

appears on the right hand side of the equation of the Lemma .

P-1 (n)

Conversely-, given a monomial on the right hand side

d P" 1 (n)	d-1(1)	d P_i(n-1)
xj	x2

	

. . . xn	,

	

I

where d a T(e,k) and p E X, (d), we may reverse the above process .

Let f = (fl, . . .,fn) be the anticedent of d obtained by replacing

d

	

by 2d

	

, and d

	

by 0 . Then f E T(e,k-1),

	

p G- X2 (f)
p-1 (n) p -1 (n) P-1(J-1) -

and the monomial

fP'(n)

	

fP1 (1)	f P-'(n-1)
xi	x2

	

. . . xn	,

appears on the left hand side. Thus is established a one-one

correspondence between the monomials appearing on the left and on

the right, and so Lemma 2 is proved .



Proposition 1, and the invariance of a(e) now follow .

4 . AN APPLICATION IN COHOMOLOGY .

Let G = PSL(2,2n ) . In this section, we indicate how the

polynomials constructed in f2 give rise to cohomology classes in

H*(G,Z/2) and H*(G,Z) . We remark that the following holds for

choices of G other than PSL(2,2n), for example GL(2,2 n ) .

The sylow 2-subgroup G2 of G consists of the matrices

and is isomorphic to the direct product of n copies of C2 , the

cyclic group of order 2 . If

then H is cyclic of order 2 n-l, and if N denotes the normalizer of

Go in G, we have the extension

Here, H .acts on G2 by

a 0
H = {

(0 a-1)
; a¿GF(2n),a*0},

Since G2 is self centralizing and Aut(G2) = GL(n,2), we have a

monomorphism j :H + GL(n,2) . The above is discussed more fully in

[3] .

b
{~

1
j ; b¿GF(2 n)},

0 1

1+G2 +Ni H+ 1 .

a

	

0-) 1 1

	

bl

	

~ a-'

	

0'

	

-

	

(1

	

a2b~

0 a 0 1 0 a 0 1

n
Let rn(t) = E chi t-1 be a primitive, irreducible, degree n

j=o



polynomial over GF(2), and let 1 be a root of rn(t) . Then H is

/u
generated by I

`

	

, where u

	

Further as a vector
0 u 1

space over F2, G2 has basis

Since

it follows that

0 uó11 L
.i

11 ~u01 0/
= ~l

C1

+l

0

)
is the companion matrix M of rn(t),

u 1

and that «H) = <M>, the group generated by M.

Turning to cohomology we note that Hl (G2,Z/2) = Hom(G2,Z/2) .

For 1<i<n, let xi be the element of H 1 (G2 ,Z/2) which corresponds

under this isomorphism to the homomorphism which maps

	

to
0 1

1 if j=i-1, and to 0 otherwise . It is well known (see e .g.[4])

that H*(G2 ,Z/2) is the polynomial ring GF(2)[x1, . . .,xn], which in

this paper has been denoted by R .

It follows from the definition of xi that M induces a

transformation

xi , xi+l

	

(1<i<n-1),

xn

0<i<n-1} .

(O<i<n-1),

so that we may calculate H*(G,Z/2) as the ring of invariants RM .



For integer coefficients, since 2Hm(G2 ,Z) = 0 (m>0) it

follows that the homology sequence arising from

j
0 + Z + Z + Z/2 + 0

may be decomposed into short exact sequences .

0 + [HM(G,Z)]2 + H n(G,Z/2) + [ Hm+l(G, Z)1 2 + 0

	

(m>1) .

Thus [H*(G,Z)1 2 may be obtalned as either the kernel of or the

image of the Bockstein homomorphism A . Now we have A(xi ) = x12,

A(x12 ) = 0 (1<i<n) .

If e satisfies (a) and all non-zero entries in e are > 2n-p, then

each d E T(e,k) (p<k<n) has all entries even .

	

This means that in

the monomials in pol(d),. all x's appear with even power. Since

A(x12 ) = 0, it follows that A(pol(d)), and hence A(a(e)) = 0 . An

analysis of the situation when the n-tuple e satisfies condition

(a) and has an entry equal to 2``
-p yields the following .

PROPOSITION 3 .

	

If e satisfies (a), then A(a(e)) = 0 (and so a(e) E

H*(G,Z)) except in the following cases .

(i)

	

If

	

e = (2
ql

, . . .,2
qn-1 ,1) with q i >

	

1

	

(1<i<n-1),

	

then

A(a(e)) = a(2g1 , . . .
2qn-1

.2) .

(ii) If e = (2ql , . . ., 2qn-2 ,2,0) with qi > 1 (1<i<n-2), then

gA(a(e)) = a(21, . . .,2qn-2,2,1) .
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