ABOUT SOME QUESTIONS OF DIFFERENTIAL ALGEBRA

CONCERNING TO EEEENTARY FUICTIOHS

Santiago Zarzuela Armengou.
Dpto. de Algebra y Fundamentos, Universidad de Barcelona
Rebut el 2 de juny del 1981
The study of elementany functions, that is, of those functions built up by using rational functions over \mathcal{R}, Exponentials, Logarithms and Algebraic operations, began somewhat sistematically with the diverse works that Joseph Liouville did in the 1830° s. Although his capital aim was to obtain some result about the integration by means of elementary functions, along his way he had to study aspects more circunscribed to the structure of these functions. About the first point we must say thai, certainly, Liouville obtained a result that, even improved bince that time, has not changed essentially. It subices, for exemple, to compare the work of Liouville given in [2] and Rosenlicht's in [6]. We can observe then that the introduction of new language and new thecnique has only linealized the problem, making clear which properties of elementary functions characterize them.

Using this new language and new thecnique it is possible deal mone clearly with some questions about elementary functions. For exemple, their irredundancy, that was already established by Liouville himself in [2] and Hardy in [1]. Now, the irredundancy is a consequence of an Structure theorem \{1.2) that we can quikly give by using Rosenlicht's thecniques. ARso, the not solvability by means of elementary functions of certain classical transcendental equations can be easily established. We study this in Section 2. Another treatment of the Structure theorem and irredundance questions (but not using Rosenlicht's thecniques) can be found in the Risch's paper [5].

1.- AN STRUCTURE THEOREM.

First some definitions. All fields will be contutative and of characteristic zero.
1.A. Remember that if E is a field, a map $D: E \longrightarrow E$ is a derivation of E if: (1) $\forall x, y \in E D(x+y)=D(x)+D(y)$, (2) $\forall x, y \in E D(x y)=x D(y)+y D(x)$. It follows from (2) that $D(1)=0$, hence by (1) $D(z)=0 \forall z \in z$. The set $C_{D}=\{x \in E / D(x)=0\}$ is the set of constants of D. Given that $\forall x \in E$ $D\left(x^{n}\right)=n D(x) x^{n-1}, D\left(x^{-1}\right)=-D(x) x^{-1}$ we have that C_{D} is a subfield of E.

A field E with a family of derivations Δ is a differential field; then, $C=\cap \in_{D} C_{D}$ is the field of constants of the differential field E. Let $E \subset F$ two differential fields. The extension $E \subset F$ is differential if $\forall D \in \Delta_{F}, D_{\mid E} \in \Delta_{E}$. AIthough two different derivations of Δ_{F} can coincide over E, we won't distinguish betwen Δ_{E} and Δ_{F}. Let C_{E}, C_{F} be the respective constant fields. We have $C_{E} C C_{F}$. When the equality holds we say that the extension is with the same field of constants.
EXEMPLES: $\not \subset\left(X_{1}, \ldots, X_{n}\right)$ with $\Delta=\left\langle\delta / \delta x_{i}\right)_{i=1, \ldots n}$ is a differential field. $\mathbb{C}(X) \subset \mathscr{C}\left(x, e^{X}\right)$ is a differential extension with the same field of constants.
1.B. The elementary nature is then formulated in the next way: let E be a differential field; $x, y \in E$. Then

$$
\begin{aligned}
& -y=\log (x) \Leftrightarrow D y=D x / x \forall D \in \Delta \quad(y \text { is Logarithm of } x) \\
& -y=\operatorname{Exp}(x) \Leftrightarrow D y / y=D x \forall D \in \Delta \quad \text { (} y \text { is Exponential of } x)
\end{aligned}
$$

If $E \subset F$ is a differential extension, $y \in F$ is Elementary over E if and on1y if

- either y is algebraic over E
- or $y=\log (x)$ being $x \in E$
- or $y=\operatorname{Exp}(x)$ being $x \in E$.

The differential extension $E \subset F$ is Elementary if $F=E\left(\theta_{1}, \ldots, \theta_{n}\right)$ with θ_{1} elementary over E, and θ_{i} elementary over $E\left(\theta_{1}, \ldots, \theta_{i-1}\right) \forall i \geqslant 2$. Then, $\operatorname{Card} A_{E}=\operatorname{Card} A_{F}$.
1.C. The tool wich allow us to liearize the arguments is the Module of Differentials. A fast construction of it (sufficient for us) is the following:
let $E C_{F}$ be fields and consider the F-vector space generated by the symbols $\{d x\}_{x \in F}$. Let us impose them the following relations:
(1) $\forall x, y \in F \quad d(x+y)=d x+d y$
(2) $\forall x, y \in F \quad d(x y)=x d y+y d x$
(3) $\forall x \in E \quad d x=0$.

Then we get a F-vector space called the Module of the Differentials of ECF. Its symbol is $\Omega_{F / E^{*}}$

Remember too that if $\left\{x_{i}\right\}_{i=1 . \ldots r}$ are elements of F, then they are algebraicaly independent over E if and only if the family $\left\{d x_{i}\right\}_{i=1} \ldots r$ is $F \cdot$ Iineary independent on $\Omega_{F / E}$. So Tr.deg. ${ }_{E}=\operatorname{dim} m_{F / E}$). (see [6], Prop. 3)

The next result, due to Rosenlicht, is a fundamental one for this work:
1.1.- THEOREM. Let $E \subset F$ be a differential extension with the same field of constants. Let C be this field and take $y_{1}, \ldots, y_{n} \in F, z_{1}, \ldots$ $\ldots, z_{r} \in F-\{0\}$ and $\left\{c_{i j}\right\}_{i=1 \ldots n} \subset c$ such that $\forall i \neq 1, \ldots, n, \forall p \in \Delta$ $j=1 \ldots r$
(1) $\sum_{j=1}^{T} c_{i j} D z_{j} / z_{j}+D y_{i} \in E$. Then

- either Tr.deg. $E^{R}\left(y_{I}, \ldots, y_{n}, z_{i}, \ldots, z_{r}\right)>_{n}$
- or the n elements of $\Omega_{F / E}$:
$\sum_{j=1}^{T} c_{i j} 1 / z^{d z} z_{j}+d y_{i}, i=1, \ldots, n$ are C-lineary dependent.
Proof: see Theorem 1, of [6].
1.D. Let F be a differential field. We say that the equality $Y=\log X$ has a solution in F if there are elements $x, y \in F$ verifying it. It is natural, then, to ask haw many solutions of this equality there are in an elementary extension ECF. The following theorem, from wich Risch gives another version in [5], answers this question. Previously some notation:
let $E \subset F$ be an elementary differential field extension with the same field of constants: $E \subset F=E\left(\theta_{1}, \ldots, \theta_{n}\right)$. Let

$$
y_{1}=\log x_{1}, \cdots, y_{r}=\log x_{r}
$$

the not algebraic cases among the $\Theta_{i}^{\prime \prime} s$; that is, $\mathrm{F}=\mathrm{Tr}$. deg* F and for
each θ_{i} not algebraic (over the preceeding subextension) there exists x_{j} or y_{j} such that $\theta_{i}=x_{j}$ or y_{j} depending on whether θ_{i} is Exponential or Logarithm. Suposse they are arranged according to their order of apperance and that $\overline{\mathbb{Z}}$ is an algebraic closure of E.
1.2.- Theorem. On the abovementioned hypothesis if the equality Y o $=\log X$ holds in F, for any solution x, y there exist $c_{1}, \ldots, c_{r} \in c, f$, $g \in \bar{E} \cap_{F}$, and $n_{1}, \ldots, n_{r}, n \in Z$ such that

$$
y+c_{1} y_{1}+\ldots+c_{r} y_{r}=f, \quad x^{n} x_{1}^{n}{ }^{n} \ldots x_{r}^{n}=g
$$

Proof: if the equality holds in F we can consider the system

$$
\left\{\begin{array}{l}
\forall i y_{i}-D x_{i} /_{x_{i}}=0 \in E \\
D y-1 / x_{x} D x=0 \in_{E} \quad \forall \quad D \in_{\Delta} .
\end{array}\right.
$$

By Theorem 1.1 we get

- either Tr.deg. ${ }_{E} E\left(y_{1}, \ldots, y_{t}, y, x_{I}, \ldots, x_{r}, x\right) \geqslant{ }_{r+1}$
- or the elements of $\Omega_{F / E}:\left(d y_{i}-1 / x_{i} d x_{i}\right), i=1, \ldots, r$,
(dy $-1 /{ }_{x} \mathrm{dx}$) are C -lineary dependent.
Here it is clear that only the second condition is possible. So there exist $c_{1}, \cdots, c_{r}, c \in c$ not all zero such that
(1) $c(d y-1 / x d x)+\sum_{i=1}^{r} c_{i}\left(d y_{i}-1 / x_{i} d x_{i}\right)=0$.

We can also take c since otherwise

$$
\sum_{i=1}^{T} c_{i}\left(d y_{i}-1 / x_{i} d x_{i}\right)=0
$$

But if $y_{r}=\theta_{j}$ for some j, because of the elementarity of $E C F$, each $d y_{i}$, $d x_{j}$ except $d y_{r}$ is a linear combination of the preceeding $r-1 d \theta_{s}$ with coefficients in F. But they are F-lineary independent beacuse of $1 . C$. So $c_{r}=0$. The same happens if $X_{r}=\theta_{i}$ for some i. Appliyng repeatdly this argument we get $c_{1}=\ldots=c_{r}=0$, not possible.

Hence, dividing by c, we can assume
(2) $d y+c_{1} d y_{1}+\ldots+c_{r} d y_{r}=1 / X_{x} d x+c_{1} 1 / x_{1} d x_{1}+\ldots+c_{r} 1 / x_{r} d x_{r}$.

Consider now a maximal Q-1ineary independent system among the
$\left\{1, c_{1}, \ldots, c_{r}\right\}:\left\{e_{1}, \ldots, e_{k}\right\}$ such that $e_{1}=1$. Then

$$
\forall i: c_{i}=\sum_{j=1}^{k} q_{i j} e_{j}, q_{i j} \in Q \forall_{i}, j \text {. Therefore }
$$

$1 / x^{d x}+c_{1} 1 / x_{1} d x_{1}+\ldots+c_{r}{ }^{1 /} x_{r} d x_{r}=e_{1} 1 / x^{d x}+\sum_{j{ }^{\prime} 1}^{k} q_{1 j} e_{j}^{d x_{1}}+\ldots+$
 $=e_{1} 1 / f_{i} d f_{1}+\ldots+e_{k} 1 / \xi_{k} d f_{k}$, being $f_{1}=x x_{1}^{q} 11 \ldots x_{r}{ }^{q}$

$$
\dot{f}_{k}=x_{1}{ }^{q}{ }^{1 k} \ldots x_{r}{ }^{q}{ }^{q} .
$$

Then
(2') $d\left(y+c_{1} d y_{1}+\ldots+c_{r} d y_{r}\right)=e_{1 / f} f_{1} d f_{1}+\ldots+e_{k}{ }^{l /} f_{k} d f_{k}$.
By Prop 4, of [6] we have

$$
\begin{aligned}
& -y+c_{L} y_{1}+\ldots+c_{r} y_{r}=g \in \bar{E} \cap F \\
& -f_{i} \in \bar{E} \cap F \forall_{i} .
\end{aligned}
$$

 $x^{m x_{i}^{m i}} 11 \ldots x_{r}^{m}=f \in \bar{E} \cap F$, q.e.d.

Sometimes it is possible to give a complete description for the solution of $Y=\log X$. This happens when E is a classical differential field :
1.3.- Theorem. . On the hypothesis of Theorem 1.2, supose moreover that $E=C(z), C$ the field of constants of E and $z \notin C$ such that $\forall D \in \Delta \quad D z \in C$. Then, any solution of the equality can be written in the form

$$
\begin{aligned}
& y=c_{1} y_{1}+\ldots+c_{r} y_{r}+c \\
& x=x_{1} c_{1} \ldots x_{r}^{c_{r} c^{\prime}, \text { being } c_{1}, \ldots, \varepsilon_{r} \in Q, c, c^{\prime} \in C .}
\end{aligned}
$$

Proof: applying the same argument used in 1.2 and taking the system

$$
\left\{\begin{array}{l}
D z \in C \\
\forall i D y_{i}-D x_{i} x_{i}=0 \in C \\
D y-D x_{x}=0 \in C \quad V_{0 \in \Delta}
\end{array}\right.
$$

we get there exist $q_{1}, \ldots, q_{r} \in Q$ auch that

$$
x_{1}{ }_{1} 1 \ldots x_{r}^{q_{r}} \in \bar{C} \cap p
$$

But any derivation has only one extension for an algebraic extension of E ([8] Cap. 2, 17, Cor. 2). So $\overline{\mathrm{C}} \cap_{\mathrm{F}}$ is a field of constants and given that $E \subset F$ is an extension with the same field of constants we have $C=\vec{C} \cap F$. Therefore

$$
\begin{aligned}
& \text { (1) } x=x_{1}^{q} 1 \ldots x_{r}^{q_{r}} c^{\prime}, c^{\prime} \in C . \text { Deriving (1) yields } \\
& \forall D \in \Delta, D y=D x /{ }_{x}=D\left(x_{1}^{q} \ldots x_{r}^{q_{r}}\right) /\left(x_{1} q_{1} \ldots x_{r}^{q_{r}}=\right. \\
& q_{1} D x_{1} / x_{1}+\ldots+q_{r} D x_{r} / x_{r} \text {. So } \\
& y=q_{1} y_{1}+\ldots+q_{r} y_{r}+c, c \in c, q . e . d .
\end{aligned}
$$

Rewark: it can happen that $x_{1}{ }_{1}{ }^{1} \ldots x_{r}{ }^{q} \notin F$. However, it is an algebraic point that doesn't disturb the elementarity of the process.

2.- SOME CONSEQUENCES.

2.A. The first conclusion we draw from 1. is that we'Il nate the Ibredundance of Elementary Functions. This means that building up elementaty extensions by means of algebraic elements, logarithm elements or exponential elements are completly independent processes: no one of them can be obtained from the others.

In order to set the problem we'll use an adecuate language; we say that the differential extension $E \subset F$ is Algebraic if the field extension $E \subset F$ so is; it is Logarithmic if $F=E\left(\theta_{1}, \ldots, \theta_{n}\right)$ such that θ_{1} $\log _{1}, \Psi_{1} \in E, \theta_{i}=\log _{i} \Psi_{i}, \psi_{i} \in\left(\theta_{1}, \ldots, \theta_{i-1}\right) \forall i>2$. Changing Log by Exp we have an Exponential extension.
2.1.- Lemma. Let $E C F=E(0)$ be a differential extension with the same field of constants C and $\Theta \notin E$.
(1) If $\forall D \in \triangle \quad D \in \in E$, then θ is transcendental over E.
(2) If $\forall_{D} \in \Delta \quad D \ominus / /_{0} \in E$, then θ is algebraic over E if and only if there exists $n \in N$ such that $\theta^{n} \in E$, and the irreducible polynomial of θ over E is $X^{n}-\theta^{n}, n$ being the least of these naturals.

Proof: assume θ to be algebraic over E and let $P(X)=X^{n}+a_{1} x^{n-1}+\ldots+$ $+a_{n-1} x+a_{n}$ be the irreducible polynomial of θ. Then
(*) $\theta^{n}+a_{1} \theta^{n-1}+\ldots+a_{n-1} \theta+a_{n}=0$.
(1) Deriving (*) we get $\forall D \in \Delta,\left(D a_{1}+n D \theta\right) \theta^{n-1}+\ldots=0$.

Given that $P(X)$ is the irreducible polynomial of θ over E we have that $\forall_{D} \in_{\Delta D a_{1}}+n D \theta=0$. So $V_{D} \in \Delta D \theta=D\left(-a_{1} / n\right)$ and $\theta+a_{1} / n$ is a constant. Due to $E \subset F$ is with the same field of constants we get $\theta \in E$, not possible.
(2) Now it suffices to prove that $0^{n} \in E$. Deriving ($*$) we get $\forall D \in \Delta n D \theta / \theta_{\theta} \theta^{n}+\left(D a_{1}+(n-1) D \theta / \theta\right) \theta^{n-1}+\ldots+D a_{n}=0$. But $a_{n} \neq 0$, so $D a_{n}=n D \theta / \theta_{n} H_{D \in \Delta}$. Hence $D a_{n} / a_{n}=n D \theta / \theta \Rightarrow D a_{n} / a_{n}=D \theta^{n} / \theta^{n} \Rightarrow D\left(a_{n} / \theta^{n}\right)=0$ $\forall D \in \Delta$. So $a_{n} /_{0} \in C \subset E$, and $\theta^{n} \in E$, q.e.d.
2.2.- Theorem. Let E be a differential field with field of constants C. Let $E \subset F=E\left(\theta_{1}, \ldots, \theta_{r}\right)$ be an elemental differential extension with the same field of constants. Then:
(a) When F is Logarithmic, ECF is a purely transcendental extension. If $E \subset F$ is Exponential, $E \subset_{F}$ is purely transcendental unless there exist $n_{1}, \ldots, n_{r} \in z$ such that $\theta_{1}^{n_{1}} \ldots \theta_{r}^{n_{r}} \in E$. Let $x \in E$.
(b) The equality $Y=\log (x)$ never holds in $F-E$ if $E \subset F$ is Algebraic or Exponential.
(c) The equality $Y=\operatorname{Exp}(x)$ never holds in $F-E$ if $E \subset$ is Logarithmic, and if there is a solution when $E \subset F$ is Algebraic then there exists $n \in N$ such that $y^{n} \in E$.

Moreover, if $E=C(z), z \notin C, D_{z} \in C \quad \forall_{D} \in \Delta$ being C the field of constants of E, C algebraically, closed, then there are not exceptions for the case (c).
Proof: (a) The stament is an easy consequence of lemma 2.1 for the Logarithmic case. Assume that $E \subset F$ is Exponential and not purely transcendental extension. By Lema 2.1 there exists $\theta_{s}, p \in N$ such that $\theta_{s}^{p} \in E\left(\theta_{1}\right.$, \ldots, θ_{s-1}). Let θ_{k} the first of them, that is, $\theta_{1}, \ldots, \theta_{k-1}$ are algebraic independent over E and $\theta_{k}^{p} \in E\left(\theta_{1}, \ldots, \theta_{k-1}\right)$. Then by Theorem 1.2 we get the stament.
(b) Let y be a aolution. Then, $\forall D \in \Delta D y=D x / x$. Since $x \in E$ we can take the differential extension $E C_{E}(y)$. By 2.1 y is not algebraic over E. Suposse now ECF is Exponential. Then, by 1.2 we get there exist

being $\theta_{i_{1}}, \cdots, \theta_{i_{k}}$ a maximal algebraicaly independent system over E among $\theta_{1}, \ldots, \theta_{r}$ like in l.D.

But $x \in E$: so $n_{i_{1}}, \ldots, n_{i_{k}}$ are 0 , and looking in 1.2 for the construction of these naturals we have $c_{i_{1}}=\ldots=c_{i_{k}}=0$. Hence $y \in \overleftarrow{E} \cap F$, not possible as we have proved above.
(c) The Lemma 2.1 assure us that if y is algebraic over E then there exist $n \in N$ such that $y^{n} \in E$. Suposse $E C_{F}$ is Logarithmic. By 1.2 we have there exist $n_{1}, \ldots, n_{r}, n \in Z, c_{1}, \ldots, c_{r} \in C$ such that

Now, by leman $2.1, \theta_{1}, \ldots, \theta_{r}$ is an algebraically independent system over E, so $c_{1}=\ldots=c_{r}=0$, and $n_{1}=\ldots=n_{r}=0$ (look for the construction of n_{1}, \ldots, n_{r} in 1.2). Hence $y \in \bar{E} \cap F=E$, not possible.

On the assumtion that $E=C(z), \ldots$, the stament is consequence of aplying Theorem 1.3 to $y^{n} \in E=C(z)$.

Remark: an example that give us an exception for (a) is:
$E=\mathbb{L}(z)\left(\operatorname{Exp}\left(2 z+2 z^{2}\right)\right), F=E\left(\operatorname{Exp} z, \operatorname{Exp} z^{2}\right)$. Then, $\operatorname{Exp}\left(z+z^{2}\right) \in f-E$
and is algebraic over E.
2.B. The question of whether some transcendental equations can be solved by means of elementary functions sometimes can be answered using the Structure theorem 1.2. Let us see two classical examples:
assume ECF is a diffrential extension with the same field of constants. Let C be this field and $E=C(z)$ such that $\forall D \in \Delta D z \in C, z \notin C$. Suposse C is algebraically closed and ECF Elementary.

Consider the equation

$$
\alpha Y=\log (\beta Y) \quad \alpha, \beta \in E .
$$

Suposse there is a solution in F, y. Using the same notation of 1.3 we get

$$
y=c x_{1}^{c}{ }_{1} \ldots x_{n}^{c}, \quad y=\bar{c}+c_{1} y_{1}+\ldots+c_{n} y_{n}
$$

$c, \bar{c} \in C, c_{1}, \ldots, c_{n} \in Q$. Passing to the Module of differentials, $\Omega_{E / E}$, we have

$$
\begin{aligned}
& \alpha^{+}\left(\left\langle x_{1}^{c} 1 \ldots x_{n}^{c}\right) c_{1} 1 / x_{1} d x_{1}+\ldots+\left(x_{1}^{c} \ldots x_{n}^{c}\right) c_{n} 1 / x_{n} d x_{n}\right) \cdot= \\
& =c_{1} d y_{1}+\ldots+c_{n} d y_{n}, \quad \alpha^{\prime}=\alpha c / \beta .
\end{aligned}
$$

But taking the Module of differentials respect on the penultimate subextension not algebraic and taking into account $1 . C$ we have that

$$
\alpha^{\prime}\left(x_{1}^{c} 1 \ldots x_{n}^{c}\right) c_{n} 1 / x_{n} d x_{n}=c_{n} d y_{n} \text {, where } d x_{n}=0 \text { or } d y_{n}=0 \text { becau- }
$$ se of the elementarity of $E C F$, being one of them not zero. Therefore $c_{n}=$ $=0$; repeating this argument we have $c_{i}=0$ i. Consequently, any solution is trivial.

As a particular case and taking $E=\mathbb{C}(2)$ we have that the equation $\log (Y)=Y / z$ has not solution by means of elementary functions.

With the same hypotesis consider now the equation
(*) $Y+\alpha=B \operatorname{Exp}(Y Y),+\beta^{\dagger} \operatorname{Exp}(-Y Y), \quad a, B, B^{\prime}, \gamma \in E$.
Let y be a solution, $y \in F$. We can suposse also that $\operatorname{Exp}(y y) \in F$. Then by 1.3 and with the same notation we have
(**) $\gamma y=c+c_{1} y_{1}+\ldots+c_{n} y_{n}, c \in c, c_{1}, \ldots, c_{n} \in Q$.
Substuing for γy in (*) we get that
$y+\alpha=\beta x_{1}^{c} \ldots \ldots x_{n}^{c}+. \beta^{i} x_{1}^{-c} 1 \ldots x_{n}^{-c_{n}}$ (where we have operated adequatiy B, B^{\prime}).

Passing now to the Module of differentials $\Omega_{F / E}$ we get
$d y=\sum_{i} B\left(x_{1}{ }^{c} \ldots x_{n}^{c}\right) c_{i} 1 / x_{i} d x_{i}+\sum_{i} B^{\prime}\left(x_{1}^{-c} 1 \ldots x_{n}^{-c} n^{n}\right)\left(-c_{i}\right) 1 / x_{i} d x_{i}$.
But taking into account (**) we have that
$1 / \gamma_{\gamma}\left(c_{1} d y_{1}+\ldots+c_{n} d y_{n}\right)=\sum_{i} B\left(x_{1}^{c} \ldots x_{n}^{c}\right) c_{i} 1 / x_{i} d x_{i}+\sum_{i} B!\left(x_{1}^{-c} \ldots x_{n}^{-c} n^{n}\right)$ $\left(-c_{i}\right) I / x_{i} \mathrm{dx}_{i}$.

If as above we take now the Module of differentials respect on the penultimate subexetension not algebraic we get only $c_{n}{ }^{1 /} y^{d y_{n}}=\beta\left(x_{1}{ }_{1} \ldots x_{n}^{c}\right) c_{n}{ }^{1 /} x_{n} d x_{n}-\beta^{\prime}\left(x_{1}{ }^{-c_{1}} \ldots x_{n}^{-c_{n}}\right) c_{n} 1 / x_{n} d x_{n}$.
It follows from the elementarity of $E \subset F$ that either $d x_{n}$ or $d y_{n}=0$, one of them being not zero. Then

$$
\begin{aligned}
& -d x_{n}=0 \Rightarrow c_{n}=0 . \\
& -d y_{n}=0 \Rightarrow \text { either } c_{n}=0 \text { or } x_{1}^{2 c_{1}} \ldots x_{n}^{2 c_{n}}=B^{\prime} / /_{B} \in E .
\end{aligned}
$$

The last equality can hold in F, but if we assum that $\beta, B^{\prime}, Y \in C$ then ${ }^{2 c_{1}}{ }_{1} \ldots x_{n}^{2 c_{n}} \in_{C} \Rightarrow \gamma y \in C \Rightarrow y \in C$. Repeating this argument we conclude that if $B, B^{\prime}, \gamma \in C$ any solution of ($*$) is constant, that is, trivial.

Taking $E=\not(z), \alpha=-z, \beta^{\prime}=-\beta=-h / 2 i, \gamma=i$ we get that the equation $Y=z+h \sin (Y), h \in \notin$ (Kepler's equation) has not a solution by means of elementary functions.
2.C As a final aplication of 1.1 we give a result of Ostrowski proved in [4]; this is an example of how the methods purposed by Rosenlicht simplifie the arguments. The result permet, under certain conditions, to transforn algebraic relations into linear relations.
2.3.-Proposition. Let ECF be a differential extension with the same field of constants, C. Let y_{1}, \ldots, y_{n} be elements of F such that $\forall_{D} \in \Delta$ $D y_{i} \in_{E} \forall_{i}$. Then, if y_{1}, \ldots, y_{n} are algebraically dependent over E there are $c_{1}, \ldots, c_{n} \in c$ such that $c_{1} y_{1}+\ldots+c_{n} y_{n} \in E$.
Proof: given that y_{1}, \ldots, y_{n} are algebraically dependent over ε, by 1.1 we get that $d y_{1}, \ldots, d y_{n} \in \Omega_{F / E}$ are $C-1 i n e a r y$ dependent. So there exist $c_{1}, \ldots, c_{n} \in C$ such that $c_{1} d y_{1}+\ldots+c_{n} d y_{n}=0$. So $d\left(c_{1} y_{1}+\ldots+c_{n} y_{n}\right)$ $=0$ and by $1 . c c_{1} y_{1}+\ldots+c_{n} y_{n} \in \mathbb{E} \subset \mathcal{F}_{\text {. But }} D\left(c_{1} y_{1}+\ldots+c_{n} y_{n}\right) \in E$ (hyp), so by Lemua 2.1 we get that $c_{1} y_{1}+\ldots+c_{n} y_{n} \in E$ q.e.d..

REFERENCES

[1] G.H. Hardy. The integration of functions of a single variable.
[2] J. Liouville. Memoire sur l'integration d'wne olasge des functions transcendantes. Journal fur Mathematik, Vol 13 (1835) pgs 93-118.
〔31 J. Liouville. Mémoire sur la classification des transcendantes, et sur l'inpossibilité d'exprimer les racines des certaines equations en fonction finie explicite des coefficients. Suite du Memoi.... . Journal de Mathématiques Ser 1 Vol 2 (1837) pgs 56-104, 523-546.
[41 A. Ostrowski. Sur les relations algebriques entre les integrales indefinies. Aota Mathematica 78 (1946) pgs 315-318.
[5] R.H. Risch. Algebraic properties of the elementary functions of analysis. Am. J. Math. Vol to n. 4 (1979) pgs 743-759.
[6] M. Rosenlicht. On Liouville theory of elementary functions. Pac. J. Math. 65 n. 2 (1976) pgs 485-492.
\71 M. Rosenlicht. On the explicit solvability of certain transcendental equations. IHES n. 36 (1969)
[8] 0. Zariski, P. Samue1, Commutative Algebra. Vol 1 (1958) Springer-Verlag.

