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Abstract. Let f be a continuous map of the circle into itself. The

main purpase of this paper is to study the properties of the unstable
manifold associated to 2 periodic point of f. Let q(f) denote the
nonwandering set of f. Suppose f has finitely many periodic points,
Then, using the unstable manifolds associated to periodic points of

f, three theorems are preved providing complete answers to the following
three questions:

(1) Which are the possible periods of the perigdic points of 7

(2) Which is the value of the topological emtropy of f?

(3) If a{f) is finite, which are the points of @(f)?
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§1. Introduction

Let S1 denote the ¢ircle and 60(51,51} denote the space of

1into itself. For £ e cOsl,sy 1et a(f)

continuous maps of S
denote the nonwandering set of f, and let P{f) denote the set

" of positive integers which occur as the pericd of some periodic
point of f. Uur main results are the folluwing (see §2 for

definitions):

THEOREM A. Letf F & CQ(SI,SIJ and suppose that f has finitely
many periodic points. Then there are integers m3>1 and n32 0, sueh

that P(f) = {m,om, am,...,2"m).

THEOREM B. Let £ & ¢'(8%,57) and suppose a(f} is finite.

Then Q(f) 15 the set of pertodic points of f.

THEOREM C. Zet £ e cOts?,57) and suppose that f has finitely

many periedic points. Then the topological entropy of f is sero.

THEOREM D. Zet £ e c0(s',5%). suppose f has finttely many
periodic points, and all periodic points of f are fized points

of f. Then Q(f) i{s the set of fixed points of f.

Amap f & CO(SI,SI) is a Morse-Smale endomorphism of the
circle if it satisfies the following properties (see [3] for more
details}:

' (1) f is a continuously differentiable map.

(2} a{f} is finite.

{3) A11 periodic points of f are hyperbolic.

(4) Ho singuiarity of f is eventually periodic.
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For a Morse-Smale endomorphism of the circle it was proved,

by Block in 3] and [4], that Theorems A and B hold.

Theorems 8,C and D were p o R Ty
a continuous map of a closed interval inte itself. The proofs of
Theorems B and [ can easily .

an arbitrary interval.

Suppose qf} is finite, then the orbit of any x e q(f} is
finite. This implies that x is eventually periodic {i.e. some
point in the orbit of x is periodic) but does not imply that x
is periodic. It is possible for some f € CG(Sl,Sl) to have points
% € p{f} which are eventually periedic but not periedic. In the
proof of Theorem B, we show that this cannot happen when nif)
is finite.

We also note that for f e CO(SI,Sl), 2{f) may not be the

closure of the set of periodic points of f. See [2] for an example:

An example was given, by Block in [6], of a continuous map f,
of a compact, conmected, metrizable, one-dimensional space, for
which @{f} consists of exactly two points, one of which is not

periodic.
We conclude this section with the following theorem.

THEOREM £ (proved by Block in (4] ). Let m and n be integers

mz1, ny0. There is a map f € CG(SI,SJ) such that P(f) = {m_,2m,4m,..,2nm}.

In fact, Block proved that there is a Morse-Smale endomorphism
f of the circle with P{f} = (m,2m,4m, ...,2"m} for any integers

mz1 and nz 0.
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§2. Preliminary definitions and results

Let X be a topoloaical space, and CO(X,X) denpte the set of
continuous maps of X into itself. For any positive integer n,

1

we define fn inductively by f" = f and = f°fn-1. Let fﬂ denote

the identity map.

Let p e X. A point p is called a fized péint of f if flp)=p.
Let #xz(f} denote the set of fixed points of f. We say p is a
periodic point of f, if p i5 a fixed point of £ for some positive
integer n. Let Per(f) denote the set of periodic points of f. If
p is a periodic point of ¥, the smallest positive n with fn(p)= D
is called the period of p. lLet P(f} dencte the set of positive

integers which occur as the period of some periodic point of f.

For any p e X we define the orbit of p by orb(pi= {fn{p}:
n=0,1,2,... }. The orbit of any periodic point will be called
& periedic orbit. We say a point p € X is eventually periodic
if orb{p) is finite {or equivalently if some element of orb{p)

is periodic).

A point p e X is said to be wandering if for some neighborhood
Vof p, f{VINV = @ for all n>0. The set of points which are

not wandering is called the nomwandering set and is denoted o(f).

Let X be a compact topological space. For f e CO(X,X} let

ent{f) denote the topological entropy of f (see {1] for a definition).

Let @ and b be two distinct points of Sl. We will use the
notation (a,b) {respectively [a,b]} to denote the open (respectively
elosed) are from a counterclockwise to b. Similarly, we will define
the arcs {a,bj and {a,b}. The point a {respectively b} is called

the left {respectively right) endpoint of the arc.
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Let X denote an arbitrary interval of the real line. Let
fe EO(X,X) {respectively f e CO{Sl,Sl)) and let p be a periodic
paint of f. We define the unstable manifold Wu[’p,f) and one-gided
wnstable manifolds Wip,f,+) and W(p,f,-) as follows. Let x e W (p, )
if for every neighborhood V of p, x € f7{¥) for some positive
integer n. Let x & Nu{p,f.+) if for every closed interval {respectively
arc) K with left endpoint p, x € f1(K) for some positive integer n.
Let x & W{(p,f,-) if for every closed interval (respectively arc)

K with right endpoint p, x & f"(K) for some positive integer n.

In Lemma 1, we compile some properties of the unstable manifold.
See |6) for proofs. Although proofs are given for a mapping of a
closed interval, they can easily be modified to a mapping of the

circle or to a mapping of an arbitrary interval.

LEMMA 1. Let X be either an arbitrary interval of the real line
or the circle, and Tet f e C°(X,%).
7) Let p € Flx(f). Then If‘(p,f), Wufp,f,-'-) and W(p,f,-) ave
eonnéected.

Let p g Per(f).
1) Wip, £} = Wip, £+ U W ip, fa-) .
iit) If p;=p and orbip) = {pI,.. .,pn} , then

o) = 5oL U U L),

w) fW e, £1) = Wip,fi.
v) Let J=W'(p,f) and let T denote the ecloswre of J. If the set
J - J is nonempty, them any element of J - J is periodic.
vi) Suppose R(Ff) is finite. Let x € Q(f} and suppose x ¢ Per(f).
Then for some p € Per(f), there exists z € Nu(p,f) such that

flz)=p and z € Per(yf}.



LEMMA 2. Lot X be eithar an arbitrary interval of the real
line or the oivcle. Suppose F € CG(X,X) and {pyeisp,) ds a

periodic orbit of f. If f(pi):pj_. then f‘(wut‘pi,fn)‘):if"(pj,fn).

Proof. Let x & W/(p,.f"). He shall show that fix} e W'{p,.f").
To prove this, let ¥ be any neighborhood of pj. There is a
neighborhood W of Py with F{W)<V. Now for some m>0, x € £ (W).
Hence f{x) e f(fnm(l-l)] =fnm(f(w}}c fnm(V). Since V¥ was arbitrary,

f(x) e w”(pj,f“). This proves that f(w”(p].,f"})cw“(pj,f").

By renumbering we may assume that f(pi} TP+ for i=1,...,n-1

1
and f(pn)=pl. Therefare

o). ™M) TR, ) & L R, M) = WYy,
By iv) of Lemma 1, we have that fn(l-lu(p],fn}) = '.-Ju(pl,f"). Hence

F(pa ) =W (), F1) . 0.ED.

The following lemma is a simple consequence of Bolzang's

Thecrem.

LEMMA 3. Zet £ e ¢C@mB). If K is « closed interval such
that K< f(K), then f has a fized point in K.

0{51,51} and let X be a subset of Sl. let 51=IR/Z

and let p: R —— S1 be the natural projection. Since p is a

let f e C

covering map, if g is the restriction of f to X there exists a
continuous map g: X ——- R such that g =peg. From now on for a
given continuous map q: X — 51, g X —— R will denote the

continuous map such that g=peg.
The following lemma follows immediately from Lemma 3.

LEMMA 4. Let f € CO(SI,SJJ and suppose K< s! s a closed

are cuch that either K< fiK) and F(X) #57 or K<F(K). Since
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1 .
S'=R/2, ve may assune K<(0,1}. Then f has a fizved point

in X.

§3. Some results for f ¢ CG(Sl,Sll_with finite periodic¢ set

We shall use the two following Lemmas, which are proved in

(6] (see Lemma 6 and Theorem 7 of [6]).

LEMMA 5. Let X be an arbitrary interval of the real line,
and let f e CO(X,X). Suppose Per(f) iz finite, and p € Fix(f}.
Let x € Ivu(p,f). If x>p, then x € wu(p_,f_,-i'). If £<p, then

x € i-/ufp,f,—).

LEMMA 6. Let X be an arbitrary interval of the real line,
and let f € CO{X,X). Suppose Per(f) is finite, and p € Fix(f).

Ifxe Hu(p,f) and fiz) —p, then x=p.

By a partition of Sl, we mean a finite set of points of Sl,

{xys- Xy} such that for i=1,...,n-1, (xi,x1+1)n{xl,‘..,xn}=ﬁ.

THEOREM 7. Let f & CO(SI,SIJ. Suppese Per(f} {s finite and

{pj,...,pn} 18 a periodic orbit of f with period n22. If Wu{p.,f) ;’SI'
7z

and §#5, then p. ¢ Wip, £

Proof. Suppose Py and pj are distinct elements of {pi,...,pn}
with p; € wu{pi,fn). By Lemma 2, we have that for each k=1,...,n,
Hu(pk,fn) contains an element of {pl,...,pn} ~{pk}.

By renumbering, we may assume that {pl,...,pn} is a partition
of 51. By i} of Lemma 1, either Py € Nu(pl,fn) or p, € w”(pl,f").
Without 1oss of generality we can suppose that py ¢ Nu(pl,fﬂ).

Let =wu(p1,fn)\)wu(p2,fn}. We separate the proof into two cases.

Case 1. T # SL.
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Therefore J is a closed arc. By iv) of Lemma 1, f(dJ) =4.
Let g be the restriction of f" to J. Then W'(p.,f") =u"(p;,9),
for i=1,2. Of course, either p; € !-Ju(pz,g} or py € Nu(pz,g).
Suppose p; € Nu(pz,g). By Lemma 5, p, € wu(pl,g,+) and p, e Nu(pz,gr}.
Since [pl,pz]c Mu(pl,g), it follows from Lemma 6, that for all
X € {pl,pz), g{x) belongs to some arc of the form {pl,y). Because
Py € wu{pl,g,+), for some x € (pl,pz}, g{x) =p,. Let z=1inf{x ¢ _(pl,pz):
gi{x) = Pol- Then z ¢ (pl,pz) and g{z} =p,. let a e (pl,z]. Then
g{[a.2z]) contains an arc of the form [b,pz]. Since P € w”{pz,g,-}
Py € gm([b,pz]) for some m>0. This implies that py e gmﬂ([a,z]).
Since gmﬂ([a,z']) is an arc containing py and p,, gmﬂ([a,z]):[a,z].
By Lemme 4, g has a periodic point in [a,z]. Since a was an arbitrary
point with a € (pl,z}, g has infinitely many periodic points. This
is a contradiction, and so Py ¢ wu{pz,g). Hence Py € i-!u(pz,g).
That is, Py e-wu(pz,fn).

By the same argument, it follows that Pisy € Nu(pi,fn), for
i=1,...,n-1, and p, € Hu(pn,fn}. Then [pi,p”l]c:l-iu{pi,f"}, for
i=1,...,n-1, and [pn,pl]cwu(pn,fn). By iii)} of Lemma 1, we have
that Nu(pi,f} =SI, for i=1,...,n, & contradiction.

Case 2. J = SI.

Since wu(pi,f}#sl, by ii1) of Lemma 1, J is homeomorphic to
R. By iv} of Lemma 1, () =J. Let h be the restriction of £
to J. Then Hu(pi,fn) =i-1u(p1.,h), for {=1,2, and the proof is
identic to the above case. Q.E.D.

LEMMA 8. Let £ e ¢7(s7,57) and let (p,,...,p,) be a periodic
orbit of f with period n 2. Suppose Per(f} is finite and

Wu(pl,,fJ:SI. If (p?:,pj)ﬂfpz,...,pn}=ﬁ, x € (pi’pj) and
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x ¢ Per{f), then either « € Wu(pi,fn) or x & w“(pj,fn).

Proof. Suppose X £ N”(pi,fn) and x # Hu(Pjsfn)- By v} of
1

Lemma 1, x # '1-1”{p1.,f") hecause x ¢ Per{f). Therefore N”(pi,f") £5°.

By Lemma 2, Nu(pk,fn)#sl for k=1,...,n. Since Hu(pl,f) =Sl.

by iii) of Lemma 1, x € wu(pk,fn) for some k & {1,...,n}-{i,}}.
Let .]=l-l”(pk,fn). By iv) of Lemma 1, f1(J) =J. Let g be the
restriction of f" to J. Then Nu{-pk,fn) =Hu(pk,g). By Lemma 5,
either x e N“[pk,g,+) or X € wu(pk,g,-). Without loss of
generality we may assume that x € Nu(pk,g,+) =Hu(pk,fn,+).
Then p. e K'(p,.f",4).

Let m be the number of elements of the periodic orbit
{pl,...,pn} contained in Hu(pk,fn}. By Lemma 2, Hu(pi,fn)
contains the same number of elements of {pl,...,pn}. Then, by
i) of Lemma 1, p) € wu(pi,fn) because x ¢ Nu{pi,fn). Therefore
Nu[pk,fnﬁ}cwu(pi,fn). Hence x € wu(pi,fn), and we get a

contradiction. Q.E.D.

LEMMA 9. (proved by Li and Yorke [8]). Let I be a closed

interval and let f & CG(I,I). Suppose there exist two closed

intervals L and R such that LURcf(R), R<f(L) and J"Z(Ln RINR=@.

Then for evlegy m=1,2,... there exists a periodic point in R with
pariod m, -

THEQOREM 10. Fet f € CO(SJ,SJJ and suppose Per(f) is finite.
Let {pj,---,pn} be a periodic crbit of f with period nz 2. If

1

lv“(pi,f) =5, the following holds for some m e {n,n/2}.

©)If (PP )N Py eap,) =6, Bhen lpgp)) = o015 and
fk([pi,pj])n (pi,pj) =g, for any k e {1,...,m-1}.

17) Per'(f):Per*(fm).



i) alf) =alif).

iv) By t), if (pi,pJ-)ﬂ {pl,...,pn}=@, we can define f?,j as the
restriction of fm to [pi,pj].Then Per{f") = Uijer(fng and
aff) = Uijnff‘zj).

Proof. For any XCSI, let Int{X) denote the interior of X.
We shall show p, ¢ Int(f( [pi,pj])), for k=1,...,n. If this is

not the case then one of the following holds.

(1) There is a point x e (pi,pj) with f{x) =Py {for some
k & {1,...,n}) such that for every arc [a,b]c(pi,pj} with

x € (a,b), p, & Int(f{[a,b])).

{2) There is an arc [x,y]c(pi.p‘j) with £ [x,y}) ={p,} (for some
k e {1,...,n}}, such that for every arc [a,b]c:(pi,pj) with

[x;y]=(e,b), p, e Int{f([a,b])).
Suppose (1) is true. We separate the proof into three cases.
Case 1. X € Int(Nu(pr.fn}) and H”(pr,f"]#SI, for some r e {i,j}.

Suppose r=1i and let J =Nu{p1-,fn}. Let g be the restriction
of f" to J. Then '.-lu(pi,f'n) =Hu(pi,g). By Lemma 5, x € Int(Nu(pi,g,ﬂ] =
Int(wu(pi,fn,ﬂ).

tet [c,d] be any closed arc contained in Int(wu(pi,f",ﬂ)ﬂ@)i.pj}
with x e {c,d). We shall prove that f"([c,d]}> [c,d], for some
m>0. Since p e Int(f({c,d])) and Hu(pk_,f} =51, CE fr([c,d]}
for some r>0. If f'([c,d])>[c,d]. we take m=r. Otherwise,
f7([c,d))> [p;,¢] because {py,...,p 3Nf ([c,d]) #8 and F'([c,d])
is connected. Since d e Hu(pi,fn,ﬂ, d-e 'fns([pi,c]} for some
s> 0. One has f"s([pi,c]):[pi,d]. We conclude that f({c,d])>[c,d],

for m=r+ns.
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In short, for any arc [c,d] with x e {c,d} and [c,d]c
int(i«iu{pi,fn,-t-})ﬂ(p_i,pj}, there exists an integer m»> 0 such
that fm([c,d])::[c,dll. Since SlzR{Z; We may asSsume [pi,pj]c(o,l).
If the points ¢,d are sufficiently close to x we claim that
either £'([c,d]) st or £ [c.4]) =s! and ' [c,d])> [c,d],
for some integer m>0. To prove this, suppose ?m([c ]2 [c,d]
for any integer m such that f([c.d]) =s!. Then ¥ [x,x#1]) =
[x,x+1], and this is a c-ontradiction With % ¢ Int(Nu(pi,fn})
and wu{p_},fn) #SI. Hence the claim is true. By Lemma 4, f has
a periodic point in [c,d] if ¢,d are sufficiently close to x.
Since the arc [c,d] is arbitrary with x e {c,d), [c,d]cInt{i-!u(pi,fn,i-))ﬂ
{pi.pj) and c,d sufficiently close to x, f has infinitely many

periodic points, a contradiction.
Case 2. x € Tnt(W(p ,£")) and W(p ") - s!, for some v € {i,i}.

Suppose r=1 and x € Int(wu(pi,fﬂ,i-}). Let [y,z]be any closed
arc contained in Int(wu(pi,fn#))ﬂ{Pispj) with x e {y,2z). ¥e
claim that x € Int{fns([pi,y]}) for some s>0. Te prove this,
suppose x £ Int(fns([pi,y]}) for all s>0, Since z ¢ wu(pi,f",+),

z e fnt([pi,y]} for some t>0. Then, because x ¢ Int(f"t([pi,y])),
fnt([pi,y]):)[z,pi]. Therefore w”(p_;,f“,+)uu“(pi,f“,-). That is
wu{pi,fn,«r} = Sl. Let (ak’bk) =sh. ()U fnr([pi,y]}. Then, it is
clear that (a,,b.]> [ak+1’bk+1] , fifl{‘f’;fkmk] = [ak+1’bk+1] and

U [a,.0,] = (3. 8y continuity, U #'(Tay,0,]) = (£ (x)).

Ogk<tw Dgkato

Since UJ fn([ak,bk]):) J [ak’bk]' £'{x) = x, a contradiction.
Dgkcte Dekcton

This establishes the claim that x € Int(f“s([pi,y])} for some s> 0.
Let [c,d] be any closed arc contained in Int(f"s([pi,y]))

with ¢ e (y,x) and x e (c,d}. We shall prove that ™ [c,d] )= [¢,d]
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for some m»>0. Since p, e Int{f({[c.d]}and i-{u(pk,f)=51, ce f{[c,d])
for some r>0. If £ {[c,d])D[c.d], we take m=r. Otherwise
fr([c,d])b[pi,c] because {pl,....pn}nfr([c,d])#ﬁ and £7([c,d])

is connected. Since [p;,c]> [p;,y], we have that 7 [c,d]))> [c.d]

for m=r+ns.

In short, for any arc [c,d] with ¢ € {y.x}, x e {¢,d) and
[c,d]cint(fnsi[pi,y] }) there exists an integer m> 0 such that
fm([c,d}}:}[c,d]. Since 51=R/Z, we may assume [p_i,pj]c(o,l).
If the points c,d are sufficiently close to x we have either
fm([c,d]};ﬁsl or fm([c,d] y=st and T {c,d])>]c,d], for some
integer m> 0. To prove this suppose F1( [c.d])? [c.d] for any
integer m such that f'{[c,d]) = st. Then ¥ [x,x+1]) = [x,x+1]
Since x e Int{wu(pi,fn,-&)), we have wu(pi,f",+) =Sl. Let z be
the closest point to p; Such that z e (pi,x), fn(z) =3 and
fn{v)C{pi,x} for any neighborhood ¥ of z sufficiently small.
Let g be the restriction of f to [p;x], and Jet L=[p,,7]
and R= [z,x]. Then, by Lemma 9, g has infinitely many periodic
points, & contradiction. Hence the claim is true. By Lemma 4,
f has a periedic point in [c.d] if ¢,d are sufficiently close

to x.

Since the arc [c,d] is arbitrary with c € (y,x}, x & {c,d},
[c,d)c Int{£™*([p,,¥])) and c,d sufficiently close to x, f has
infinitely many periodic points, a contradiction. Hence

x ¢ Int(Wp,, ", 4)).

The proof is similar if x e Int{wu(pi,fn,-)}. Otherwise
x ¢ Int(W(p.,f",4+)} and x ¢ Int(¥'{p.,f",-}). From the

definition of the one-sided unstable manifold we have that
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WL e W (oo £ 4) and £ Ry L)) e W (gt ).
Then, by ii) and iv) of Lemma 1 and since x & Int(Nu{pi,F")),

we have that Hu{pi,fn,+) = [psox]s Nu(pi.fn,-)= [X,pi], fn([pi,x]]=
[p;.x] and fn([x,pi]) =[x,pi]. Therefore, f'(x) € {x,p;}. Since
f(x) = py> £(x) = p;. Because f"([pi,x])= [p;.x]. there is a

point ¥y & (p.,x) with fn(y) = X.
i

Let g be the restriction of f to [pi,x], and let L = [py,y]
and R=[y,x]. Then, by Lemma 9, g has infinitely many periecdic

points, a contradiction.

Case 3. X € Int(wu{pi,fn}) and x £ Int(wu(pj.fn)).

Since w”(pk,f)= Sl, by Lemma 8, either x & H”(pi,fn} or
X & Nu(pj,fn}. Without loss of geperality we may assume that
X E N“(pi,fn). Because x ¢ Int(wu(pi,fn)), x is a boundary
point of wu(pi,fn) and Hu(pi,fn] is a c]oséd*arc. let I = Nu{pi,fn)
and let h be the restriction of f to I. By Lemma 5, Nu(pi,h,+)=
[pi,x]‘ Since h(wu(pi,h,+))c:wu(pi,h,+}, h(x) e [pi,x]. By Lemma 6,
h(x) € (pi,x]. That is, f(x) & (pi,x]. This is a contradiction

because f{x} = p) and fn(x) e {Pys-aaabpd

Thus (2} must be true. Let X denote the quotient space of 51
obtained by identifying all points of {x,y] to a single point,
and let 9: X —— ¥ be the guotient map of f obtained by this
identification. Then, g verifies {1) and the hypotheses of this

theorem. Hence, we have a contradiction.

In short, the interior of f([pi,pj]} and {py....,p,} do not
intersect. Since f(Sl) =Sl (because Hu(pl,f}= Sl), i} s easy

to verify.
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ii) follows immediately from i).

iii) Let y e a(f) —{pl,...,pn] and let ¥V be a neighborhoad
of y contained in S:l‘—{pl,...,pn}° Then, if £ {V}NV # B, m is
a divisor of r. Therefore a{f)c a{f™). Because o(f") is always

contained in (f), we have a{f) =n(f'm).

jv} follows readily from definitions. @.E.D.

§4. Proof of Theorem A

LEMMA 11. Let f & CO(SI,SIJ and suppose Per(f) is finite.
If p & Fiz(f} and Wu(p, f) :SI, then p ¢ Int(f([a,b])) for any
are [a,b]c st - {p} with f-l (o0 fa,b] connected.

Proof. Me shall show that there is not an arc [a,b]e st {p}

with f-I(p)n (a,b] connected such that p e Int(f{[a,b])). Otherwise,

one of the following holds. -

(1) There is a point x € 5_1- {p} with f{x) = p such that for

every arc [a,b]r:S]‘— {p} with x & {a,b), p e Int{f{[a,b])}).

{2} There is an arc [x,y]csl- {p} with f{[x,¥]) = {p} such that

for every arc [a,b]c sl (p} with [x,y]<(a,b), p e Int{f{[a,b])).
Suppose {1) is true. If x e Int(wu(p,f,+)}, let [c,d] be any

arc contained in Int(wu(p,f,+))ﬂ(51~ {p}) with x € {c,d). By

the same argument used in the proof of case 2 of statement i)

of Theorem 10, we should show that '{[c,d]}> [¢,d] for some m> G0,

and that f has infinitely many periodic points, a contradiction.

Similarly, if x e Int(wu(p,f,-)).

Assume x ¢ Int(wu{p,f,+)} and x ¢ Int(lvlu(p,f,»)). Again, by

the argument used in the proof of case 2 of statement i) of
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Theorem 10, we have a contradiction.

Thus (2) must be true. Let X denote the quotient space of

gl

obtained by identifying all points of [x,y] to a single point,
and let g: X ——s X be the quotient map of f obtained by this
jdentification. Therefore g verifies (1) and the hypotheses of

this lemma. Hence, we have a contradiction. Q.E.D.

LEMMA 12. Let F € CO(SI,SIJ. Suppogse Per(f) is fintite,

Fiz(f) = {pga...,p,} with r> 1, and w“rpk,f);«asI for any p, € Piz(f).
If f([pi,p'j])b I'pi,pj] and (pi,pj)nfv‘ix(f) =, then either
W p., fit) 2 [pi,pj) or Wu(pj, £,-)> (pi,pJ.] .

Proof. e claim that either f([pi,x]):[pi,pj] for some x
sufficiently close to p;, or f([y,pj])c[p_;,pj] for some y
sufficiently close to ps- Otharwise, there is an arc [X,Y]C(Di-Dj)
sucri that f{[{x,y])> [x,y]. By Lemma 4, f has a fixed point in

[x,¥], & contradiction.

Without Toss of generality we can assume that f([p..x])c [pi,pj]
for x sufficiently close to p;. Then, either x € (pi,f(x)J ar
f(x) e {pi,x), for some x sufficiently close to Ps if it is
necessary. By continuity and Lemma 5, Hu(pi,f,+)3 [pi,Pj) if

x € (ps,fx)).

Now, suppose f(x) & (pi,x] for some x € (pi,pj). Then,
f([y,pj]}c [pi,pj] for y sufficiently close to Ps- Otherwise,
there exists an arc [x,y]c(pi,pj) such that f([x,y]) > [x.¥],

a conmuradiction. Therefore, either y ¢ (f(y},pj) or fly) e (y,pj],
for some y sufficiently close to pJ- it it is necessary. By
continuity and Lemma 5, Hu(pj,f,-)b(pi,i)j] ifye (f(y),pj}.

But if f{y) e (y,pj} the arc [x_,y]c{p_i,pj) is such that
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f({x,¥])>[x,¥], a contradiction. Q.E.D.

THEOREM 13. Zet £ e ¢%(s?,5%). suppose Pen(f) = Fin(f) =

(Bs-reop,} and £(57) =5, Then U o =5,

1skgr

Proof. We define W= U Hu(pk,f). Suppose r>1 and w#sl.

lgksr
We claim that 51 - W has more than one connected component. To

prove this, suppose S1 - W has only one connected component. By

v) of Lemma 1, S1

-¥=(pi.p3) with (p,p )N Fix(f) =g, From iv)
of Lemma 1 it follows that f{W} =W. Then, since f[Sl) =Sl,

u u
flpgops1)> [pyapg]. By Lemma 12, (pssps}ek’(p,, Fr¥} UM (pj.f-di,
8 contradiction. This establishes the claim.

Le;t (pi,pj} and (p] ,pk) be two distinct connected components
of S1-H. It is clear that (p;sb,)N Fix(f)=@ and (p,,p, )N Fix(f) = .
From Lemma 12 it follows that f([pi,pj]};p[pi,pj] and f([p],pk}):p
[pT,pk]. Then f[[pi,pj]):;[pj,pi]:: [p],pk] and similarly f([p1,pk])3
[pi,pj]. Hence fz([pi,pj]):a [pi'pj]' By Lemma 12, (pi,pj}c
'-'-fu(pi,fzﬁ')Uwu(pj,fz,-)cw, a contradiction.

Now, suppose r=1 and N#Sl. We may assume that there exists
a neishborhood V of P=P such that f_I(p)n\r:{p}. Otherwise,
there is an arc [x,y] such that p e [x,y], f([x,y]) = (p} and
f([a.b]) # (p} for every arc [a,b] with [x,y]<(a,b). Let X denote
the guotient space of S1 obtained by identifying all points of
[x,¥] to the single point p, and let g: X — X be the quotient
map of f obtained by this identification. Then g verifies the
hypotheses of the theorem and there exists a neighborhood V of
o such that g'I(p)n ¥={p}. We separete the preof into five

cases,
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case 1. Suppose f([p,x])>[p.x], for some x sufficiently close
to p.
This implies that there exists y sufficiently close to p

such that y e {p,f(y}). Therefore Hu(p,f,+)=51, a contradiction.

Case 2. Suppose f{[x,p])>[x.p]. for some x sufficiently close

o p.

Similarly, Nu(p,f,-}=51, a contradiction.

Case 3. Suppose f([p,x])c [p,x], for some x sufficiently close

to p.
Then f{[x,p]) >[x,p]. By case 2, we have a contradiction.

Case 4. Suppose T([x,p}}c [x.p]. for some x sufficiently close

to p.
Then f(fp,x]):[p,x]. By case 1, we have a contradiction.

Case 5. Suppose f([p,x]}e< [a,p] and f{[y,p])c [p,b] for x and

¥ sufficiently close to p, and for some a,b e Sl-{p}.

Hence, by the above cases we have a contradiction for the

map f2. Q.E.D.
COROLLARY 14. Let f & ¢7(s?,5%). suppose Per(f)=1{p,,...,p,)

and 5051y =57, mhen . U Wu(pk,f):SI.
Igkgr

Proof. Let n be the product of the perieds of all the periodic
points of f. Then al} the periodic points of f are fixed points

of f". By Theorem 13, J Nu{pk,fn)=81. since W(p,,f") <
u u 1‘Skﬂl
Wip,f, U wip,f=s". 0.ED

1skgr

THEQREM 15. Let X be an arbitrary interval of the real line,

and let f E_CO(X,X). If Peri(f) ie finite then for some integer

n30, P(f)={1,2,4,...,2"}
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This theorem is contained in a theorem of Sharkovskii (see
(6], [9] and [10]) which says the following. Order the positive
integers as follows: 3,5,7,...,2-3,2-5,2-7,...,4-3,4-5,4-7,.._,
8-3,8.5,8.7,...,8,4,2,1. Then if m is to the right of n and f has
a periodic point of period n, then f has a periodic point of

period m,

THEOREM A. Let £ e ¢’151,8%) and suppose Per(f) is finite.
Then there are integez;s mz1 and n=>0, such that P(f} =

{m,2m,4m,...,2nm}.
Proof. We separate the proof into three cases.

Case 1. There is a perjodic point p of f with period r>2 and

W(p,f} =5k,

By Theorem 10, Per(f} = Per(f") = UijPer(fr_l.nJ.}, where m € {r,r/2}
and fTJ. is the restriction of " to [pi,pj] with pi,pj € orb{p)
n ,
| 1j there is
an integer n(ij)»0 such that P(f].) =(1,2,4,...,2"0)) (et n

and (pi.pj}norb(p) =@. By Theorem 15, for every f

be the greatest element of {n(i3j}}. Then P(f) = {m,2m,4m,...,2"n}.

Case 2. There is a fixed point p of f with W(p,f) 3

s the interval [0,1] identifying the points

0 and 1 to the point p. Let g: [0,1] — S! be the natural map

We represent S

defined by this identification. By Lemma 11, there exists a map
h: [0,1] — [0,1] such that fog=goh. Therefore P(f) =P{h) =

{1,2,4,...,2"} for some integer nz 0.
Case 3. For every periodic point p of f we have that Hu(p,f) fSl.

Let g e CO(SI,Sl) and Tet X be a subset of S1 such that

g(X)c X. From now on g[¥ will denote the restriction of g to X.
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15 £(sY ) #5!, tet 3= £(St). Then P(f) = P(f|J). By Theorem 15,

n}. Hence,

1) 1

there is an integer n>0 such that P(f{Jd) =1{1,2,4,...,2

the theorem is proved. Therefore, we shall assume that f(S™)=5".

Let p be a periedic point of f with period r and let J be a
connected component of wu(p,f]. Since wu(p,f) ;*Sl, J#Sl. By 111}
and iv) of Lema 1, £7{J} =J. From Theorem 15 it follows that
P{fr|J}= (1,2,8,...,2°1 for some integer s : 0. Because (3 =7,
P(f1T) = (1,2,4,...,2%) where t=s if s51, and t e {0,1}if 5= 0.
For each connected component of l-lu(p,f) we have an integer t3 0.
Let t{p) be the greatest integer associated to some connected

component of W!{p,f). Then P(frlwu{p,f)] = {1,2,4,...,2t(p)}.

Hence P(f|wu(p,f)) = {r,Zr,-flr,...,Zt(p)r}.

Let m be the smallest element of P{f) and let p be a periodic

point of f with pericd m. We claim that P(f]wu(p,f)Uwu(q,f]) =

{m,2m,4m,...,2tm} for any periodic point q of f such that

W(p,FINW(a,f) #9, and for some integer t=t(p,q}. We shall

prove this claim. By Corollary 14, there are periodic points g

such that W{p,f)Nu"(q,f) #9. Let g be such a periodic point

with period k. By v) of Lemma 1, the sets P(flwu(p,f) =

)
tm2m,am, .., 25 Py and P(FIWY(q.T)) = [k, 26,4k, ..., 2 8
intersect. Then, since kzm, we obtain that k,=2am, for some
integer a » 0. Therefore, if t(p,q) is the greatest element of
(t{p),a+t{q)}, the claim is proved. By the same argument and

by Corollary 14, the theorem follows. €.E.D.

§5. Proof of Theorem B

LEMMA 16, Let f e CO(SJ,SIJ. Suppose Qf) s finite and
W ip,f) £ 5 for all p € Per(f). Then Q(f) = Per(f).
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Proof. Suppose x € n(f) and x ¢ Per(f). By vi) of Lemma 1,
for some periodic point Py there exists z e H”(pl,f} such
that f{z) =Py and z is not periodic. Let n be the period of

Py and let 0rb(p1)={p1,...,p }. By iii) of Lemma 1, z ¢ wu(pk,fn)

n
for some k € {1,...,n}. Note that fn(z) e {pl,...,pn} and {by iv)
of Lemma 1) fn(z) € Nu(pk,fn). He separate the proof intoc two

cases.
Case 1. Py is a periodic point with period nx2.
Then, by Theorem 7, f(z) = py- Let 3=W(p,.f"). By iv) of

Lemma 1, fn(d) =J. Let g be the restriction of 7 to J. Then
Ze N”(pk,f"}= wu(pk.g}, and g{z) = Py~ By Lemma 6, z=p,. This is
a contradiction, because 2z is not periodic.

Case 2. Py is a fixed point.

Then n=1, and f{z)=p,.

4
F s

The proof is identic to the above

case. 0.E.D.

THEOREM 17 (proved by Block in [6}). Let I be an arbitrary
interval of the real line. Let f € CO(I,I) and suppose Q(f) is

fintte, Then QfFf) =Per(f}.

LEMMA 18. Let f € CO(SI, Sl). Suppose Q(f) 15 finite and
Wu(pj,f) :SI for some periodic orbit fpj,...,pﬂ} with n»2, Then
Qff) = Per(f).

Proof. By Theorem 10, Per(f) = Per(f") = Uij Per(f{?‘j] and
Q{f)=n{fm)= Uij rz[ij), where m ¢ {n,n/2} and f?j is the
restriction of " to [pi.pj}, if (pi,pj)ﬁ{pl.---,Pn} =9.

By Theorem 17, sz(f"i]j} =Per(f‘?j). Hence @(f) =Per(f}. Q.E.D.
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LEMMA 19. Zet £ e ¢0rs?,s1). Suppose 2(f) is Finite and
Wiq, f) ,1‘51 for any q € Per(f) with pericd greater than 1.

IfF Wu(q,f) =SI fof some q € Fix(f), then 2Uf} = Per(f).

Proof. Suppose y e 9{f) and y £ Per{f). By vi) of Lemma 1,
for some periodic point p, there exists z e Nu(p,f) such that
flz)=p and z is not periodic. Let n be the period of p. We

separate the proof into three cases.

Case 1. p is a periodic point with period n22.
1 1

since W(p,f) # Sl, by the same argument used in the proof of
case 1 of Lemma 16, we would have a contradiction.

Case 2. p is a fixed point with W(p,f) #5.

Now, we should have a contradiction by the same argument used

in the proof of case 2 of Lemma 16.

Coze 3. p is a fixed point with-wu(p,f)= Sl.

By the proof of case 2 of Theorem A, there are twe continuous-

meps g: [0,1] — s! and h: [0,1] —> [0,1] such that feg=geh.

By Theorem 17, a{h) = Per(h}. Then o{f) =Per(f). 0.E.D.

THEGREM B. Let f e CD(SI,SJ) and suppose Q(f) is finite. Then
Q(f) =Par(f).

Theorem B follows immediately from Lemmas 16, 18 and 19.

56. Proofs of Theorems € and D

THEQOREM 20 (proved by Block in [5]). Let X denote an arbitrary
interval of the veal line, and let £ e ¢C(X,X). Suppose Per(f) =

Fix(f}) is finite. Then Q{f}=Fiz(f).
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THEOREM D. Let £ e ¢”(s?,s7). Suppose Per(f) = Fiz(f) =

{pI_. .- .,pr‘}. Then Q(f) =Fiz(5).

Proof. We separate the proof into two cases.

Case 1. There is a fixed point p of f with W(p,f)=st.

By the same argument used in the proof of case 3 of Lemma 19
and by Theorem 20, we have that a(f} = Fix(f).

Case 2. For every fixed point p, Nu(p,f)#sl.

IF £(S1) £5%, let J=F(S'). Then, by Theorem 20, 2(f) = a(f|J) =
Fix(f]J) =Fix{f). Bence, the theorem is proved. Therefore, we

shall assume that f(Sl) =51.

From Theorem 13 it follows that r=1. Let p be g fixed point
of f. By i) of Lemma 1, W(p,f) is connected. By iv) of Lemma 1,
FIWY(p,F)) =WY¥{p,f). From Theorem 20 we have that o{f{W"(p.f}) =

Fix(f|4'(p,f)). Then, by Theorem 13, a(f) =Fix(f). Q.E.D.

LEMMA 21 (proved by Adler, Konheim and MeAndrew tn [1]).
Let f be a continuous map of a compact topological space and

let n be a positive integer. Then ent(f ) =n-ent(f).

LEMMA 22 fproved by Bowen [?]). Let f be a continuous map
of a compact metric space and suppose W f) is finite. Then

ent{f) = 0.

Now, the proof of Theorem £ is identical to the proof of

Theorem A of [5]. We include it here by its brevity.

THEOREM C. et £ e c(s?,5%) and suppose Per(f) is finite.

Then ent(f) = 0.

Proof. Let n be the product of the periods of all the periodic

points of f. Then Per{f") = Fix(f"). By Theorem D, 9{f") = Per(fn).
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In particular, n{f") js finite. Hence ent(fn)= 0, by Lemma 22.

Thus, by Lemma 1, ent{f)}=0. 0Q.E.D.
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