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Abstract . Let f be a continuous map of the circle into itself . The

main purpose of this paper is to study the properties of the unstable

manifold associated to a periodic point of f . Let 2(f) denote the

nonwandering set of f . Suppose f has finitely many periodic points .

Then, using the unstable manifolds associated to periodic points of

f, three theorems are proved providing complete answers to the following

three questions :

(1) Which are the possible periods of the periodic points of f?

(2) Which is the value of the topological entropy of f?

(3) If 2(f) is finite, which are the points of sl(f)?



§l . Introduction

Let S 1 denote the circle and CO(S1 ,S 1 ) denote the space of

continuous maps of S 1 into itself . For f e CO(S1 ,S 1 ) let O(f)

denote the nonwandering set of f, and let P(f) denote the set

of positive integers which occur as the period of some periodic

point ot f . Our main results are Lije iulluwing (see §2 for

definitions) :

THEOREM A . Let f e CO (S1,S 1 ) and suppose that f has finitely

many periodic points . Then there are integers m >,1 and n >,O, such

that P(f) = {m,2m,4m, . . .,2nm} .

THEOREM B . Let f e CO (S1,S1 ) and suppose 2(f) is finite .

Then S2(f) is the set of periodic points of f .

THEOREM C . Lét f e CO (S1,S1 ) and - suppose that f has finitely

many periodic points . Then the topological entropy of f is zero .

THEOREM D . Let f e C0 (Si,S1 ) . Suppose f has finitely many

periodic points, and all periodic points of f are fixed points

of f. Then S2(f) is the set of fixed points of f.

A map f e C0 (S 1 ,S 1 ) is a Morse-Smale endomorphism of the

circle if it satisfies the following properties (see [3] for more

details) :

(1) f is a continuously differentiable map .

(2) q(f) is finite .

(3) All periodic points of f are hyperbolic .

(4) No singularity of f is eventually periodic .



For a Morse-Smale endomorphism of the circle it was proved,

by Block in [3] and [41, that Theorems A and B hold .

Theorems B,C and D were pr

a continuous map of a closed interval into itself . The proofs of

Theorems B and D can easily .

an arbitrary interval .

Suppose Q(f) is fihite, then the orbit of any x e sa(f) is

finite . This implies that x is eventually periodic (i .e . some

point in the orbit of x is periodic) but does not imply that x

is periodic .

	

It is possible for some f e C0 (S 1 , S 1 )

	

to have points

x e P(f) which are eventually periodic but not periodic . In the

proof of Theorem B, we show that this cannot happen when Q(f)

is finite .

We also note that for f e C0 (S 1 , S 1 ), 2(f)

	

may not be the

closure of the set of periodic points of f . See [2] for an example :

An example was given, by Block in [6], of a continuous map f,

of a compact, connected, metrizable, one-dimensional space, for

which 2(f) consists of exactly two points, one of which is not.

periodic .

We conclude this section with the following theorem .

THEOREM E (proved by Block in [4] ) . Let m and n be integers

m >,1, n >,O . There is a map f e CO (S1,S1 ) such that P(f) = {m,2m,4m,, 2nm} .

In fact, Block proved that there is a Morse-Smale endomorphism

f of the circle with P(f) = {m,2m,4m_ . .,2 nm} for any integers

m, 1 and n , 0 .



§2 . Preliminary definitions and results

Let X be a topological space, and CO(X,X) denote the set of

continuous maps of X into itself . For any positive integer n,

we define j~' inductively by f 1 = f and fn = f°fn-1 . Let ,? denote

the identity map .

Let p e X .

	

A point p

	

is cal led a fixed point of f if f (p) = p .

Let Fix(f) denote the set of fixed points of f . We say p is a

periodic point of f, if p is a fixed point of fn for some positive

integer n . Let Per(f) denote the set of periodic points of f . If

p is a periodic point of f, the smallest positive n with fn (p) = p

is called the period of p . Let P(f) denote the set of positive

integers which occur as the period of some periodic point of'f .

For any p e X we define the orbit of p by orb(p) ={fn (p) :

n= 0,1,2, . . . } . The orbit of any periodic póint will be called

a periodic orbit . We say a point p e X is eventually periodic

if orb(p) is finite (or equivalently if some element of orb(p)

is periodic) .

A point p e X is said to be mandering if for some neighborhood

V of p, fn (V)n V = 0 for all n > 0 . The set of points which are

not wandering is called the nonwandering set and is denoted 2(f) .

Let X be a compact topological space . For f e C0 (X,X) let

ent(f) denote the topological entropy of f (see [1] for a definition) .

Let a and b be two distinct points of S 1 . We will use the

notation (a,b) (respectively [a,b]) to denote the open (respectively

closed) arc from a counterclockwise to b . Similarly, we will define

the arcs (a,b] and [a,b) . The point a (respectively b) is called

the Zeft (respectively right) endpoint of the arc .



Let X denote an arbitrary interval of the real line . Let

f e C~(X,X) (respectively f e C0(S1 ,S 1 )) and let p be a periodic

point of f . We define the unstabZe manifold k?"t(p,f) and one-sided

unstabZe manifolds O(p,f,+) and O(p,f,-) as follows . Let x e Wú (p,f)

if for every neighborhood V of p, x e fn (V) for some positive

integer n . Let x e Wu (p,f,+) if for every closed interval (respectively

arc) K with left endpoint p, x e fn (K) for some positive integer n .

Let x e Wu (p,f,-) if for every closed interval (respectively arc)

K with right endpoint p, x e fn (K) for some positive integer n .

In Lemma 1, we compile some properties of the unstable manifold .

See [6] for proofs . Although proofs are given for a mapping of a

closed interval, they can easily be modified to a mapping of the

circle or to a mapping of an arbitrary interval .

LEMMA 1 . Let X be either an arbitrary interval of the real line

or the circle, and let f e C0 (X,X) .

i)

	

Let p e Fix(f) . Then O(p, f), O(p, f,+) and Su (p, f,-) are

connected.

Lét p e Per(f) .

ii)

	

P1' (p, f)

	

= AA~' (p, f, +) U kP(P, f, -)

	

.

iii) If p 1 =p and orb(p) = {P1, . . .,Pn } ,

	

then

0(p1,f) = ["' (P V .f) U . . . U''~''(pn,

iv) f(0(p, f)) = 0(p, f) .

v)

	

Let J=0(p, f) and let J denote the closure of J. If the set

J - J is nonempty, then any element of J - J is periodic .

vi) Suppose n(f) is finite . Let x e s2(f) and suppose x 0 Per(f) .

Then for some p e Per(f), there exists z e O(p,f) such that

f(z) =p and z 0 Per(f) .



LEMMA 2 . Let X be either an arbitrary interval of the real

line or the circle . Suppose f e CO (X,X) and
(p

1- . .,pn) is a

periodic orbit of f. If f(pi ) =pj,

	

then f(0(pi, f)) _ [

	

(pj, ;

	

) .

Froof. Let x e Wu (pi,fn ) . We shall show that f(x) e Wu (pJ.
,fn ) .

To prove this, let V be any neighborhood of pj . There is a

neighborhood 1,1 of p i , with f(W)cV . Now for some m > 0, x e fnm (14) .

Hence f(x) e f(f
nm

(W)) =f
nm

(f(W))e fnm(V) . Since V was arbitrary,

f(x) e Wu (pj ,fn ) . This proves that f(Wu (pi,fn ))cl.lu (pj,fn ) .

By renumbering we may assume that f(pi) =
pi+1 for i= 1, . . .,n-1

and f(pn )= p 1 . Therefore

fn (Wu (P1,fn )) c fn-1 (Wu (p2 ,fn )) c . . . c f(1Ju(p n ,fn )) c Wu (P 1 ,fn ) .

By iv) of Lemma 1, we have that f
n
(W
u
(P 1 ,f

n
)) = Wu (P 1 ,fn ) . Hence

f(Wu (Pn ,fn )) = Wu (P1 ,fn ) .

	

O.E .D .

The following Lemma is a simple consequence of Bolzano's

Theorem .

LEMMA 3 . Let f e CC (IR,R) . If K is a closed interval. such

that Kcf(K), then f has a fixed point in K .

Let f e C O (S 1 ,S1 ) and let X be a subset of S 1 .

	

Let S1 =1R / Z

and let p : IR -- " S1 be the natural projection . Since p is a

covering map, if g is the restriction of f to X there exists a

continuous map g: X -IR such that g = pog. From now on for a

given continuous map g : X -} S1 , g: X -62 will denote the

continuous map such that g =p-g.

The following lemma follows immediately from Lemma 3 .

LEMMA 4 . Let f e C0 (S1,S 1 ) and suppose Kc S1 is a closed

are such that either Kcf(K) and f(K) ?SI or Kc ?(K) . Since



5
1
= R /Z , we may assume K c (0,1) . Then f has a fixed point

in K.

§3 . Some results for f e COIS 1 ,S) with finite periodic set

We shall use the two following Lemas, which are proved in

[6] (see Lemma 6 and Theorem 7 of [6]) .

LEMMA 5 . Let X be an arbitrary interval of the real Zine,

and let f e CO (X,X) . Suppose Per(f) is .finite, and p e Fix(f) .

Let x e

	

[, U (p, f) .

	

If x >p,

	

then x e Py~t (p, f, +) .

	

If x < p,

	

then

x e

	

kP(p, f, -) .

LEMMA 6 . Let X be an arbitrary interval of the real Zine,

and let f e CO(X,X) . Suppose Per(f) is finite, and p e Fix(f) .

If x e [0 (p, f) and f(x) = p,

	

then x=p .

By a partition of S1 , we mean a finite set of points of S1 ,

{xl, . . .,xn} such that for i= 1, . . .,n-1, (xi,xi+1)!1{xl, . . .,xn} =p .

THEOREM 7 . Let f e C0(S1 '
5
1

) . Suppose Per(f) is finite and

{p1' . . . , Pn } is a periodic orbi t of f with period n >, 2.

	

If 0(pi, f) 4S1

and j ~¿ i,

	

then
pj

0

	

0(pi , ,f) .
Proof. Suppose pi and

pJ
are distinct elements of {pl, . . .,pn}

with
pJ

e Wu
(pi,f

n ) . By Lemma 2, we have that for each k = 1, . . .,n,

Wu(pk,fn ) contains an element of {pl . . . . ,pn} -{pk}'

By renumbering, we may assume that {pl, . . .,pn) is a partition

of S 1 . By i) of Lemma 1, either p2 e Wu (pl ,fn ) or p n e Wu (p l ,fn ) .

Without loss of generality we can suppose that p2 e Wu (pl ,fn ) .

Let J =Wu (pl ,fn )U Wu (p2,fn ) . We separate the proof into two cases .

Case 1 . J ~ S1 .



Therefore J is a closed arc . By iv) of Lemma 1, fn (J) =J.

Let g be the restriction of fn to J. Then Wu(p i ,fn ) = Wu(pi,g),

for i=1,2 . Of course, either pl e Wu (P2,9) or p3 e Wu (P2,9)

Suppose p 1 e Wu (P2,9) . By Lemma 5, P2 e Wu (P1 ,9>+) and p 1 e Wu(P2,9,-)-

Since [pl,p2]e Wu (P1,g), it follows from Lemma 6, that for all

x e (P1,P2), g(x) belongs to some arc of the form (p1 ,y) . Because

P2 e Wu(P1,9,+),

	

for some x e

	

(P1,p2),

	

9(x)=P2 .

	

Let z= inf{x e_(P1 ,P2) :

g(x) =P2} . Then z e (P 1 ,P2) and g(z) = p2 . Let a e (pl ,z) . Then

the form

	

[b ,P2 ] .

	

Since p 1 e Wu (P2,g, - )

0 . This implies that p l e gm+1([a,z]) .

containing p1 and P2, 9m+1 ([a,z] ) :D[a,z] .

By Lemma 4, 9 has a periodic point in [a,z] . Since a was an arbitrary

point with a e (p1 ,z), g has infinitely many periodic points . This

is a contradiction, and so p1 ¢ Wu (P 2 ,9) . Hence p3 e Wu (P2,g) .

That is,
p3

e-Wu(P2,fn) .

g([a,z]) contains an arc of

p 1 e gm([b,P2]) for some m >

Since gm+1([a,z]) is an arc

By the same argument, it follows that pi+1 e Wu (p i ,fn ), for

i=l_ . .,n-1, and p 1 e I-l u (p n ,f n ) . Then [pi,pi +1]cWu (Pi,fn ), for

i = 1, . . .,n-1, and [Pn ,p 1 ]e WU (Pn ,f n ) . By iii) of Lemma

that IJ u (pi,f) =S 1 , for i= 1, . . .,n, a contradiction .

Case 2 . J = S1 .

Since WU (Pi,f)~ S 1 , by iii) of Lemma

IR . By iv) of Lemma 1, fn (J) = J . Let h be

to J . Then 14 u (p i ,fn ) =Wu (pi,h), for i = 1,2, and the

identic to the above case . Q .E .D .

1, we have

1, J is homeomorphic to

the restriction of fn

proof is

LEMMA 8 . Let f e C0 (S I ,SI ) and Zet (p1,- ,pn ) be

orbit of f with period n >.2 . Suppose Per(f) is finite

i,,u(p1,f)=S1 . If (pi , pj)(Í {p1, . . .,pn}=O' x

	

e (pi,pj)

a periodic

and

and



x 1 Per(f), then either x e

	

or x e h (p~,fn ) .

Proof. Suppose x

	

14u(pi,fn ) and x 0 Wu (p j ,fn ) . By v) of

Lemma 1, x 0 W,(Pi,fn) hecause x 0 Per(f) . Therefore Wu (p i ,fn ) # S1 .

By Lemma 2, Wu (Pk,fn )~ S 1 for k=l, . . .,n . Since WU (P1 ,f) = S1,

by iii) of Lemma 1, x e Wu (Pk,fn ) for some k e {1, . . .,n} - {i,j} .

Let J= Wu (Pk ,fn) . By iv) of Lemma 1, fn (J) = J . Let g be the

restriction of fn to J . - Then Wu(.Pk,fn)
=
Wu (pk,9) . By Lemma 5,

either x e Wu (Pk,g,+) or x e Wu(Pk,g,-) . Without loss of

generality we may assume that x e Wu(Pk,g,+)=Wu(Pk,fn,+) .

Then p i e Wu(Pk,fn,+) .

Let m be the number of elements of the periodic orbit

{pl, . . .,Pn} contained in Wu (Pk ,fn ) . By Lemma 2, Wu (pi,fn )

contains the same number of elements of {P l " ."Pn } . Then, by

i) of Lemma 1, pk e Wu (p i ,fn ) because x 0 IJ u(p i ,fn ) . Therefore

Wu (Pk,fn ,+)c Wu (p i ,fn ) . Hence x e Wu (p i , f n ), and we get a

contradiction . Q .E .D .

LEMMA 9 . (proved by Li and Yorke [8]) . Let I be a cZosed

interval and let f e CO (I,I) . �Suppose there exist two cZosed

intervaIs L and R such that L U R cf(R), R c f(L) and fz (L n R) n R= ~ .

Then for every m =1,2, . . . there exists a periodic point in R with

period m .

THEOREM 10 . Let f e C0 (S 1 ,S1 ) and suppose Per(f) is finite .

Let {p1, . . .,pn} be a periodic orbit of f with period n>, 2 . If

k,u(pl,f) = S1 , the following holds for some m e {n,n/2} .

i)

	

If (pi, P~) n {p1 , . . "pn} =o'

	

then f( [pi , pjj) = [p i , pjj, and

fk([pi,pj])f) (pi , pj)=d, for any k e {1, . . .,m-1} .

ii) Per (f)=Per(f) .



iii) 2 (f) = s2(fm) .

iv) By i), if (p i,pj)11 {p1, . . .,pn}=(d, me can define ~~ as the

restriction of fto [p i,pj] .Then Per(f) = UijPer(fm .) and

Q(f) = uijn(fm
.) .

Proof.

	

For any X c S1, let Int(X) denote the interior of X .

We shall show pk 0 Int(f([pi,pj])), for k= 1, . . .,n . If this is

not the case then one of the following holds .

(1) There is a point x e (p i ,pj ) with f(x)= pk (for some

k e {1, . . .,n})

	

such that for every arc

	

[a,b] c (p i , pj ) with

x e (a,b), Pk e Int(f([a,b])) .

(2) There is an arc [x,y] c (p i , pj ) with f([x,y])={Pk} (for some

k e {1, . . .,n}),

	

such that for every arc

	

[a,b] c (pi,pj) with

[x,y]c(a,b), pk e Int(f([a,b])) .

Suppose (1) 1s true . We separate the Proof into three cases .

Case 1 . x e Int(WU (Pr ,fn )) and Wu(pr,fn)~
si, for some r e {i,j} .

Suppose r = i and let J = Wu (pi,fn ) . Let g be the restriction

of fn to J . Then Wu(pi,fn)
=
Wu (p i ,a) . By Lemma 5, x e Int(Wu(pi,g,+))=

Int(Wu (pi,fn ,+)) .

Let [c,d] be any closed arc contained in Int(l^l u (pi ,fn ,+)m tp i ,pj)

with x e (c,d) . We shall prove that fm([c,d]) :)[c,d], for some

m >O . Since P k e Int(f([c,d] )) and lq u(Pk,f) =S1 , c e fr ( [c,d] )

for some r > 0 .

	

If

	

fr( [c,d]) =>[c,d] , we take m =r .

	

Otherwise,

fr ( [c,d]) :>[p i ,c]

	

because

	

{pl, . . . ,pn } fl fr ( [c,d]) # 0

	

and

	

fr( [c,d] )

is connected . Since d e Wu(pi,fn,+), d , e fns([p i ,c]) for some

s > 0 .

	

One has

	

fns([pi ,c]) :D
[p i ,d] .

	

We concl ude that fm ([c,d] )D [c,d],

for m=r+ns .



In short,

	

for any arc

	

[c,d] with x e

	

(c,d)

	

and

	

[c,d] c

Int(Wu (pi,fn ,+))Íl(pi,pj), there exists an integer m> 0 such

that fm([c,d])z[c,d] .

	

Si nce S 1 =I?/Z ,, we may assume

	

[pi,pj]c(0,1) .

If the points c,d are sufficiently close to x we claim that

either fm ( [c,d]) # S1 or fm ([c,d]) =S i and Vn ( [c,d] )D [c,d] ,

for some integer m > 0 . To prove this, suppose f([c,d] )~5 [c,d]

for any integer m such that fm([c,d]) =S 1 . Then f([x,x+1]) =

[x,x+1], and this is a contradiction with x e Int(Wu (p i ,fn))

and Wu (p i ,fn) # S 1 . Hence the claim is true . By Lemma 4, f has

a periodic point in [c,d] if c,d are sufficiently close to x .

Since the arc

	

[c,d]

	

is arbitrary with x e

	

(c,d),

	

[c,d] c Int(Wu (p i ,fn ,+) )(1

(p i ,pj ) and c,d sufficiently close to x, f has infinitely many

periodic points, a contradiction .

Case 2. x e Int(WU (pr ,fn )) and Wu (pr ,fn ) = S 1 , for some r e {i,j} .

Suppose r = i and x e Int(Wu (p i ,fn ,+)) . Let [y,z]be any closed

arc contained in Int(Wu(p i ,fn ,+))n (p i ,pj) with x e (y,z) . We

claim that x e Int(fns ([p i ,y])) for some s> 0 . To prove this,

suppose x 0 Int(fns ([p i ,y])) for all s> 0 . Since z e Wu(pi,fn,+),
ntz e f

	

([p i ,y])

	

for some t >O . Then,

	

because x 0

	

Int(fnt([p i ,y])),

fnt([pi,y]) :)[z,pi] . Therefore Wu(p-.,fn,+)U Wu(pi,fn,-) . That is

WU (pi,fn ,+) = S 1 . Let (a k ,bk) = S1 - U

	

fnr([p~,y]) . Then, it is
n0,r, k

clear that [ak,bk] :) [ak+1,bk+1] , f ([ak,bk])

	

[ak+l,bk+l] and

U

	

[a k ,b k ] =fx} . By continuity,

	

U

	

fn([ak,bk]) ={fn (x)} .
0,k<+w

	

O.k<+-

Since

	

U

	

fn ( [a k,bk] )D

	

U

	

[ak,bk] , f n (x) =x, a contradiction .
0,k<+- 0,k<+-

This establishes the claim that x e Int(fns ([pi ,y])) for some s > 0 .

Let [c,d] be any closed arc contained in Int(fns ([p i ,y]))

with c e (y,x) and x e (c,d) . We shall prove that fm([c,d]):)[c,d]



for

	

some m > 0 .

	

Since

	

pk e

	

Int(f([c,d])and I"4u (pk,f) = S 1 ,

	

c e

	

fr( [c,d] )

for some r > 0 .

	

If fr( [c,d]) =)[c,d] , we take m = r .

	

0therwi se

fr ( [c,d]) D [p i ,c]

	

because

	

{P1-
. . ,p n } (1 fr ( [c,d]) ¢ 0

	

and

	

fr ( [c,d] )

is connected .

	

Since

	

[pi	c] :D [p i y], we have that fm([c,d]) Z> [c,d]

for m=r+ns .

In short, for any arc [c,d] with c e (y,x), x e (c,d) and

[c,d] e Int(fns ([p i ,y])) there exists an integer m > 0 such that

fm([c,d]) :) [c,d] . Since S 1 =R/Z, we may assume [pi,pi]e(0,1) .

If the points c,d are sufficiently close to x we have either

fm ( [c,d] ) ~ S 1 or fm ( [c,d] ) = S1 and f( [c,d] ) :D [c,d] , for some

integer m > 0 . To prove this suppose fm([c,d]) ;6[c,d]

	

for any

integer m such that fm ([c,d]) = S1 . Then f([x,x+1]) = [x,x+1] .

Since x e Int(Wu(p i ,fn ,+)), we have Wu(pi,fn,+)= S 1 . Let z be

the closest point to p i such that z e (p i ,x), fn (z) =x and

fn (V)c (p;,x] for any neighborhood V of z -sufficiently small .

Let g be the restriction of fn to [p i ,x], and let L = [pi,z]

and R = [z,x] . Then, by Lemma 9, g has infinitely many periodic

points, a contradiction . Hence the claim is true . By Lemma 4,

f has a periodic point in [c,d] if c,d are sufficiently close

to x .

Since the arc [c,d] is arbitrary with c e (y,x), x e (c,d),

[c,d] e Int(fns ([p i ,y])) and c,d sufficiently close to x,

	

f has

infinitely many periodic points, a contradiction . líente

x 0 Int(Wu (pi,fn ,+)) .

The proof is similar if x e Int(Wu(p i ,fn ,-)) . Otherwise

x 0 Int(Wu (p i ,fn ,+)) and x 0 Int(Wu (pi,fn ,-)) . From the

definition of the one-sided unstable manifold we have that



fn
(W

u
(pi,f

n
,+))c Wu (pi,fn ,+) and f

n
(W

u
(pi,f

n
, -))c Wu(pi,fn,-) .

Then, by ii) and iv) of Lemma 1 and since x e Int(Wu (pi,fn )),

we have that Wu(pi,fn,+)=[pi,x], Wu(pi,fn,-)=[x,pi], fn([pi,x])=

[p i ,x] and fn([x,pi]) = [x,p i ] . Therefore, fn (x) e {x,p i }.Since

f(x) = pk, fn (x) = p i . Because fn ([p i ,x]) = [p i ,x] , there is a

point y e (p i ,x) with fn (y) = x .

Let g be the restriction of fn to [pi ,x], and let L = [pi,y]

and R = [y,x] . Then, by Lemma 9, g has infinitely many periodic

points, a contradiction .

Case 3 .

	

x 0 Int(Wu (p i ,f n )) and x ¢ Int(Wu (pj ,fn )) .

Since WU (pk,f) = S1 , by Lemma 8, either x

x e Wu (pj ,fn ) . Without loss of generality we

x e Wu (p i ,fn ) . Because x 0 Int(Wu (p i ,fn )), x

point of Wu(p i ,fn ) and Wu(p i ,fn ) is a closed-arc . Let I= Wu (p i ,fn )

and let h be the restriction of fn to I . By Lemma 5, Wu(pi,h,+) =

[p i ,x] .

	

Since h(Wu(pi,h,+)) eWu(pi,h,+),

	

h(x) e

	

[pi ,x] .

	

By Lemma 6,

h(x) e (p i ,x] . That is, fn (x) e (p i ,x] . This is a contradiction

n
because f(x) = pk and f (x) e {pl` .,pn} .

e Wu (pi,fn ) or

may assume that

is a boundary

Thus (2) must be true . Let X denote the quotient space of S 1

obtained by identifying all points of [x,y] to a single point,

and let g : X --> X be the quotient map of f obtained by this

identification . Then, g verifies (1) and the hypotheses of

theorem . Hence, we have a contradiction .

In short,

	

the interior of f([pi,pj])

	

and {p1, . . . . Pn}

intersect . Since f(S1)= 51 (because Wu (pl ,f)=S 1 ), i) is

to verify .

this

do not

easy
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ii) follows immediately from i) .

iii) Let y e s2(f) - {pl, . . .,pn} and let V be a neighborhood

of y contained in S1 - {pl" " ,pn} . Then, if fr (V)(1V ~ 0, m is

a divisor of r . Therefore 2(f)csl(f) . Because n(fm) is always

contained in si(f), we have P(f)= n(fm) .

iv) follows readily from definitions . Q .E .D .

§4 . Proof of Theorem A

LEMMA 11 . Let f e C0 (SI,SI ) and suppose Per(f) is finite .

If p e Fix(f) and klu (p, f) =S1 , then p 0 Int(f([a,b])) for any

aro [a, b]cS1 -(p} with f l(p)/I[a,b] connected .

Proof . We shall show that there is not

with f -1 (p) (1 [a,b] connected such that p e

one of the following holds .

an arc [a,b]c S 1 - {p}

Int(f([a,b])) . Otherwise,

(1) There is a point x e Si- {p} with f(x) = p such that for

every arc [a,b]c S1 -{p} with x e (a,b), p e Int(f([a,b])) .

(2) There is an arc [x,y] c S1 - {p} with f( [x,y] ) = {p} such that

for every arc

	

[a,b]c S 1 - {p} with

	

[x,y] c (a,b), p e Int(f([a,b])) .

Suppose (1) is true . If x e Int(Wu(p,f,+)), let [c,d] be any

contained in Int(Wu(p,f,+))(1(S1- {p}) with x e (c,d) . By

same argument used in the proof of case 2 of statement i)

arc

the

of Theorem 10, we should show that fm([c,d])z [c,d] for some m >O,

and that f has infinitely many periodic points, a contradiction .

x e Int(WU(p,f,-» .Similarly, if

Assume x ¢ Int(Wu(p,f,+)) and x ¢ Int(Wu(p,f,-» . Again, by

the argument used in the proof of case 2 of statement i) of



Theorem 10, we have a contradiction .

Thus (2) must be true . Let X denote the quotient space of

S 1 obtained by identifying al] points of [x,y] to a single point,

and let g : X ----> X be the quotient map of f obtained by this

identification . Therefore g verifies (1) and the hypotheses of

this lemma . Hence, we have a contradiction . Q .E .D .

LEMMA 12 . Let f e C0 (S1,S1 ) . Suppose Per(f) is finite,

Fix(f) = {p1, . . .,p.} with r > 1, and F~í(pk, f) ~S1 for any pk e Fix(f) .

If f([pi,pJ])

	

[pi, pj] and (pi,pj)11 Fix(f)

	

then either

Gi~'(pi, f, +) =) [pi, pj) or 0(pj, f, -) =) (Pi, Pi]

Proof. We claim that either f([p i ,x]) e [pi,pj] for some x

sufficiently Glose to p i , or f([y,Pj])C [Pi,Pi]

	

for some y

sufficiently Glose to pj . Otherwise, there is an arc [x,y] C (p i ,pj)

suca that f([x,y])D [x,y] . By Lemma 4, f has a fixed point in

[x,y], a contradiction .

Without loss of generality we can assume that f([pi,x])c [pi,pj]

for x sufficiently Glose to p i . Then, either x e (pi ,f(x)) or

f(x) e (p i ,x), for some x sufficiently Glose to p i if it is

necessary . By continuity and Lemma 5, 41 u (pi ,f,+) :)[Pi,pj) if

x e (p i ,f(x)) .

Now, suppose f(x) e (p i ,x) for some x e (Pi,pj) . Then,

f([y,pj])e [pi,pj] for y sufficiently Glose to p j . 0therwise,

there exists an arc [x,y]C (p i ,p j ) such that f([x,y]) :)[x,y],

a contradiction . Therefore, either y e (f(y),p j ) or f(y) e (y,pj ),

for some y sufficiently Glose to pJ
it it is necessary . By

continuity and Lemma 5, WU (p i ,f,-) =>(pi,pi] if y e (f(y),P j ) .

But if f(y) e (y,pj ) the arc [x,y] e (p i ,pj ) is such that



f([x,y])z[x,y], a contradiction . Q .E .D .

THEOREM 13 . Let f e C0 (S1,S1 ) . Suppose Per(f) = Fix(f) _

{P1, . . . , pr} and f(S1 ) = S1 .

	

Then

	

U

	

Wu (pk,
f) = S1 .

1,<k<r
Proof. We define W=

	

U

	

bl u (P,,f) . Suppose r> 1 and W# S 1 .
1,< k,r

We claim that S1 -W has more than one connected component . To

prove this, suppose S 1 - W has only one connected component . By

v) of Lemma 1, S 1 -W=(pi ,p j ) with (p i ,p j )(1Fix(f)=0. From iv)

of Lemma 1 it follows that f(W)=W . Then, since f(S1 )=5 1 ,

f( [P i ,PJ])=> [p i ,Pj] . By Lemma 12, (p i , Pj)CWu (pi,f,+)uwu (P i ,f, - )cw,

a contradiction . This establishes the claim .

Let (p i ,pj ) and (PI,Pk) be two distinct connected components

óf S 1 -W . It is clear that (pi ,p j )(1 Fix(f) =0 and (pl ,p k )(1 Fix(f) =0 .

From Lemma 12 it follows that f([p i ,pj ] )ay [p i ,pj ] and f ([Pl'Pk]) ~5
[PI,Pk] . Then f([Pi,PJ])=>[P.7,pi]n [PI , Pk] and similarly f([PI,Pk])D

[pi,PJ] . Hence f2 ([p i ,pj])D [Pi,Pj] . By Lemma 12,

	

(pi ,pj ) e

Wu (Pi,f2 ,+)U Wu(Pj ,f2 ,-)c W, a contradiction .

Now, suppose r = 1 and W # S 1 . We may assume that there exists

a neighborhood V of p= p1 such that f-1 (p)(1V= {p} . Otherwise,

there

	

is

	

an arc [x,y] such that

	

p e

	

[x,y] ,

	

f( [x,y] ) = {p}

	

and

f([a,b]) ¢ {p} for every arc [a,b] with [x,y] c (a,b) . Let X denote

the quotient space of S 1 obtained by identifying al] points of

[x,y] to the single point p, and let g : X - X be the quotient

map of f obtained by this identification . Then g verifies the

hypotheses of the theorem and there exists a neighborhood V of

p such that g-1(p)1)V={p} . We separete the proof into five

cases .



Case 1 . Suppose f([p,x]) :)[p,x], for some x sufficiently close

to p .

This implies that there exists y sufficiently close to p

such that y e (p,f(y)) . Therefore WU (p,f,+) =S1
, a contradiction .

Case 2 .

	

Suppose f([x,p]) n [x,p], for some x sufficiently close

to p .

Similarly, WU (p,f,-)= S 1 , a contradiction .

Case 3. Suppose f([p,x])c [p,x], for some x sufficiently close

to p .

Then f([x,p]) :)[x,p] . By case 2, we have a contradiction .

Case 4. Suppose f([x,p])c [x,p], for some x sufficiently close

to p .

Then f([p,x]) -->[p,x] .

	

By case 1, we have a contradiction .

Case 5 . Suppose f( [p,x] )c [a,p] and f( [y,p] )c [p,b] for x and

y sufficiently close to p, and for some a,b e S1 - {p} .

Hence, by the above cases we have a contradiction for the

map f2 . Q.E .D .

COROLLARY 14 . Let f e C0 (S1, S1 ) . Suppose Per(f) ={p1 . . .,pr }

and f(S 1 ) =S1 . Then

	

U

	

0 (pk, f) = S1 .
1,<k,<r

Proof. Let n be the product of the periods of al] the periodic

points of f . Then all the periodic points of f are fixed points

of fn . By Theorem 13,

	

U

	

W'(Pk,fn)
=Si . Since Wu (Pk,fn ) c

1,k,r
Wu (Pk,f), U Wu(Pk,f) = S 1 . Q .E .D .

1, k,r

THEOREM 15 . Let X be an arbitrary interval of the real line,

and let f e.C0 (X,X) . If Per(f) is finite then for some integer

n >,O, P(f)={1,2,4, .,2n} .,



This theorem is contained in a theorem of Sharkovskii (see

[6], [9] and [10]) which says the following . Order the positive

integers as follows : 3,5,7, . . .,2-3,2 .5,2-7, . . .,4-3,4-5,4,7, . . .,

8-3,8-5,8 .7, . . .,8,4,2,1 . Then if m is to the right of n and f has

a periodic point of period n, then f has a periodic point of

period m .

THEOREM A . Let f e CO (S1 ,S1 ) and suppose Per(f) is finite .

Then there are integers m >,1 and n >.0, such that P(f) _

{m, 2m, 4m, . . ., 2nm} .

Case 2. There is a fixed point p of f with Wu (p,f) = S1 .

We represent S 1 as the interval [0,1] identifying the points

0 and 1 to the point p . Let g : [0,11 --+ S1 be the natural map

defined by this identification . By Lemma 11, there exists a map

h : [0,1] -= [0,1] such that fog=g-h . Therefore P(f)= P(h)=

{1,2,4, . . .,2n} for some integer n>,0.
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Proof. We separate the proof into three cases .

Case 1 . There is a periodic point p of f with period r>,2 and

WU (P,f) =S 1 .

By Theorem 10, Per(f) =Per(fm)= Uij Per(fmj ), where m e {r,r/2}

and
fmj

is he restriction of fm to [p i ,pj ] with Pi,pj e orb(p)

and (pi,pj)n orb(p) =0 .

	

By Theorem 15, for every f' j there is

an

	

integer n(ij), 0 such that P(fmj)={1,2,4, . . .,2n(ij)} .

	

Let n

be the greatest element of {n(ij)} . Then P(f) = {m,2m,4m,, 2 nm} .

Case 3. For every periodic point p of f we have that W, (p,f) ~ S1 .

Let g e CO(S1 ,S 1 ) and let X be a subset of S 1 such that

g(X)c X .

	

Fron now on gIX will denote the restriction of g to X .



If f(S1 )~ S1 , let J = f(S1 ) . Then P(f) =P(f1J) . By Theorem 15,

there is an integer n>,0 such that P(f1J) ={1,2,4 ��2n} . Hence,

the theorem is proved . Therefore, we shall assume that f(S1) =S 1 .

Let p be a periodic point of f with period r and let J be a

connected component of Wu (p,f) . Since Wu (p,f) # S 1 , J # S1 . By iii)

and iv) of Lemma 1, fr (J) =J . From Theorem 15 it follows that

P(fr lj)= {1,2,4� . .,2s } for some integer s,0 .

	

Because fr (J)=J,

P(fr ,J) = {1,2,4�� 2t} where t= s if s , 1, and t e {0,1}if s= 0 .

For each connected component of Wu (p,f) we have an integer t >, 0 .

Let t(p) be the greatest integer associated to some connected

component of 4J u (p,f) . Then P(fr,Wu(P,f)) = {1,2,4, . . .,2t(p)} .

Hence P(flWU (p,f)) = {r,2r,4r, ,2t(p)r} .

Let m be the smallest element of P(f) and let p be a periodic

point of f with period m . IJe claim that P(flWu(p,f)U Wu (q,f))=

{m,2m,4m, . . .,2tm} for any periodic point q of f such that

Wu (p,f)(1Wu(q,f) ~ O, and for some integer t= t(p,q) . We shall

prove this claim . By Corollary 14, there are periodic points q

such that Wu (p,f)n Wu (q,f)~ 0 . Let q be such a periodic point

with period k . By v) of Lemma 1, the sets P(fjWu (p,f)) =

{m,2m,4m, - 2t (p)m} and P(flWu (q,f)) = {k,2k,4k, . . .,2t(q)k}

intersect . Then,

	

since k >,m, we obtain that k .=2am, for some

integer a>,0. Therefore, if t(p,q) is the greatest element of

{t(p),a + t(q)}, the claim is proved . By the same argument and

by Corollary 14, the theorem follows . Q .E.D .

§5 . Proof of Theorem B

LEMMA 16 . Let f e C0 (S1,SZ ) . Suppose S1(f) is finite and

[,

	

(p, f) $S1 for al 1 p e Per(f) .

	

Then 2 (f) =Per(f) .



Proof . Suppose x e Q(f) and x 0 Per(f) . By vi) of Lemma 1,

for some periodic point pl , there exists z e Wu (pl,f) such

that f(z) =p, and z is not periodic . Let n be the period of

pl and let orb(pl ) = {Pl` .,pn } . By iii) of Lemma 1, z e Wu (Pk,fn )

for some k e {1, . . .,n} . Note that fn (z) e (Pl " ."pn } and (by iv)

of Lemma 1) fn (z) e W u (Pk,fn) . We separate the proof into two

cases .

Case 1 .
pl

is a periodic point with period n>,2 .

Then, by Theorem 7, fn(z)= pk . Let J =Wu (P k ,fn ) . By iv) of

Lemma 1, fn (J)= J . Let g be the restriction of fn to J . Then

z e Wu(Pk,fn ) =Wu (Pk ,g), and g(z) =pk . By Lemma 6, z = Pk . This is

a contradiction, because z is not periodic .

Case 2 . pl is a fixed point .

Then n =l, and f(z)=p, The proof is identic to the above

case . Q.E .D .

THEOREM 17 (proved by Block in [6]) . Let I be an arbitrary

interval of the real line . Let f e CO (I,I) and suppose 2(f) is

finite . Then Q(f)=Per(f) .

LEMMA 18 . Let f e C0(S1,S1 ) . Suppose Q(f) is finite and

O(p 1 , f) = S1 for some periodic orbit {p1"pn} with n >,2 . Then

si (f) = Per(f) .

Proof. By Theorem 10, Per(f) = Per(fm)=
UiJ

Per(fmj.)
and

s2(f) =si(fi) = Vid sl(fm
i
), where m e {n,n/2} and fm~ is the

restriction of fm to- [p i ,p j ], if (pi,pj)(1{pl, . . .,pn} o .
By Theorem 17, P(fm~)= Per(fm~) . Hence s2(f)= Per(f) .

	

Q .E .D .



LEMMA 19 . Let f e C0 (S1,S1 ) . Suppose 2(f) is finite and

k~t (q,f) ~¿S1 for any q e Per(f) with period greater than 1 .

If 0(q,f)=S
1
for some q e Fix(f), then 2(f)=Per(f) .

Proof. Suppose y e s2(f) and y 0 Per(f) . By vi) of Lemma 1,

for some periodic point p, there exists z e WU (p,f) such that

f(z) = p and z is not periodic . Let n be the period of p . We

separate the proof into three cases .

	

'

Case 1 .

	

p is a periodic point with period n ; 2 .

'

	

t Since WU (P,f)~ S 1 , by the same argument used in the proof of

case 1 of Lemma 16, we would have a contradiction .

Case 2 . p is a fixed point with WU (p,f) # S1 .

Now, we should have a contradiction by the same argument used

in the proof of case 2 of Lemma 16 .

Case 3. p is a fixed point with Wu (p,f) =S 1 .

By the proof of case 2 of Theorem A, there are two continuous "

maps g : [0,1] --, S 1 and h : [0,1]

	

-= [0,1] such that f-g= g-h .

By Theorem 17, 2(h) = Per(h) . Then n(f) = Per(f) .

	

Q .E .D .

THEOREM B . Let f e C
0
(S1,S1) and suppose Q(f) is finite . Then

2(f) = Per(f) .

Theorem B follows immediately from Lemmas 16, 18 and 19 .

§6 . Proofs of Theorems C and D

THEOREM 20 (proved by Block in [5]) . Let X denote an arbitrary

interval of the real line, and let f e C0(X,X) . Suppose Per(f) =

Fix(f) is finite . Then P(f) = Fix(f) .



THEOREM D . Let f e CO (S1,S1 ) . Suppose Per(f) =Fix(f) =

{p1" ",pr} . Then S2 (f) =Fix(f) .

Proof. We separate the proof into two cases .

Case 1 . There is a fixed point p of f with Wu (p,f) =S 1 .

By the same argument used in the proof of case 3 of Lemma 19

and by Theorem 20, we have that P(f) = Fix(f) .

Case 2. For every fixed point p, Wu (P,f)# S 1 .

lf f(S1 )~S 1 , let J=f(S 1
) . Then, by Theorem 20, Q(f)=S2(f1J)

Fix(f1J) = Fix(f) . Hence, the theorem is proved . Therefore, we

shall assume that f(S 1 )=51 .

From Theorem 13 it follows that r> 1 . Let p be a fixed point

of f . By i) of Lemma 1, Wu (p,f) is connected . By iv) of Lemma 1,

f(Wu (p,f)) = Wu(p,f) . From Theorem 20 we have that S2(flW u (p,f)) =

Fix(flWu (P,f)) . Then, by Theorem 13, S2(f) = Fix(f) .

	

Q .E .D .

LEMMA 21 (proved by Adler, Konheim and McAndrew in [1]) .

Let f be a continuous map of a compact topological space and

Zet n be a positive integer . Then ent(fn) =n-ent(f) .

LEMMA 22 (proved by Bowen [7]) . Let f be a continuous map

of a conrpact metric space and suppose S2(f) is finite . Then

ent(f) = 0 .

Now, the proof of Theorem C is identical to the proof of

Theorem A of [51 . We include it here by its brevity .

THEOREM C . Let f e CO(S1,S1) and suppose Per(f) is finite .

Then ent(f) =0 .
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Proof. Let n be the product of the periods of al] the periodic

points of f . Then Per(fn ) = Fix(fn) . By Theorem D, 2(fn ) = Per(fn) .



In particular, 2(fn ) is finite . Hence ent(fn) = 0, by Lema 22 .

Thus, by Lemma 1, ent(f) = 0 .

	

Q.E .D.
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