Pub. Mat. UAB

```
No 25 Jun:' 1981
```

Two Coincidence Theorems

Albert Compta Creus

Rebut el 16 de Mars del 1981

1. INTRODUCTION

This note deals with the existence and unicity of coincidence points $f(x)=g(x)$ for two maps, like in Cerdã [1], related by a contractive type relation similar to the properties required in some generalisations of the Banach fixed point theorem.

In a first theorem we consider maps f, g from a topological space to a complete metric space, following the condition
(i) For each $\varepsilon>0$ there exists $\delta>0$ such that

$$
\varepsilon \leq d(f(x), f(y))<\varepsilon+\delta \Rightarrow d(g(x), g(y))<\varepsilon
$$

like in Meir-Keeler [2]. We shall prove that the coincidence set S is nonemipty and both functions are constant on S.

We give an example of mappings keeping contractive relation (i) but not the one in [11.

In a second theorem based on an article by Chi Song Wong [3], mappings f, g are defined on a uniform space (X, U) and we consider the uniformity basis U_{φ} defined by

$$
U_{\varphi}=\left\{\varphi^{-1}(0) \times \varphi^{-1}(0) \cup \Delta: U \in v\right\}
$$

being $\varphi(x)=(T(x), g(x))$ and Δ the diagonal of $X x X$, and we shall prove that the coincidence set S has a unique point if f is uniformily continuous from
$\left(x, v_{\varphi}\right)$ into (x, y) and keeps some other conditions.

2. THEOREM I

THEOREM I. Let X be a non-empty topological space and Y a non- empty metric space. Let f and g be two mappings of X into. Y keeping (i), and
(ii) f be proper and continuous
(iii) $g(X) \subset f(x)$
(iv) $\overline{g(X)}$ complete.

Then S is non-empty and $f(S)$ has a unique point.
Proof. If $f(x) \neq f(y),(i)$ implies $d(g(x), g(y))<d(f(x), f(y))$ and then $f(S)$ has at great a point.

Now we shall prove that S is non-empty. Let $x_{0} \in X$, (iii) implies $f^{-1}\left\{g\left(x_{0}\right)\right\} \neq \emptyset$. Pick $x_{1} \in f^{-1}\left\{g\left(x_{0}\right)\right\}$. Repeating the same operation we obtain a sequence x_{n} of x keeping $f\left(x_{n+1}\right)=g\left(x_{n}\right)$ for each $n \in N$.

Let $c_{n}=d\left(f\left(x_{n}\right), f\left(x_{n+1}\right)\right)$; if there exists n_{0} which $c_{n_{0}}=0$, then $f\left(x_{n_{0}}\right)=f\left(x_{n_{0}+1}\right)=g\left(x_{n_{0}}\right)$; therefore, $x_{n_{0}} \in S$ and the theorem is proved. On the contrary, we will have $c_{n}>0$ for each n, and, at the first time, we are going to prove $c_{n} \geqslant 0$. Since $0<c_{n}$, (i). implies $c_{n}<d\left(g\left(x_{n}\right), g\left(x_{n+1}\right)\right)=$ c_{n+1}; the sequence is decreasing and positive. Let $c=\lim _{n} c_{n}$. If $c>0$, (i) implies that there exists a positive number such that, taking c_{n} that keeps $c_{n}<c+\delta$ we have

$$
c \leq c_{n}<c+\delta \Rightarrow c_{n+1}<c \quad \text { and it contradicts }
$$

$c_{n}>c$; therefore, $c_{n} \geqslant 0$ as we would like to see.
Now, we are going to prove that $f\left(x_{n}\right)$ is a Cauchy sequence. The proof is by contradiction. If $f\left(x_{n}\right)$ wasn't a Cauchy sequence there would exist $\varepsilon>0$ so that Cauchy relation wouldn't keep for 2ε. For a such ε,
there exists $\delta>0$ keeping (i). For a such δ pick s so that

$$
\begin{equation*}
c_{s}<\delta / 3 \tag{2}
\end{equation*}
$$

Pick $k, m>s$ fulfilling $d\left(f\left(x_{k}\right), f\left(x_{m}\right)\right)>2 \varepsilon$ and $k<m$. If $n \in[k, m]$,

$$
\begin{equation*}
\left|d\left(f\left(x_{k}\right), f\left(x_{n+1}\right)\right)-d\left(f\left(x_{k}\right), f\left(x_{n}\right)\right)\right|<\delta / 3 . \tag{3}
\end{equation*}
$$

Consider $A=\left\{n \in\left[k . \mathrm{m}_{\mathrm{m}}\right]: d\left(f\left(x_{k}\right), f\left(x_{n}\right)\right) \geq \varepsilon+\delta\right\}$, obviously $m \in A$, and let $\mathbf{i} \in[k, m]$ be such that $i+1=\min A$. We have
$d\left(f\left(x_{k}\right), f\left(x_{i+1}\right)\right)-d\left(f\left(x_{k}\right), f\left(x_{i}\right)\right) \geq \varepsilon+\delta-d\left(f\left(x_{k}\right), f\left(x_{i}\right)\right)$
and, (3) and (4) imply $d\left(f\left(x_{k}\right), f\left(x_{j}\right)\right)>\varepsilon+26 / 3$.
However, $d\left(f\left(x_{k}\right), f\left(x_{i}\right)\right) \leq d\left(f\left(x_{k}\right), f\left(x_{k+1}\right)\right)+d\left(f\left(x_{k+1}\right), f\left(x_{i+1}\right)\right)+$

$$
+d\left(f\left(x_{i+1}\right), f\left(x_{j}\right)\right)<\varepsilon+2 \delta / 3
$$

because of (2), i $\notin A,(5)$ and (i). It contradicts (5). This contradiction proves that $f\left(x_{n}\right)$ must be a Cauchy sequence.

Because of (iv), $f\left(x_{n}\right) \longrightarrow y \in \overline{g(x)}$. Let $B=\{y\} \cup\left\{f\left(x_{n}\right)\right\}_{n} \in \mathbb{N}$ which is a compact of Y. (ii) implies that $f^{-1}(B)$ is compact; therefore, there exists a partial sequence of x_{n} converging to $x \in f^{-1}(B)$, and $f(x)=y$ by the continuity of f. The continuity of g, given by (i), implies that the image by g of this partial converges to $g(x)$; moreover, the handing of the sequence x_{n} implies $g(x)=f(x)$ and S is non-empty as we would like to prove. The theorem is proved.

COROLLARY. If we change f proper by g proper between the hypothesis of the theorem I, this one will remain true.

EXAMPLE. Let $X=\{0,1] \cup\{3 n, 3 n+1\}_{n \in \mathbb{N}}$ ard $Y=\mathbb{I}^{-}$, wot with eaclidean distance, and let
$f(x)=(x / 2, \sqrt{3} / 2 x)$
$g(x)= \begin{cases}(x / 4, \sqrt{3} / 4 x) & \text { if } x \in[0,1] \\ (0,0) & \text { if } x=3 n \\ (1 / 2-1 / 2 n+4, \sqrt{3} / 2-\sqrt{3} / 2 n+4) & \text { if } x=3 n+1\end{cases}$
There isn't any mapping φ such that $d(g(x), g(y)) \leq \varphi(d(f(x), f(y)) \|$ kecping $\varphi(\varepsilon)<\varepsilon$ for each $\varepsilon>0$ because $\varphi(1)$ couldn't be minor than 1 since $d(f(3 n), f(3 n+1))=1$ and $d(g(3 n), g(3 n+1))=1-1 / n+2$, ard φ should keep $1-1 / n+2 \leq \varphi(1)$ for each n. Conversely, we can prove without any difficulty that these mappings keep the hypothesis of theorem I.

3. THEOREM II

THEOREM II. Let (X, U) be a non-empty Hausdorff complete uniform space, f and g be two functions from X into X. If
(i) f is uniformly continuous of $\left(x, u_{\varphi}\right)$ into (x, u)
(ii) $\forall U \in U \quad \exists V \in V$ such that $(f(x), f(y)) \in V \Rightarrow(x, y) \in J$
(iii) $\varphi^{-1}(U)$ is non-empty and closed for each closed symmetric member d of U.

Then f and g have a unique coincidence point.
Proof. Pick the filter $F=\left\{\varphi^{-1}(U!: U \in B\}\right.$, where B is the set formed by all the closed symmetric members of U.

We will see F is a Cauchy filter. Iet $U \in U$, pick $V \in U$ such thet $(f(x), f(y)) \in V \Rightarrow(x, y) \in U$ since (ii). By (i) we can find $W \in B$ such that $(x, y) \in \varphi^{-1}(W) \times \varphi^{-1}(W) \cup \Delta \Rightarrow(f(x), f(y)) \in V$. Taking $\varphi^{-1}(W)$ we have $\varphi^{-1}(W) \in F$ and $\varphi^{-1}(W) \times \varphi^{-1}(W) \subset U$; therefore F is a Cauchy filter.

Since F is a Cauchy filter, X complete Hausdor f ino (iii, we have

$$
\cap_{W \in B} \varphi^{-1}(w)=\left\{x_{0}\right\} ;
$$

moreaver, taking images by φ it results that $A=\cap_{W \in B} W \exists\left(f\left(x_{0}\right), g\left(x_{0}\right)\right.$ impios $f\left(x_{0}\right)=g\left(x_{0}\right)$. We shall now prove the unicity. If y_{0} is a coincidence point $\varphi\left(y_{0}\right) \in \Delta \Rightarrow \varphi\left(y_{0}\right) \in \underset{W \in B}{\cap} W \Rightarrow y_{0} \in \underset{W \in E}{\cap} \varphi^{-1}(H)=\left\{x_{0}\right\} \Rightarrow y_{0}=x_{0}$ and the theorem is proved.

LOROLLARY. If X is a complete metric space, the theorem says:
(i) $V \varepsilon=0 \quad 3 \delta>0: d(f(x), g(x))+d(f(y), g(y))<\delta \Rightarrow d(f(x), f(y))<\varepsilon$
(ii) $V \varepsilon>0 \quad \exists \delta^{\prime}>0: d(f(x), f(y))<\hat{\sigma}^{*} \Rightarrow d(x, y)<\varepsilon$
(iii) $\forall \varepsilon=0\{x: x \in X$ and $d(f(x), g(x)) \leq \varepsilon\}$ is non-empty and closed.

Then, f and g have a unique coincidence point.
Proof. It is enough to observe that a vecinity of v_{φ} has the form $1 \varphi_{\rho}^{i}=\{(x, y): x=y$ or $\{d(f(x), g(x))<r$ and $d(f(y), g(y))<r\}\}$ and if we consider $B_{\varphi}^{r}=\{(x, y): x=y$ or $d(f(x), g(x))+d(f(y), g(y))<r\}$ we will have $B_{\varphi}^{r} \subset u_{\varphi}^{r} \subset B_{\varphi}^{2 r}$.

REFERENCES

1. J.L. Cerdã Martín: A coincidence theorem. ${ }^{\text {O }}$ ubl. Mat. U.A.8. 7.
2. A. Meir - E. Keelor: A theorem on contraction mappings. Journal of Math. Analysis and Apl. 28, 326-9 (69).
3. Chi Song Wong: A fixed point theorem for a class of mapping. Math. Ann. 204(1973); 97-103.

Aguest treball fou presentat a les Jornades lifl de Santander (1979).

