Pub. Mat. UAB N° 25 Juny 1981

Two Coincidence Theorems

Albert Compta Creus

Rebut el 16 de Març del 1981

I. INTRODUCTION

This note deals with the existence and unicity of coincidence points f(x) = g(x) for two maps, like in Cerdã [1], related by a contractive type relation similar to the properties required in some generalisations of the Banach fixed point theorem.

In a first theorem we consider maps f, g from a topological space to a complete metric space, following the condition

(i) For each $\varepsilon > 0$ there exists $\delta > 0$ such that

 $\varepsilon < d(f(x), f(y)) < \varepsilon + \delta \Rightarrow d(g(x), g(y)) < \varepsilon$

like in Meir-Keeler [2]. We shall prove that the coincidence set S is nonempty and both functions are constant on S.

We give an example of mappings keeping contractive relation (i) but not the one in [1].

In a second theorem based on an article by Chi Song Wong[3], mappings f, g are defined on a uniform space (X, y) and we consider the uniformity basis y_{ω} defined by

$$v_{\varphi} = \{\varphi^{-1}(0) \times \varphi^{-1}(0) \cup \Delta : 0 \in v\}$$

being $\varphi(x) = (\tau(x), g(x))$ and Δ the diagonal of XxX, and we shall prove that the coincidence set S has a unique point if f is uniformly continuous from

 (X, U_{α}) into (X, U) and keeps some other conditions.

2. THEOREM I

THEOREM I. Let X be a non-empty topological space and Y a non- empty metric space. Let f and g be two mappings of X into Y keeping (i), and

- (ii) f be proper and continuous
- (iii) $g(X) \subseteq f(X)$
- (iv) $\overline{g(X)}$ complete.

Then S is non-empty and f(S) has a unique point. Proof. If $f(x) \neq f(y)$, (i) implies d(g(x),g(y)) < d(f(x),f(y)) (1) and then f(S) has at great a point.

Now we shall prove that S is non-empty. Let $x_0 \in X$, (iii) implies $f^{-1}(g(x_0)) \neq \emptyset$. Pick $x_1 \in f^{-1}(g(x_0))$. Repeating the same operation we obtain a sequence x_n of X keeping $f(x_{n+1}) = g(x_n)$ for each $n \in \mathbb{N}$.

Let $c_n = d(f(x_n), f(x_{n+1}))$; if there exists n_0 which $c_{n_0} = 0$, then $f(x_{n_0}) = f(x_{n_0+1}) = g(x_{n_0})$; therefore, $x_{n_0} \in S$ and the theorem is proved. On the contrary, we will have $c_n > 0$ for each n, and, at the first time, we are going to prove $c_n > 0$. Since $0 < c_n$, (i) implies $c_n < d(g(x_n), g(x_{n+1})) = c_{n+1}$; the sequence is decreasing and positive. Let $c = \lim_{n \to \infty} c_n$. If c > 0, (i) implies that there exists a positive number δ such that, taking c_n that keeps $c_n < c + \delta$ we have

 $c \leq c_n < c + \delta \Rightarrow c_{n+1} < c$ and it contradicts

 $c_n \propto c$; therefore, $c_n \sim 0$ as we would like to see.

Now, we are going to prove that $f(x_n)$ is a Cauchy sequence. The proof is by contradiction. If $f(x_n)$ wasn't a Cauchy sequence there would exist $\varepsilon > 0$ so that Cauchy relation wouldn't keep for 2ε . For a such ε ,

there exists $\delta > 0$ keeping (i). For a such δ pick s so that

$$c_s < \delta/3$$
. (2)

Pick k,m > s fulfilling $d(f(x_k), f(x_m)) > 2\varepsilon$ and k < m. If $n \in [k,m]$,

$$|d(f(x_k), f(x_{n+1})) - d(f(x_k), f(x_n))| < \delta/3.$$
 (3)

Consider A = {n $\in [k,m]$: d(f(x_k), f(x_n)) $\geq \epsilon + \delta$ }, obviously m \in A, and let $i \in [k,m]$ be such that i+1 = min A. We have

$$d(f(x_k), f(x_{i+1})) - d(f(x_k), f(x_i)) \ge \varepsilon + \delta - d(f(x_k), f(x_i))$$
(4)

and, (3) and (4) imply $d(f(x_k), f(x_j)) > \varepsilon + 2\delta/3.$ (5) However, $d(f(x_k), f(x_j)) \le d(f(x_k), f(x_{k+1})) + d(f(x_{k+1}), f(x_{j+1})) + d(f(x_{j+1}), f(x_j)) < \varepsilon + 2\delta/3$

because of (2), i \notin A, (5) and (i). It contradicts (5). This contradiction proves that $f(x_n)$ must be a Cauchy sequence.

Because of (iv), $f(x_n) \rightarrow y \in \overline{g(X)}$. Let $B = \{y\} \cup \{f(x_n)\}_n \in \mathbb{N}$ which is a compact of Y. (ii) implies that $f^{-1}(B)$ is compact; therefore, there exists a partial sequence of x_n converging to $x \in f^{-1}(B)$, and f(x) = yby the continuity of f. The continuity of g, given by (i), implies that the image by g of this partial converges to g(x); moreover, the handling of the sequence x_n implies g(x) = f(x) and S is non-empty as we would like to prove. The theorem is proved.

COROLLARY. If we change f proper by g proper between the hypothesis of the theorem I, this one will remain true.

EXAMPLE. Let X = $\{0,1\} \cup \{3n,3n+1\}_{n \in \mathbb{N}}$ and Y = K^+, both with euclidean distance, and let

 $f(x) = (x/2, \sqrt{3}/2 x)$

$$g(x) = \begin{cases} (x/4, \sqrt{3}/4 x) & \text{if } x \in [0,1] \\ (0,0) & \text{if } x = 3n \\ (1/2 - 1/2n+4, \sqrt{3}/2 - \sqrt{3}/2n+4) & \text{if } x = 3n+1 \end{cases}$$

There isn't any mapping φ such that $d(g(x),g(y)) \leq \varphi l d(f(x),f(y)) l$ keeping $\varphi(\varepsilon) \leq \varepsilon$ for each $\varepsilon \geq 0$ because $\varphi(1)$ couldn't be minor than 1 since d(f(3n),f(3n+1)) = 1 and d(g(3n),g(3n+1)) = 1 - 1/n+2, and φ should keep $1 - 1/n+2 \leq \varphi(1)$ for each n. Conversely, we can prove without any difficulty that these mappings keep the hypothesis of theorem I.

3. THEOREM II

THEOREM II. Let (X, U) be a non-empty Hausdorff complete uniform space, f and g be two functions from X into X. If

(i) f is uniformly continuous of (X, U_{φ}) into (X, U)(ii) $\forall U \in U \quad \exists V \in U$ such that $(f(X), f(Y)) \in V \Rightarrow (X, Y) \in U$ (iii) $\varphi^{-1}(U)$ is non-empty and closed for each closed symmetric member U of U. Then f and g have a unique coincidence point. Proof. Pick the filter $F = \{\varphi^{-1}(U) : U \in B\}$, where B is the set formed by all the closed symmetric members of U.

We will see F is a Cauchy filter. Let $U \in U$, pick $V \in U$ such that $(f(x), f(y)) \in V \Rightarrow (x, y) \in U$ since (ii). By (i) we can find $W \in B$ such that $(x, y) \in \varphi^{-1}(W) \ge \chi^{-1}(W) \cup \Delta \Rightarrow (f(x), f(y)) \in V$. Taking $\varphi^{-1}(W)$ we have $\varphi^{-1}(W) \in F$ and $\varphi^{-1}(W) \ge \varphi^{-1}(W) \subset U$; therefore F is a Cauchy filter.

Since F is a Cauchy filter, X complete Hausdor f and (iii,, we have

$$\bigcap_{W \in B} \varphi^{-1}(W) = \{x_0\};$$

moreaver, taking images by φ it results that $\Delta = \bigcap W \ni (f(x_0), g(x_0))$ implies $f(x_0) = g(x_0)$. We shall now prove the unicity. If y_0 is a coincidence point $\varphi(y_0) \in \Delta \Rightarrow \varphi(y_0) \in \bigcap W \Rightarrow y_0 \in \bigcap \varphi^{-1}(W) = \{x_0\} \Rightarrow y_0 = x_0$ and the theorem is proved.

COROLLARY. If X is a complete metric space, the theorem says: (i) $\forall \varepsilon \ge 0$ $\exists \delta \ge 0$: $d(f(x),g(x)) + d(f(y),g(y)) < \delta \Rightarrow d(f(x),f(y)) < \varepsilon$ (ii) $\forall \varepsilon \ge 0$ $\exists \delta^{1} \ge 0$: $d(f(x),f(y)) < \delta^{1} \Rightarrow d(x,y) < \varepsilon$ (iii) $\forall \varepsilon \ge 0$ $\{x:x \in X \text{ and } d(f(x),g(x)) \le \varepsilon\}$ is non-empty and closed. Then, f and g have a unique coincidence point.

Proof. It is enough to observe that a vecinity of v_{φ} has the form $\Pi_{\varphi}^{r} = \{(x,y): x = y \text{ or } \{d(f(x),g(x))\} < r \text{ and } d(f(y),g(y)) < r\} \text{ and if we}$ consider $B_{\varphi}^{r} = \{(x,y): x = y \text{ or } d(f(x),g(x)) \neq d(f(y),g(y)) < r\}$ we will have $B_{\varphi}^{r} \subset \Pi_{\varphi}^{r} \subset B_{\varphi}^{2r}$.

REFERENCES

- 1. J.L. Cerdà Martín: A coincidence theorem. Publ. Mat. U.A.B. 7.
- A. Meir E. Keeler: A theorem on contraction mappings. Journal of Math. Analysis and Apl. 28, 326-9 (69).
- Chi Song Wong: A fixed point theorem for a class of mapping. Math. Ann. 204(1973); 97-103.

Aquest treball fou presentat a les Jornades HHL de Santander (1979).