Pub. Mat. UAB
N" 25, Juny 1981

On the space of free loops of an odd sphere

J. Aguàdé

Rebut el 13 de Mars del 1981
We denote by $A X$ the space of maps $S^{1} \rightarrow X$ and we call $A X$ the space of free loops on X. There is a fibration $\Omega X \rightarrow A X \rightarrow X$, where ΩX denotes the space of (based) loops on X. The cohomology of $A X$ has been studied by L. Smith ([1],[2]). Let us consider the case $X=s^{2 n+1}$, an odd-dimensional sphere. In this case, the fibration $\Omega S^{2 n+1}+A S^{2 n+1} \rightarrow S^{2 n+1}$ is totally non-homologous to zero ([1]). Hence, $\Lambda S^{2 n+1}$ has the same cohomology as the product $s^{2 n+1} \times \Omega s^{2 \cdot n+1}$. We consider the problem of deciding if both spaces are homotopically equivalent, i.e. if there is a splitting $A S^{2 n+1}=s^{2 n+1} \times \Omega S^{2 n+1}$. We consider also the related question of the triviallity of the fibration $\Omega S^{2 n+1} \rightarrow A S^{2 n+1} \rightarrow S^{2 n+1}$. The answer to these questions is given by the following result:

Theorem The following conditions are equivalent:
i) $A S^{2 n+1}=S^{2 n+1} \times \Omega S^{2 n+1}$;
ii) the fibration $\Omega S^{2 n+1} \rightarrow A S^{2 n+1}+S^{2 n+1}$ is homotopically trivial; iii) $n=0,1,3$.

Proof: Clearly, ii \Rightarrow i. If $n=0,1,3$, then $s^{2 n+1}$ is an H-space and so the fibration $\Omega S^{2 n+1}+A S^{2 n+1} \rightarrow S^{2 n+1}$ is trivial because we can map $S^{2 n+1} \times \Omega S^{2 n+1} \rightarrow A S^{2 n+1}$. We have to prove $i \Rightarrow i i i$. Let us assume that we have a homotopy equivalence
$f: S^{2 n+1} \times \Omega S^{2 n+1} \rightarrow \Lambda S^{2 n+1}$ and let us consider the induced map $h: S^{1} \times s^{2 n+1} \times \Omega S^{2 n+1}+s^{2 n+1}$. Let us denote by $u_{1}, u_{2 n+1}, y$, generators of $H^{1}\left(S^{1}\right), H^{2 n+1}\left(S^{2 n+1}\right)$ and $H^{2 n}\left(\Omega S^{2 n+1}\right)$, respectively. We will later show that in this situation we have $h^{*}\left(u_{2 n+1}\right)= \pm u_{2 n+1} \pm u_{1} \times y$.

Let us consider now the map $g: S^{2 n+1} \times\left(S^{1} \times S^{2 n}\right) \rightarrow s^{2 n+1}$ induced by h and let us perform the Hopf construction on g. We obtain a map $\tilde{g}: s^{2 n+1} *\left(S^{1} \times s^{2 n}\right) \rightarrow s^{2 n+2}$. Since the space on the left is a wedge of spheres, $s^{2 n+3} \vee s^{4 n+2} \vee s^{4 n+3}$, we can consider a map $\hat{g}: s^{4 n+3} \rightarrow s^{2 n+2}$ induced by g . The proof is complete if we show that g has Hopf invariant one, but this follows from $h *\left(u_{2 n+1}\right)= \pm u_{2 n+1} \pm u_{1} \times y$, using the results of [3]. Hence, we have only to show that $h *\left(u_{2 n+1}\right)= \pm u_{2 n+1} \pm u_{1} \times y$. Let us set $h^{*}\left(u_{2 n+1}\right)=2 u_{2 n+1}+\mu u_{1} \times y$. We have a commutative diagram

$$
S^{2 n+1} \times \Omega S^{2 n+1} \xrightarrow{f} A S^{2 n+1}
$$

$$
s^{1} \times s^{2 n+1} \times \Omega s^{2 n+1} \ldots S^{2 n+1}
$$

Since the right vertical map induces an isomorphism in cohomology in dimension $2 n+1$, we get $\lambda= \pm 1$.

Notice that any homotopy commutative diagram

yields a homotopy commutative diagram

where $\bar{\alpha}$ and \bar{B} are adjoint to a and B, respectively. In our case we can consider the diagram

where α represents y and B is the composite

$$
\Omega S^{2 n+1} \xrightarrow{i} S^{2 n+1} \times \Omega S^{2 n+1} \xrightarrow{f} A S^{2 n+1} \xrightarrow{A U_{2 n+1}} A K(\mathbb{Z}, 2 n+1)
$$

We claim that the above diagran is homotopy comnutative. Since $A K(\mathbb{Z}, 2 n+1)=K(\mathbb{Z}, 2 n+1) \times K(\mathbb{Z}, 2 n)$ (because $K(\mathbb{Z}, 2 n+1)$ is an H-space) it suffices to show that ioa and B induce the same homomorphisms in dimensions $2 n+1$ and $2 n$. This is obvious in dimension $2 n+1$. In dimension $2 n$ both i^{*} and α^{*} are isomorphisms. Moreover, j^{*} is an isomorphism in dimension $2 n, f *$ is an isomorphism in any dimension and $\left(A u_{2 n+1}\right)^{*}$ is an isomorphism in dimension $2 n$ because the following diagram combutes

Hence, ioa and β coincide (for some choice of the generator y) and we have a homotopy commatative diagram

Which implies $\mu= \pm 1$.
Notice that, since $S_{(p)}^{2 n+1}$ is an H-space for any odd prime p we always have a splitting $A S_{(p)}^{2 n+1} \simeq S_{(p)}^{2 n+1} \times \Omega S_{(p)}^{2 n+1}$, p odd. However, if $A X \simeq X \times \Omega X$ for some space X, X does not need to be an H-space, as we can see by considering the case of $\mathfrak{X}(G, 1)$ where G is a non-commutative group. It is easy to see that $\Omega(G, 1)=K(G, 1) \times \Omega K(G, 1)$ but $K(G, 1)$ is not an H-space.

I am grateful to A. Zabrodsky for some helpful conversations on the subject of this oaper.

References

1. Smith, "On the characteristic zeno conmology of he free loop space" (preprint).
2. Smith, 2 . "On the characteristic p cohomology of the free loop space". (in preparati n).
3. Thomas, E. "On functorial cup products and the transgresion theorem" Archiv d. Math 12 (1961), 435-444.

Universitat Autonoma de Barcelona. Bellaterra, Barcelona. Spain. and

Forschungsinstitut fur Mathematik, ETH ZUrich. Switzeriand.

