Let R be a ring. We say that R is l.a.r.i. if every left ideal is a right ideal. A ring is l.a.r.i. if every left annihilator is a right ideal. Our notation follows that of [2].

The main results are

Theorem 1. Let K be a field and let G be a nonabelian locally finite group. Then if $K[G]$ is l.a.r.i. one of the following occurs

(i) $\text{Char } K = 0$ and G is a Hamilton group such that for each odd exponent, n, of G the quaternion algebra over the field $K(\xi_n)$, where ξ_n is a primitive n-root of the unity, is a division ring.

(ii) $\text{Char } K = 2$ and K does not contain any primitive 3-root of the unity. Moreover $G \cong Q \times A$, where Q is the quaternion group of order 8 and A is abelian in which each element has odd order and if n is an exponent for A, then the least integer $m \geq 1$ satisfying $2^m \equiv 1 \pmod{n}$ is odd.
Conversely if \(K[G] \) satisfies (i) or (ii), then \(K[G] \) is l.i.r.i. and, in particular, it is l.a.r.i.

Observe that if \(\text{char } K > 2 \) and \(G \) is locally finite, then \(K[G] \) is l.a.r.i. if and only if \(G \) is abelian.

THEOREM II. Let \(K[G] \) denote the group ring over a nonabelian group. Then the following are equivalent:

1. \(K[G] \) is l.i.r.i.
2. \(G \) is locally finite and if \(\alpha, \beta \in K[G] \) with \(\alpha \beta = 0 \), then \(\beta \alpha = 0 \).
3. \(G \) is locally finite and \(K[G] \) is l.a.r.i.

If we combine the above theorems we get necessary and sufficient conditions for \(K[G] \) to be l.i.r.i.

By using the antiautomorphism of \(K[G] \) given by

\[
\sum_{x \in G} a_x x \mapsto \sum_{x \in G} a_x x^{-1}
\]

we see that \(K[G] \) is l.i.r.i. (l.a.r.i.) if and only if \(K[G] \) is r.i.i. (r.a.i. i.e. normal.

LEMMA I. (i) \(K[G] \) is l.i.r.i. if and only if for every finitely generated subgroup \(H \leq G \), \(K[H] \) is l.i.r.i.

(ii) If \(K[G] \) is l.i.r.i., then all subgroups of \(G \) are normal.

(iii) Suppose that \(G \) is locally finite. If \(K[G] \) is l.a.r.i., then all subgroups of \(G \) are normal.

PROOF. (i) First we suppose that for every finitely generated subgroup \(H \leq G \), \(K[H] \) is l.i.r.i. Let \(I \leq K[G] \) a left ideal. Let \(\omega \in I \), \(g \in G \). We set \(H = \langle g, \sigma \omega \rangle \). Then
In $K[I]$ is a left ideal of $K[H]$ and hence $I \cap X[H]$ is an ideal of $K[H]$, since H is finitely generated. Now $g \in H$ and $\alpha \in I \cap X[H]$ so $\alpha g \in I \cap X[H] \in I$. Therefore we have shown that $I_g \triangleleft J$ for any $g \in G$ and so I is a right ideal. Conversely let H be a subgroup of G and suppose that $I \triangleleft K[H]$ is a left ideal of $K[H]$. Let $\{x_1\}$ be a set of left coset representatives for H in G. Then $\mathbb{Z}[G]$ is a free right $K[H]$-module with basis $\{x_i\}$. Thus we have $K[G] = \sum x_i K[H]$. Denote $\sum x_i I$ by J. Clearly J is a left ideal of $K[G]$. If we suppose that $K[G]$ is l.i.r.i., then we have that J is a right ideal of $K[G]$. Let $h \in H$. Then

$$I_h \triangleleft J_h \cap K[H] \leq J \cap K[H] = I$$

and so I is a right ideal.

(ii) In order to prove that all subgroups of G are normal it suffices to see that all cyclic subgroups are normal. Let $g \in G$. Consider the left ideal $I = K[G](1 - a)$. Then I is an ideal, since $K[G]$ is l.i.r.i. Thus $g^{-1}(1-a)g \subseteq I$ and $1 - g^{-1}ag = \alpha (1-a)$ for a suitable element $\alpha \in K[G]$. Now we use the $K[\langle a \rangle]$-homomorphism $\theta : K[G] \rightarrow K[\langle a \rangle]$ in which

$$\sum x \alpha x \rightarrow \sum x \alpha x$$

and we obtain $1 - \theta(g^{-1}ag) = \theta(\alpha)(1-a)$. Since $1-a$ is not invertible we have that $\theta(g^{-1}ag) \neq 0$. Hence $g^{-1}ag \in \langle a \rangle$.

(iii) Suppose that G is locally finite and $K[G]$ is l.a.r.i. Let H be a finite subgroup of G. Then Lemma 1.2 [2, Chap.3] yields
that $L(\mathcal{H}) = K[G]\omega(K[H])$. In other hand we have that

$H = \{ x \in G : x - 1 \in K[G]\omega(K[H]) \}$. By hypothesis $L(\mathcal{H})$ is

and ideal, then it is easy to see that H is normal in G.

We recall that a nonabelian group G such that all subgroups
are normal is a Hamilton group, that is [see 1, Th. 12.5.4]

$$G \cong Q \times A \times B$$

where Q is the quaternion group of 3 elements, A is an abelian

group such that every element has odd order, and B is an abelian
group of exponent 2. For the rest of this paper we fix this
notation.

Lemma 2. Suppose that G is locally finite and $K[G]$ is l.a.r.i. Let $\alpha, \beta \in K[G]$ such that $\alpha \beta = 0$. Then $\beta \alpha = 0$.

Proof. If G is abelian the result is trivial. If G is not

abelian, Lemma 1 (iii) yields that G is a Hamilton group. Put

$G = Q \times A \times B$. If Q is generated by a, b with the relations

$a^4 = 1$, $aba = b$, $a^2 = b^2$, put $H = \langle a^2 \rangle \times A \times B$. H is the center of G. By using the map $\Theta : K[G] \rightarrow K[H]$ in which

$$\sum_{x \in G} a \times x \mapsto \sum_{x \in H} a \times x$$

we can write any element $\alpha \in K[G]$ as

$$\alpha = \Theta(\nu) + \Theta(a^{-1} \alpha) a + \Theta(b^{-1} \alpha) b + \Theta(b^{-1} a^{-1} \alpha) ab.$$

Suppose now that $\alpha \beta = 0$. A computation proves that $\Theta(\alpha \beta) = \delta(\beta \alpha)$

Therefore $\Theta(b \alpha) = 0$. Since $\alpha \in L(\beta)$ and, by hypothesis, $L(\beta)$

is an ideal we have $\alpha \times \beta = 0$ for any $x \in G$. Thus
\[\Theta(x \beta \alpha) = 0. \] By considering (x) for \(\beta \alpha \) we conclude that
\(\beta \alpha = 0. \)

In characteristic 2 we need the following

Lemma 4. Let \(K \) be a field of characteristic 2. Suppose that
\(K \) does not contain any primitive 3-root of the unity. Put
\(Q = \langle a, b \rangle. \) Then if \(\alpha = \sum a \in K[Q] \) such that
\(|\alpha| = 1 \) \((\text{where } |\alpha| = \sum a \in K[Q])\) we have

\[1 + (\alpha b)^2 = (1 + a^2)u \]

where \(u \in K[Q] \) is a unit.

Proof. Let \(\alpha = a_1 + a_2a + a_3a^2 + a_4a^3 \in K[Q] \) with \(\sum a_i = 1. \)

Then a calculation proves that

\[1 + (\alpha b)^2 = (1 + a^2)(1 + (a_1 + a_3)(a_2 + a_4)c). \]

Since \(Q \) is a 2-group and char \(K = 2 \) we know that \(K[Q] \) is a local ring whose maximal ideal is \(\{ \alpha \in K[Q] : |\alpha| = 0 \}. \) Suppose by way of contradiction that \(1 + (a_1 + a_3)(a_2 + a_4)c \) is not a unit. Then
\((a_1 + a_3)(a_2 + a_4) = 1, \) and since \(\sum a_i = 1 \) we see that \(a_1 + a_3 \)

is a primitive 3-root of the unity. Since \(K \) does not contain
any primitive 3-root of the unity we have a contradiction.

The Proof of Theorem 1. Suppose that \(G \) is a nonabelian locally
finite group and \(K[G] \) is l.a.r.i. Then Lemma 1(iii) yields
that \(G = Q \times A \times B. \) First we observe that the case char \(K > 2 \)
is not possible. Since \(K[G] \) is l.a.r.i. clearly \(K[Q] \) so. But in
char \(> 2 \) we have

\[K[Q] \cong K \times K \times K \times K \times M(2, K). \]
and this is a contradiction, since \(K(\mathbb{Z}/2)\) is not l.a.r.i.

Suppose \(\text{char} K = 0\). Let \(n\) be an exponent for \(A\) and let \(x \in A\) such that \(o(x) = n\). Then \(K[<x>]\) is a product of fields

\[K[<x>] \cong K(\xi_n) \times L_1 \times \ldots \times L_m\]

where \(o(\xi_n) = n\). In other hand we have

\[K[Q] \cong K \times K \times K \times K \times \left(\frac{-1,-1}{K}\right)\]

where the last factor is the quaternion algebra over \(K\). Since

\[K[Q \times <x>] \cong K[Q] \otimes K[<x>]\]

we get that \(\left(\frac{-1,-1}{K}\right) \otimes K(\xi_n) = \left(\frac{-1,-1}{K(\xi_n)}\right)\)

is a direct factor of \(K[Q \times <x>]\) and so \(\left(\frac{-1,-1}{K(\xi_n)}\right)\) is l.a.r.i.

Therefore the quaternion algebra over \(K(\xi_n)\) is a division ring.

Conversely suppose that \(K[G]\) satisfies (i). Then we will prove that \(K[G]\) is l.i.r.i. . It follows from Lemma 1(i) that it satisfies to consider \(G\) finite. Then

\[G \cong Q \times A \times (\mathbb{Z}/2)^{2m}\]

and we get

\[K[G] = K[Q \times A] \times \ldots \times K[Q \times A]\]

Clearly we can suppose that \(G = Q \times A\). Then it is easy to see that

\[K[G] = K[A] \times K[A] \times K[A] \times K[A] \times \prod_{i} \left(\frac{-1,-1}{K(\xi_i)}\right)\]

where \(o(\xi_i)\) are exponents for \(A\). Hence we see that \(K[G]\) is
a product of l.i.r.i. rings. Therefore \(K[G] \) is l.i.r.i.

Char \(K = 2 \). First we observe that if \(K \) contains a primitive 3-root of the unity, then \(K[G] \) is not l.a.r.i. From Lemma 2 it suffices to exhibit elements \(\alpha, \beta \in K[G] \) such that
\[
\alpha \beta = 0 \text{ but } \beta \alpha \neq 0.
\]
If \(\xi \) is a primitive 3-root of the unity we set
\[
\alpha = (1 + \xi)(1 + \xi a)b \quad \beta = (1 + \xi)(1 + \xi a)b(1 + a)b.
\]
A calculation proves that \(\alpha \beta = 0 \) but \(\beta \alpha \neq 0 \). We now prove that \(G = Q \times A \). If this is not the case there exists an element \(x \in G - Q \) of order 2 which centralizes \(G \). Again there exist elements
\[
\alpha = 1 + (a + b + ab)x \quad \beta = (a + b + ab)(1 + a) + (1 + a)x
\]
such that \(\alpha \beta = 0 \) but \(\beta \alpha \neq 0 \) and so \(K[G] \) is not l.a.r.i.

Let \(n \) be an exponent for \(A \) and \(x \in A \) such that \(o(x) = n \). Since char \(K = 2 \) we have that \(K[x] \) is semisimple, and so
\[
K[x] = K(\xi) x \ldots x L_m \text{ where } o(\xi) = n.
\]
Then \(K[Q] \otimes K(\xi) \cong K(\xi)[Q] \) is a direct factor of \(K[Q \times < x>] \). By hypothesis \(K(\xi)[Q] \) is l.a.r.i. By above \(K(\xi) \) does not contain any primitive 3-root of the unity. Therefore \(2 \nmid m \), where \(m \) is the degree of the extension \((\mathbb{Z}/2\mathbb{Z})(\xi)/\mathbb{Z}/2\mathbb{Z}) \). But \(m \) is precisely the least integer satisfying \(2^m = 1 \mod n \).

Conversely suppose that \(K[G] \) satisfies (ii). We will prove that...
$K[Q]$ is l.i.r.i. Again from Lemma 1(i) we can consider that G is finite. Then

$$K[A] \cong K(\xi_1) \times \cdots \times K(\xi_m)$$

and so

$$K[Q \times A] \cong K(\xi_1)[Q] \times \cdots \times K(\xi_m)[Q].$$

By hypothesis the field $K(\xi_i)$ does not contain any primitive 3-root of the unity. Since a product of l.i.r.i. rings is a l.i.r.i., we have only to prove that if a field K does not contain any primitive 3-root of the unity, then $K[Q]$ is l.i.r.i.

Let $I \subseteq K[Q]$ a left ideal. Suppose that $\alpha \in I$. We can write α in the form $\alpha = \alpha_1 + \alpha_2 b$, where $\alpha_1 \in K[\langle a \rangle]$. The first task is to show that $\alpha_1(1 + a^2) \in I$. Note that if $\alpha_1(1 + a^2) \in I$, then, since $1 + a^2$ is central, $\alpha_2 b(1 + a^2) \in I$. Again $\alpha_2(1 + a^2)$ is central and therefore $b \alpha_2(1 + a^2) \in I$. Since I is a left ideal $\alpha_2(1 + a^2) \in I$. Thus we need only to prove that $\alpha_1(1 + a^2) \in I$.

If α is a unit, then $I = K[Q]$. Thus we may suppose that α is not a unit. Then we have $|\alpha_1 + \alpha_2| = 0$. Suppose that α_1 is a unit. Then $1 + \alpha_1^{-1} \alpha_2 b \in I$. Clearly $1 + (\alpha_1^{-1} \alpha_2 b)^2 \in I$, so Lemma 4 yields that $1 + a^2 \in I$. Hence $\alpha_1(1 + a^2) \in I$. If α_1 is not a unit, then we have $|\alpha_1| = 0$ and hence $|\alpha_2| = 0$. Therefore $\alpha_1 = \beta_1(1 + a)$ and $\alpha_2 = \beta_2(1 + a)$ for suitable elements $\beta_1 \in K[\langle a \rangle]$

Thus $\alpha = (\beta_1 + \beta_2 ab)(1 + a)$. If $\beta_1 + \beta_2 ab$ is a unit we obtain that $1 + a \in I$ and so $\alpha_1(1 + a^2) = \alpha_1(1 + a)^2 \in I$. Hence we may consider that $|\beta_1 + \beta_2| = 0$. If β_1 is a unit, then $(1 + \beta_1^{-1} \beta_2 ab)(1 + a) \in I$. Again we use Lemma 4 and we get that $(1 + a^2)(1 + a) \in I$. Thus
\(\omega_1(1+a^2) = \beta_1(1+a)(1+a^2) \in I. \) Finally if \(\beta_1 \) is not a unit we have \(\beta_1 = \gamma_1(1+a) \) for certain \(\gamma_1 \in K[<a>] \). Therefore \(\omega_1(1+a^2) = \gamma_1(1+a^2)(1+a^2) = 0 \) and, certainly, \(\omega_1(1+a^2) \in I. \)

Now we will prove that \(\omega x \in I \) for any \(x \in Q \). Since \(Q = \langle a, b \rangle \) it suffices to see that \(\omega a, \omega b \in I. \) By using the automorphism of \(Q \) given by \(a \rightarrow b, b \rightarrow a \) we see that we have only to prove that \(\omega a \in I. \) But

\[\omega a = \omega_1 a + \omega_2 ba = \omega_1 a + ab\omega_2(1+a^2). \]

Since \(ax \in I \) and by above \(\omega_2(1+a^2) \in I \), the result follows.

THE PROOF OF THEOREM II. (i) \(\rightarrow \) (ii). It follows from Lemma 1 (ii) that all subgroups of \(G \) are normal. Since \(G \) is not abelian, it is a Hamilton group and, clearly, locally finite. If a ring is l.i.r.i., then it is l.a.r.i. Lemma 2 completes the proof. Trivially (ii) implies (iii). It follows from Th. 1 that (iii) implies (i). The result follows.

REFERENCES